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Abstract

Recently, deep convolutional neural networks (DCNN)

that leverage the adversarial training framework for image

restoration and enhancement have significantly improved

the processed images’ sharpness. Surprisingly, although

these DCNNs produced crispier images than other meth-

ods visually, they may get a lower quality score when pop-

ular measures are employed for evaluating them. There-

fore it is necessary to develop a quantitative metric to re-

flect their performances, which is well-aligned with the per-

ceived quality of an image. Famous quantitative metrics

such as Peak signal-to-noise ratio (PSNR), The structural

similarity index measure (SSIM), and Perceptual Index (PI)

are not well-correlated with the mean opinion score (MOS)

for an image, especially for the neural networks trained

with adversarial loss functions. This paper has proposed a

convolutional neural network using an extension architec-

ture of the traditional Siamese network so-called Siamese-

Difference neural network. We have equipped this archi-

tecture with the spatial and channel-wise attention mech-

anism to increase our method’s performance. Finally, we

employed an auxiliary loss function to train our model.

The suggested additional cost function surrogates rank-

ing loss to increase Spearman’s rank correlation coefficient

while it is differentiable concerning the neural network pa-

rameters. Our method achieved superior performance in

NTIRE 2021 Perceptual Image Quality Assessment Chal-

lenge. The implementations of our proposed method are

publicly available.1 2

1. Introduction

DCNNs have shown their effectiveness in a wide range

of computer vision and image processing tasks, including

∗The authors have contributed equally
1https://github.com/smehdia/NTIRE2021-IQA-MACS
2https://github.com/AliRoyat/NTIRE2021-IQA-MACS-Pytorch

single-image super-resolution, denoising, deblurring, etc.

[2, 21, 9]. The major drawback of traditional DCNNs is

that they often produce over smooth images for rich tex-

tured images, mainly due to the improper metrics for train-

ing DCNN.

Emerging of the Generative Adversarial Networks (GAN)

[11] did an evolutionary step for learning distributions with

sharp peaks. Researchers adopted the adversarial training

framework for image restoration tasks. Using adversar-

ial loss facilitates the DCNN ability to produce sharp and

crispy images. The produced images by GAN-based DC-

NNs are typically more pleasant to human eyes than the

DCNNs that do not use adversarial loss. However, such

networks often get a lower score than the plain DCNNs

when famous metrics are used for comparison [20] while

their MOS are higher than their counterparts. The reason

is that most of the DCNNs use Mean Squared Error (MSE)

as the objective function. Therefore, they get a higher peak

signal-to-noise ratio (PSNR) [15] as PSNR is directly re-

lated to the MSE. PSNR and the structural similarity index

measure (SSIM) [35] are the most common metrics for full

reference image quality assessment (IQA). Such metrics’

efficacy is disappointing, especially for evaluating fine tex-

tures and details in the images [20]. Note that the ultimate

goal of image enhancement networks is to generate visually

pleasurable images for humans and have a high MOS. So

developing a new full reference metric for IQA is necessary

for comparing the different proposed methods for image en-

hancement tasks and optimizing DCNNs with a measure

that is highly correlated with the perceived quality assess-

ment of humans.

The DCNNs can extract information about underlying

structures and features in the images, and thus, they can be

a powerful metric for full reference IQA provided there is

enough data to train them. Fortunately, public datasets such

as TID 2008 [27], TID 2013 [26], PieApp [28] and PIPAL

[13] provide images with their corresponding reference im-

ages and MOS to train DCNNs in a supervised manner.

There are two desired characteristics for the full reference



(a) image A (b) reference image (c) image B

Method A B

PNSR 21.13 19.51
SSIM 0.77 0.77

MS-SSIM 0.93 0.91
NIQE 28.07 23.70
UQI 0.97 0.96
VIFP 0.24 0.22

ASNA (Ours) 1464.08 1473.48
MOS 1396.14 1533.14

Figure 1: As illustrated, image B is similar to the reference image than image A visually (in fact, its MOS score is higher);

however, all of the methods except ours prefer image A over B

IQA metrics: (i) high Pearson linear correlation coeffi-

cient (PLCC) [17] between the scores produced by the pro-

posed method and MOS, which indicates the linear rela-

tionship between them, (ii) high Spearman’s rank correla-

tion coefficient (SRCC) [1], which shows the monotonicity

of relationship between the proposed method and MOS. In

this paper, we have proposed an attention-based Siamese-

Difference neural network architecture for IQA, dubbed

(ASNA). Siamese-Difference neural network architecture is

robust for extracting the difference between two images. It

is an asymmetric extension of the Siamese neural network

[18] that was initially used for scene change detection [7].

We have equipped our Siamese-Difference convolutional

neural network with an attention mechanism [34] to make

the network able to highlight the differences between an in-

put image and its corresponding reference image. Besides,

we have integrated PLCC directly into the loss function to

increase the PLCC of the proposed method. Sadly, we could

not do the same with SRCC since it is a non-differentiable

function concerning the neural network parameters because

of its ranking operation. To circumvent this issue, we have

used the method proposed in SoDeep [10] and trained a neu-

ral network that can surrogate ordering operation while it is

differentiable. Then, we have added the difference between

the outputs for MOS and the scores given by ASNA. This

auxiliary loss function approximates the ranking difference

between MOS and the outputs of ASNA, which is directly

correlated with SRCC. The experimental results show our

method outperformed other metrics for full reference IQA,

and it has a significantly greater PLCC and SRCC compared

to other measures. Our methods ranked 9th, in NTIRE 2021

Perceptual Image Quality Assessment [14]. Our key con-

tributions are as follows:

• Proposing a Siamese-Difference Neural Network ar-

chitecture equipped with attention mechanism that is

powerful for focusing on the difference between an in-

put image and the reference image.

• Using an auxiliary differentiable surrogate ranking

loss function to improve SRCC.

• Extensive experiments manifest the superiority of

ASNA for full reference IQA.

(a) (b)

(c) (d)

Figure 2: (a) reference image (b) distorted image (c, d) spa-

tial attention maps

2. Related Works

There are numerous methods for full reference IQA.

Though, most of them have a very weak correlation with the

human visual system (HSV). Standard IQA metrics hand-

crafted to extract some certain statistical differences be-

tween the reference and distorted images. These designed

measures are ineffective for judging GAN-based results as

they do not consider degradations of GANs.

Full reference IQA methods fall into two categories. The

methods in the first category are non-machine learning-



based methods. These are the metrics handcrafted by re-

searchers to assess image quality. The most common met-

ric among those is PSNR. PSNR considers the pixel-wise

difference between two images. This metric is far from hu-

man judgment since it may significantly change by small

distortions of the reference image, including translation, ro-

tation, and intensity scaling. In [36], Wang et al. proposed

a metric, called UQI, to decompose an image into contrast,

luminance, and structure and exploit them to measure two

images’ similarity. The main problem of UQI is that it may

be unstable under certain conditions. To mitigate this issue,

SSIM [35] is proposed. To improve, the correlation of SSIM

with human perception from image quality, some other vari-

ants of that such as RFSIM [41] , SRSIM[39] , FSIM[42]

, VSI[40] , MS-SSIM[37] and GSM [22] are introduced.

The basic idea behind all of these methods is to reformu-

late the decomposition formulas. For instance, RFSIM uses

first, and second-order Riesz transforms and edge saliency

feature masks to decompose an image. SRSMI uses spec-

tral residual visual saliency (RSVS) and gradient modulus

(GM). FSIM employs the combination of phase congruency

and GM. VSI exploits visual saliency to detect the regions

of an image that are more important to the human visual

system. Likewise, in [19], Larson and Chandler propose a

measure, so-called MAD, which tries to assign a score to

an image based on the detection of such regions and the

appearance of an image. In this method, local luminance

and contrast masking are used to estimate perceived distor-

tion in high-quality images, whereas changes in the local

statistics of spatial-frequency components are employed to

estimate the distortion in low-quality images. Full refer-

ence IQA methods fall into two categories. The methods in

the first category are non-machine learning-based methods.

These are the metrics handcrafted by researchers to assess

image quality. The most common metric among those is

PSNR. PSNR considers the pixel-wise difference between

two images. This metric is far from human judgment since

it may significantly change by small distortions of the ref-

erence image, including translation, rotation, and intensity

scaling. In [36], Wang et al. proposed a metric, called UQI,

to decompose an image into contrast, luminance, and struc-

ture and exploit them to measure two images’ similarity.

The main problem of UQI is that it may be unstable under

certain conditions. To mitigate this issue, SSIM [35] is pro-

posed. To improve, the correlation of SSIM with human

perception from image quality, some other variants of that

such as RFSIM [41] , SRSIM[39] , FSIM[42] , VSI[40] ,

MS-SSIM[37] and GSM [22] are introduced. The basic idea

behind all of these methods is to reformulate the decompo-

sition formulas. For instance, RFSIM uses first, and second-

order Riesz transforms and edge saliency feature masks to

decompose an image. SRSMI uses spectral residual visual

saliency (RSVS) and gradient modulus (GM). FSIM em-

ploys the combination of phase congruency and GM. VSI

exploits visual saliency to detect the regions of an image

that are more important to the human visual system. Like-

wise, in [19], Larson and Chandler propose a measure, so-

called MAD, which tries to assign a score to an image based

on the detection of such regions and the appearance of an

image. In this method, local luminance and contrast mask-

ing are used to estimate perceived distortion in high-quality

images, whereas changes in the local statistics of spatial-

frequency components are employed to estimate the distor-

tion in low-quality images. Note that the major issue with

the first category’s metrics is that none of them consider the

context of an image properly.

The methods in the first category are machine learning-

based methods, and they are data-driven. Since CNNs il-

lustrated their capability in extracting underlying structures

in the images, they are a suitable choice for IQA, provided

that they are trained with enough data. LPIPS [43] , PieAPP

[28] ,WaDIQaM [4], DISTS [8], SWD [12] use CNNs to

estimate the visual quality of an image. The first three ap-

proaches compute a distance between two patches using

weighted average of deep embedding of a CNN. In other

words, they comprise three different parts for feature ex-

traction, score computation, and prediction of the percep-

tual score. They try to build an embedding space for the im-

ages and then compute the distance in the embedded space

to measure their similarity.

In WaDIQaM method, the authors proposed a deep

learning-based method that can be used for no-reference im-

age quality assessment (NR-IQA). In [8], Ding et al. pro-

pose an specific architecture for various degradation types.

Lastly, Gu et al. propose a metric called SWD. This met-

ric uses the Space Warping Difference (SWD) technique to

compare the features that are not only on the corresponding

position but also on a small range around the corresponding

position to improve the image quality’s score estimation.

The deep learning-based methods have a better generaliza-

tion, and they are closer to human judgments in assigning

quality scores to the images. However, these methods re-

quire more extension to enhance their generalization abil-

ity since they perform poorly on GAN-based results. Note

that there are also traditional techniques for NR-IQA. There

is no need for a reference image in these methods to as-

sess an image quality score. Among these methods can

named NIQE [24], MA[23] , PI [3] are more common than

others. NIQE compares two fitted Multivariate Gaussian

Model (MVG) models statistics between natural images and

degraded images. The NR-IQA metrics are less useful when

the reference images are available since the reference im-

age’s information can be used to examine the quality of the

distorted image.



3. Proposed Method

3.1. Architecture details

Our proposed approach introduces two variants of

ASNA designs, based on Siamese-Difference neural net-

work architecture, each trained separately, for estimating

MOS. Siamese-Difference network design is useful for ex-

tracting minor differences between the reference image and

the distorted image.

In the following, we describe our proposed designs:

3.1.1 ASNA model architecture

Figure 3: ASNA model architecture

The first proposed design is shown in 3. As shown, the first

part of the model uses shared weights for both images to

encode them as in the traditional Siamese network. The en-

coding layers produce, D4, D3, D2 and D1 sequentially.

In the decoding part, we concatenate the absolute differ-

ence value of the outputs from the encoding part denoted

by (D4, D3, D2, D1). These difference feature maps rep-

resent the differences between the reference image and the

distorted image at various feature abstraction levels. We

concatenate them to the decoding part feature maps by us-

ing skip connections. Note that, in traditional Siamese net-

works, both inputs pass through a symmetric architecture

of layers. However, in ASNA, the decoding part is not sym-

metric for the distorted and reference images. We found out

that this architecture can extract better features to estimate

an image’s quality score rather than the traditional Siamese

network architecture. To improve our proposed Siamese-

Difference architecture capability to focus on valuable parts

of the inputs, we equipped the architecture with an attention

layer in the decoding part. Both channel-wise and spatial at-

tention is used in the design of the network to improve MOS

estimation. The channel-wise attention lets the network fo-

cus on the feature maps that are more important for produc-

ing the IQA score. The channel-wise attention can be seen

as the soft selection of the feature maps. On the other hand,

Spatial attention lets the networks emphasize the important

spatial parts of the feature maps. The schematic for the at-

tention layers is visualized in 4. We have visualized some

of the spatial attention maps for a sample pair of distorted

and reference images in Figure 2. The attention maps are

upsampled to have the same field of view as the inputs. As

illustrated, the attention maps decompose the distorted parts

of the image and help the network emphasize the necessary

parts of the image separately.

Figure 4: attention module

We have also added residual blocks in this architecture

to improve gradient propagation. Besides, batch normaliza-

tion [16] is used to increase the generalization of the model.

The experiments demonstrate that this architecture has sig-

nificant capability to estimate the image quality score when

there are enough data for learning MOS.

3.1.2 Siamese-Difference Neural Network with ConvLSTM

layers

In the previously proposed architecture, the input size was

288 × 288. The input size can increase the number of pa-

rameters in the fully connected layers significantly. Also,

large feature maps increase the number of computations and

can be a considerable burden for the hardware. To miti-

gate this issue, we also propose another design to decrease

the number of parameters and reduce the required computa-

tions. The proposed architecture employs ConvLSTM [33]

layers at the input.



Figure 5: Tiling process

In this design, we convert the input images from the spa-

tial to the Spatio-temporal domain by tiling the inputs. Each

image is a tensor with the size of (288, 288, 3); we split the

image as shown in Figure 5 into 16 tiles. These tiled images

shape a new tensor with the size of (16, 72, 72, 3). This ten-

sor is passed to a ConvLSTM layer. we use the last time-

step output of the ConvLSTM layer as the input feature map

for the rest of the Siamese-Difference model. Note that this

layer can pass the patches’ useful information to the next

layers of the network while limiting the architecture’s num-

ber of parameters. The outputs of ConvLSTM layers are

passed to the rest of the network, similar to ASNA archi-

tecture. We have also removed the attention module and

residual blocks to make this model fast and efficient. In the

following section, we outline the loss function used to train

the model.

3.2. Loss function

We have designed a specific loss function to train our

architectures. Suppose the batch size is M , the proposed

loss function for the network is:

L = αLMSE + (1− α)LPearson + βLRank (1)

3.2.1 MSE (LMSE)

MSE is the standard loss function for regression tasks. MSE

is the first loss function for the network to minimize the

squared difference between the desired scores and the net-

work’s output.

LMSE =
1

M

N∑

i=1

‖Si − Ŝi‖
2 (2)

Where S and Ŝ are the desired scores and the estimated

scores produced by the network for M inputs, respectively.

3.2.2 Pearson’s Correlation Loss (LPearson)

One of the main objectives in IQA task is to increase the

PLCC between the network’s outputs and the ground truths.

PLCC is a differentiable function concerning the neural net-

work’s parameters, so we can add that to the loss function

of the network as follows:

LPearson(S, Ŝ) = 1− ρ2Pearson(S, Ŝ) (3)

Let Cov and σ denote the covariance and variance, re-

spectively. PLCC can be written as follows:

ρPearson =
Cov(S, Ŝ)

σSσŜ

(4)

Note that this loss function can perform better than stan-

dalone MSE especially when the outputs are noisy.

3.2.3 Surrogate Ranking Loss (LRank)

One of the other performance metrics for the proposed ap-

proach is SRCC. It is desired to have a large SRCC between

MOS and the network’s scores. SRCC can be written as:

ρSRCC(S, Ŝ) = 1−
6‖R(S)−R(Ŝ)‖2

M(M2 − 1)
(5)

Where R(S) and R(Ŝ) are the rank vectors of S and Ŝ

respectively. Unfortunately, SRCC is a non-differentiable

function since it has the ordering operation on the outputs

and the ground truths. Therefore, we can not optimize this

criterion directly by stochastic gradient descent. To circum-

vent this issue, we have used the idea in SoDeep, which is

training another network to learn the rank vectors of M in-

puts. We have employed the network architecture presented

in 6.

Figure 6: Ranking model architecture

To train this network, we have generated M dimen-

sional random vectors and train it to learn the rank vec-

tors corresponding to the inputs by minimize the Mean

Absolute Error between the input’s actual rank vector and

the network’s output. An example of this network’s in-

put and output is shown in Figure 6. In this example, the

actual corresponded rank vector for the input is (R(X))
[2, 11, 9, 5, 8, 14, 4, 3, 15, 1, 7, 6, 13, 12, 16, 10]T . Note that



the norm for the error of the surrogate ranking network

(‖R(X) − R̂(X)‖) is only 0.12, which shows the surro-

gate network can precisely approximate the rank vector of

the input while it is differentiable concerning the input.

Now, we can integrate this surrogate ranking network into

the training procedure of the IQA network. Suppose R̂(S)
and R̂(Ŝ) are the estimated ranked vectors of S and Ŝ, re-

spectively. To increase the SRCC between S and Ŝ, we can

minimize the mean squared error between the correspond-

ing estimated rank vectors. This loss function can be written

as follows

LRank =
1

M
‖R̂(S)− R̂(Ŝ)‖2 (6)

3.3. Overview of the training procedure

We have demonstrated the overview of the training pro-

cedure in Figure 7 to train the IQA network. First we sam-

ple M distorted images ({Î
(1)
dist, · · · , Î

(M)
dist }) and their corre-

sponding reference images (({I
(1)
ref , · · · , I

(M)
ref }). Then we

pass these images to the networks to obtain the estimated

IQA score (Ŝ). By having the ground truth MOS scores

(S), the Pearson loss function and MSE can be computed.

Then, we pass S and Ŝ to the surrogate ranking network

to get the estimated ranking vectors for each. Eventually,

the mean squared error between the outputs of the surro-

gate ranking model for S and Ŝ can be used to compute the

surrogate ranking loss function. Once all loss functions are

calculated, the IQA network can be trained by backprop-

agation since all operations are differentiable with respect

to the IQA network’s parameters. Note that the surrogate

ranking model can be fine-tuned during the IQA network

training since we can easily compute the true rank vector of

Ŝ and S. In the network’s evaluation step, we only use IQA

network since we are particularly interested in IQA score

of the input. Therefore, the surrogate ranking network does

not increase the model complexity at the inference time.

Figure 7: Schematic diagram of using ranking model to

compute surrogate ranking loss

4. Experimental Results

4.1. Experiment Setting

To train the models, we have used PIPAL dataset [13].

The dataset contains 1.13 million images, including the re-

sults of GAN-based methods. Human judgments score the

images, and each image’s final score is assigned using the

”Elo system”. We have used an ensemble of models us-

ing the ASNA design, the Siamese-Difference model with

ConvLSTM, and a Siamese-Difference model without Con-

vLSTM. We have used Adam optimizer with learning rate

10−4 and β1 = 0.9, β2 = 0.999 with batch size 16. The

models are first pretrained on TID and PieApp datasets for

20 epochs. The coefficients for the surrogate loss function

is 0.1, for Pearson correlation coefficient loss and MSE are

0.5 and 0.5 respectively. The learning rate is halved each

10 epochs. We augmented the images by rotating or flip-

ping and scaling the intensity channel in the Lab color space

[38]. Scaling the intensity channel is in the range of 0.3 to

1.5. In the evaluation time, in addition to the model en-

sembling, we have also used Self Ensambling of the models

by rotating, flipping, and scaling intensity channels of the

images.

4.1.1 PLCC vs Distortion Type

One of the essential features of the proposed metric is that

it should perform well on all distortions, especially for the

artifacts produced by GANs. We have shown PLCC for dif-

ferent types of distortions in Figure 8 for PIPAL dataset.

As shown, our method outperformed traditional metrics,

including PSNR and SSIM, indicating the capability of

ASNA for assessing images that have different distortion

characteristics.

Figure 8: PLCC for different types of distortions

4.2. NTIRE 2021 Perceptual IQA Challenge

We participated in NTIRE 2021 Perceptual IQA chal-

lenge to evaluate and compare our method to others. The

results are demonstrated in Table 1 and Figure 9. As shown,



our method achieves superior performance over other ap-

proaches to estimate MOS that is well correlated with hu-

man judgment on the validation and test dataset of the chal-

lenge. The proposed method outperforms Deep learning-

based methods and traditional methods for IQA. To analyze

how much the score given by ASNA is aligned with MOS,

we have plotted IQA vs. MOS on the PIPAL validation

dataset for various methods in Figure 10. As illustrated,

the IQA scores proposed by ASNA are extensively lined

up with MOS scores. In addition to that, one can see the

variance of the standard measures such as PSNR and SSIM

around the fitted line is significantly high, which is an indi-

cator of these measures’ poor performance.

Validation Test

IQA name Total Score | SRCC | | PLCC| Total Score | SRCC | | PLCC |
PSNR[15] 0.54 0.26 0.29 0.52 0.24 0.27
NQM[6] 0.76 0.34 0.41 0.75 0.36 0.39
UQI[36] 1.03 0.48 0.54 0.86 0.41 0.45

SSIM[35] 0.73 0.33 0.39 0.75 0.36 0.39
MS-SSIM[37] 1.04 0.48 0.56 0.96 0.46 0.50

IFC[31] 1.27 0.59 0.67 1.04 0.48 0.55
VIF[30] 0.95 0.43 0.52 0.87 0.39 0.47

VSNR[5] 0.69 0.32 0.37 0.77 0.36 0.41
RFSIM[41] 0.57 0.26 0.30 0.63 0.30 0.32
GSM[22] 0.88 0.41 0.46 0.87 0.40 0.46

SRSIM[39] 1.21 0.56 0.65 1.20 0.57 0.63
FSIM[42] 1.02 0.46 0.56 1.07 0.50 0.57
FSIMc[42] 1.02 0.46 0.55 1.07 0.50 0.57

VSI[40] 0.96 0.45 0.51 0.97 0.45 0.51
MAD[19] 1.23 0.60 0.62 1.12 0.54 0.58
NIQE[24] 0.16 0.06 0.10 0.16 0.03 0.13
MA[23] 0.40 0.20 0.20 0.28 0.14 0.14

PI[3] 0.33 0.16 0.16 0.24 0.10 0.14
LIPIS-Alex[43] 1.27 0.62 0.64 1.13 0.56 0.57
LIPIS-VGG[43] 1.23 0.59 0.64 1.22 0.59 0.63

PieApp[28] 1.40 0.70 0.69 1.20 0.60 0.59
WaDIQam[4] 1.33 0.67 0.65 1.10 0.55 0.54

DISTS[8] 1.36 0.67 0.68 1.34 0.65 0.68
SWD[12] 1.32 0.66 0.66 1.25 0.62 0.63

ASNA (Ours) 1.65 0.82 0.83 1.47 0.75 0.71

Table 1: NTIRE 2021 challenge preliminary results (Red:

Deep Learning-Based methods)

Figure 9: PLCC vs. SRCC

4.3. Evaluation on TID 2013 and LIVE Datasets

To further investigate the generalization of ASNA, we

have also evaluated the performance of ASNA on two other

benchmark datasets, TID 2013 [26] and LIVE [32]. The

LIVE database’s first release is used to compare ASNA with

other IQA methods, which contains different distortions, in-

cluding compression artifacts and gaussian noise. As can be

seen, our method achieved a superior performance on TID

2013 dataset. Note that the number of test images is lim-

ited for LIVE dataset; however, our method still has a solid

performance on this dataset.

TID 2013 LIVE

IQA name Total Score | SRCC | | PLCC| Total Score | SRCC | | PLCC |
PSNR[15] 1.33 0.68 0.65 1.80 0.91 0.90
SSIM[35] 1.37 0.68 0.69 1.89 0.96 0.93

MS-SSIM[37] 1.54 0.77 0.77 1.85 0.97 0.88
UQI[36] 1.76 0.58 0.26 1.61 0.87 0.74

VIFP [25] 1.17 0.60 0.57 1.93 0.97 0.95
NIQE[24] 0.36 0.19 0.18 0.06 0.01 0.07

LIPIS-Alex[43] 1.51 0.80 0.71 1.85 0.96 0.90
LIPIS-VGG[43] 1.53 0.75 0.78 1.88 0.95 0.93

PieApp[28] 1.45 0.83 0.62 1.79 0.93 0.87
DISTS[8] 1.48 0.72 0.76 1.92 0.96 0.95

SWD[12] 1.51 0.75 0.76 1.87 0.95 0.92
ASNA (Ours) 1.51 0.73 0.78 1.84 0.92 0.92

Table 2: Performance of various methods on LIVE and TID

2013 datasets (Red: Deep Learning Based methods)

4.4. Visualization of ASNA

To understand how ASNA processes the inputs, we have

used the last convolutional layer’s activations maps. They

show the essential features extracted by ASNA for IQA esti-

mation. They have been visualized for some examples using

Grad-CAM method [29]. The corresponding heat maps and

inputs are demonstrated in Figure 11. As illustrated, ASNA

focuses on the parts that are visually more important to hu-

mans, such as distorted textures and details in the images to

estimate IQA scores.

5. Conclusion

In this paper, we propose a novel design method for im-

age quality assessment. The key innovation is to have a

suitable design that can catch the subtle difference between

the distorted and the reference images. We achieved this

goal by an attention-based Siamese-Difference neural net-

work, dubbed ASNA. We have also proposed a surrogate

ranking loss function to improve SRCC of the proposed ap-

proach. Our proposed full reference IQA is well correlated

with subjective human scores for the images. Experiments

show that our method has a significantly greater PLCC and

SRCC with MOS compared to other methods for IQA.



Figure 10: IQA vs. MOS for different methods on PIPAL validation dataset

(a) (b) (c) (d)

Figure 11: Visualization of the important parts of the inputs for ASNA for some pairs of images (First row: reference images, second

row: distorted images, third row: visualized heat maps using Grad-CAM method)
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