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Abstract

Deblurring low-resolution images is quite challenging as

blur exists in the images and the resolution of the images

is low. Existing deblurring methods usually require high-

resolution input while the super-resolution methods usually

assume that the blur is known or small. Simply applying the

deblurring and super-resolution does not solve this problem

well. In this paper, we develop an effective cascaded non-

local residual network which cascades the deblurring mod-

ule and super-resolution module to estimate latent high-

resolution images from blurry low-resolution ones. The net-

work first uses the deblurring module to generate interme-

diate clear features and then develops a non-local residual

network (NLRN) as the super-resolution module to generate

clear high-resolution images from the intermediate clear

features. To better constrain the network and reduce the

training difficulty, we develop an effective constraint based

on image gradients for edge preservation and adopt the

progressive upsampling mechanism. We train the proposed

network in an end-to-end manner. Both quantitative and

qualitative results on the benchmarks demonstrate the ef-

fectiveness of the proposed method. Moreover, the proposed

method achieves top-3 performance on the low-resolution

track of the NTIRE 2021 Image Deblurring Challenge.

1. Introduction

Recently, blurry image super-resolution (SR) is attract-

ing widespread attention, and it aims to super-resolve the

blurry low-resolution (LR) images to sharp high-resolution

(HR) ones with rich details and clear textures. The degra-

dation process of the blurry image SR problem can be mod-

eled as:

y = B(x) ↓s +n, (1)

where y, x, and n denote the blurry LR image, sharp HR im-

age, and noise, respectively; B(·) denotes the blur process;

↓s denotes the downsampling operation with scale factor s.

According to the image formation (1), the degradation

process contains two parts: blurring and downsampling.

*Corresponding author

Thus, the direct way to tackle this challenge is to divide

it into two sub-problems: deblurring and super-resolution.

The recent years have witnessed significant advances in

both image deblurring and image super-resolution. The suc-

cess of these methods is mainly due to the use of kinds of

deep neural networks [11, 23, 12, 4, 3, 8, 14, 28, 35]. Al-

though both the image deblurring methods and the image

SR methods can generate decent results, simply combining

existing deblurring and super-resolution methods does not

super-resolve blurry images well.

To address this issue, conventional blind image SR meth-

ods [16, 26, 19] simultaneously estimate the latent HR

image and blur kernels. Although decent results have

been achieved, these methods usually need to design hand-

crafted priors which lead to complex optimization prob-

lems.

Instead of using hand-crafted priors, several methods de-

velop deep convolutional neural networks (CNNs) to esti-

mate blur kernels for single image SR [1, 6] and achieve

better results than conventional methods. In addition, some

methods [30, 34] exploit the relation of the image super-

resolution and image deblurring problems and jointly solve

them in an unified framework. However, these methods

either focus on the face and text images [30], or the uni-

form blur [34, 1, 6]. They are not generalized well to nat-

ural images. Recent method aims to super-resolve blurry

images [33] which achieves better performance than exist-

ing methods. However, the network modules for the im-

age super-resolution and image deblurring are independent,

which does not solve the images with significant blur.

Instead of estimating the super-resolution and image de-

blurring separately, we develop a cascaded deep neural net-

work which cascades the deblurring module and super-

resolution module in a unified framework and simultane-

ously solves these two modules for better image restora-

tion. Specifically, the deblurring module is first used to

generate intermediate clear features. As the intermediate

clear features are estimated from low-resolution images, we

then use the super-resolution module to generate clear high-

resolution images from the intermediate clear features. To

generate high-quality images, we develop a non-local resid-
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ual network (NLRN) as the super-resolution module so that

more useful features can be better explored. During the net-

work training, we develop an effective constraint based on

image gradients for edge preservation and adopt the pro-

gressive upsampling mechanism to better constrain the net-

work and reduce the training difficulty. We solve the pro-

posed network in an end-to-end manner and quantitatively

and qualitatively evaluate it on the benchmarks to demon-

strate its effectiveness.

The main contributions are summarized as follows:

• We develop a cascaded neural network which cascades

the image deblurring module and super-resolution

module in a unified framework and develops a non-

local residual network (NLRN) as the SR module to

boost the performance of blurry image SR.

• We develop an effective constraint based on image gra-

dients for edge preservation and adopt the progressive

upsampling mechanism to better constrain the network

and reduce the training difficulty.

• Both quantitative and qualitative results on the bench-

marks demonstrate the effectiveness of the proposed

method, and it achieves top-3 performance on the low-

resolution track of the NTIRE 2021 Image Deblurring

Challenge [18].

2. Related Work

In this section, we briefly review the most related meth-

ods and put this work in proper context.

Image deblurring. Conventional image deblurring meth-

ods [2, 20, 21, 29] always assume that the blur is uniform.

However, the motion blur in real-world images are often

caused by camera shakes or fast-moving objects, which

is much more complex and non-uniform. In [19], Pan et

al. focus on low-resolution image deblurring and injects a

super-resolution component for spatially-variant kernel es-

timation. Although non-uniform blur can be handled, the

hand-crafted priors used in these methods often lead to a

complex optimization problem which limits the deblurring

performance. With the rapid development of CNNs, several

deep learning-based methods [11, 23, 12, 4] propose effec-

tive networks to bypass the kernel estimation and directly

recover sharp images from the blurry ones for better non-

uniform blur removal.

Image super-resolution. As the image super-resolution is a

highly ill-posed problem, conventional methods [31, 5, 24]

develop image priors to solve this problem, whose perfor-

mance is limited due to their complex optimization prob-

lems. Recently, deep CNNs-based methods [3, 8, 9, 13, 36,

14, 28, 15, 7, 35] have achieved significant improvement

over these conventional methods. The SRCNN method [3]

introduces CNNs into the SR problem and generates no-

table results. The method VDSR [8] increases the network

depth for better performace by using residual architecture,

and SRGAN [14] simultaneously trains a generator and a

discriminator by adversarial learning for better visual per-

ception. Especially, the method RCAN [35] develops the

residual-in-residual architecture and introduces an attention

mechanism on feature channels for better network represen-

tation ability. Although decent results have been achieved,

these methods are designed for clean images or images with

known or small blur, and cannot work well on images with

motion blur.

Jointly image deblurring and super-resolution. Sep-

arately solving the deblurring and super-resolution sub-

problems always leads to a sub-optimal solution where the

errors in these two steps may be accumulated. Conven-

tional blind image SR methods [16, 26, 19] usually in-

volve the blur kernel estimation and the latent HR image

restoration based on hand-crafted image priors. In particu-

lar, [16] explores the internal patch recurrence for these two

steps; [26] proposes an effective probabilistic combination

model based on a patch-based image synthesis constraint;

and [19] estimates spatially variant kernels based on the ex-

emplars. However, using hand-crafted image priors for con-

straint needs to solve complex optimization problems. With

the development of CNNs, several blind SR methods use

CNNs for blur kernels estimation for single image SR [1, 6].

And some methods [30, 34] jointly solve the deblurring and

SR in an unified manner. The method [30] trains a genera-

tive adversarial network for the blurry face and text images

super-resolution, but it focuses on the face and text images

and does not have sufficient capacity to handle natural im-

ages. The method [34] develops an end-to-end network for

this joint problem, but it is designed for images with uni-

form blur, while the motion blur in captured images is al-

ways non-uniform. The method GFN [33] tries to solve the

image deblurring and SR in a parallel manner and is able to

handle non-uniform motion blur. It develops a gated fusion

mechanism to aggregate the deblurred features and super-

resolved ones to reconstruct the HR image, but the super-

resolved features are still generated from the blurry LR in-

put whose quality is limited. In contrast, we develop an

end-to-end trainable deep CNN model which cascades the

image deblurring and super-resolution in a unified frame-

work, where the SR module takes the deblurred features as

input so that the effects of the motion blur and noise in LR

images can be reduced.

3. Proposed Algorithm

Given a blurry LR image y, the goal of the proposed

method is to estimate the clear HR images x from y. To this

end, we develop an effective cascaded non-local residual

network which cascades the deblurring module and super-

resolution module. The deblurring module first takes the

blurry LR image y as input and generates intermediate clear
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Figure 1. An overview of the proposed cascaded non-local residual network. It cascades the deblurring module and super-resolution

module. The deblurring module first takes the blurry LR image as input and generates intermediate clear features. As the intermediate

clear features are estimated from the low-resolution image, the super-resolution module then restores the clear high-resolution image from

the intermediate clear features. Furthermore, we develop a non-local residual network (NLRN) as the super-resolution module to better

generate high-quality images. The NLRN mainly consists of four parts: a reconstruction module, two upsampling modules, and an output

module. In the NLRN, the non-local residual group is adopted as the basic unit. We present the detailed description of the deblurring

module and super-resolution module in Section 3.1 and Section 3.2.

features. As the intermediate clear features are estimated

from the low-resolution image, the super-resolution mod-

ule then restores clear the high-resolution image x from the

intermediate clear features. Furthermore, we develop a non-

local residual network (NLRN) (which contains a recon-

struction module, two upsampling modules, and an output

module) as the super-resolution module to better generate

high-quality images. During the training process, we fur-

ther develop an effective constraint based on image gradi-

ents to preserve the edges of the recovered latent HR im-

age. An overview of the proposed algorithm is shown in

Figure 1. In the following, we first present the detailed

description of the deblurring module and super-resolution

module, and then explain the training strategy of the pro-

posed method.

3.1. Deblurring Module
As the LR input contains motion blur, it is necessary to

develop a deblurring module for the motion blur removal,

so that the following super-resolution process can avoid the

effects of motion blur. Given the blurry image y, the deblur-

ring module generates the intermediate clear features by:

Fdeblur = Ndeblur(y), (2)

where Ndeblur denotes the deblurring network and Fdeblur

denotes the deblurred intermediate clear features.

For the deblurring network Ndeblur, we adopt the similar

encoder-decoder architecture as [23] as it is effective for

image restoration. However different from [23], we do not

use the recurrent mechanism and remove the ConvLSTM

module from the deblurring network.

3.2. Super­Resolution Module
With the deblurred intermediate clear features Fdeblur,

the goal of the super-resolution module is to restore the clear

HR image x. To better generate high-quality images, we

develop a non-local residual network (NLRN) as the super-

resolution module so that more useful features can be better

explored. The proposed NLRN takes the intermediate clear

features Fdeblur as input and recovers the latent HR image

x by:

x = Nsr(Fdeblur), (3)

where Nsr denotes the NLRN which will be described in

the following.

Non-Local Residual Network (NLRN). For the NLRN

Nsr, it has four parts: a reconstruction module, two up-

sampling modules, and an output module. The detailed ar-

chitecture is shown in Figure 1.

The reconstruction module is used to refine the interme-

diate feature Fdeblur for better image restoration, which is

achieved by:

Flow = Hrecons(Fdeblur) + Fdeblur, (4)

where Flow denotes the reconstructed low-resolution fea-

tures; Hrecons denotes the reconstruction module which

consists of six non-local residual groups.
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Figure 2. The architecture of the multi-head self-attention in non-

local block.

Then, the two upsampling modules are used to progres-

sively increase the resolution of the reconstructed features.

In each upsampling module, it contains a refinement oper-

ation and a upsampling operation. The low-resolution fea-

tures are first refined by the refinement operation and then

upsampled by the upsampling operation. Thus, the upsam-

pled features can be obtained by:

{

Fup1 = Hps1(Hrf1(Flow) + Flow),

Fup2 = Hps2(Hrf2(Fup1) + Fup1),
(5)

where Fup1 and Fup2 denote the upsampled features; Hrf1,

Hrf2, Hps1, and Hps2 denote the refine operations and up-

sampling operations in these two upsampling modules, re-

spectively; The refinement operation consists of two non-

local residual groups, and the upsampling operation uses

the pixel-shuffle followed by a convolutional layer.

Finally, the image are reconstructed by the upsampled

features:

x = Hout(Fup2), (6)

where Hout is the output module. It contains two convolu-

tional layers.

Non-Local Residual Group. In the non-local residual net-

work Nsr, we use the non-local residual group as the basic

unit. As shown in Figure 1, each of the non-local residual

group is a residual-in-residual structure and contains two

sub-groups. Each sub-group contains a non-local block and

four residual channel attention blocks (RCAB from [35]).

The non-local block is effective for modeling the global

information which is able to help the residual blur removal

and further improve the performance of super-resolution. In

the non-local block, we adopt the self-attention to explore

the relationships between each image patch. Given the input

features Fin, it first calculates the queries vector Q, keys

vector K, values vector V by using 1 × 1 convolutions and

the self-attention is represented as:

A = Att(Q,K,V), (7)

where Att(Q,K,V) , S(QKT )V, and S(·) denotes the

softmax operation.

In addition, we further introduce the multi-head mech-

anism [25] to make the non-local block focus on more di-

verse global correlation. Thus, the attention features Fatt

are obtained by:

Fatt = Hatt(C(A1, . . . ,Aj , . . . ,An)) + Fin, (8)

where Hatt denotes a convolution operation with filter ker-

nel size of 3× 3 pixels; C(·) denotes a concatenation oper-

ation; Aj = Att(Q(j),K(j),V(j)); Q(j), K(j), V(j) denote

the query vector, key vector, value vector in j-th head, re-

spectively; n heads are used. The architecture of the multi-

head self-attention is shown in Figure 2. To reduce the com-

putational complexity of the self-attention, we first divide

the input features into 4 × 4 patches, and then perform the

self-attention operation on these patches instead of pixels.

As the attention features are obtained from the divided

patches, there may exist some errors in Fatt, such as block

artifacts. To avoid this problem, we further design a feed-

forward module after the multi-head self-attention to com-

pensate these errors:

Fout = Hfeed forward(Fatt) + Fatt, (9)

where Hfeed forward denotes the feed-forward module

which contains two convolutional layers; Fout denotes the

output features of the non-local block.

3.3. Training Strategy
To ensure that the deblurring module and the super-

resolution module could play their expected roles, the train-

ing strategy also matters.

To train the proposed network for better latent HR im-

age restoration, we develop a simply yet effective training

method which mainly contains pre-training of the deblur-

ring module and joint training.

Pre-training of the Deblurring Module. The goal of the

deblurring module is to remove the motion blur from the

blurry LR images. As we know the ground truth HR image,

we use the bicubic downsampled images of sharp HR im-

ages as the supervision of the deblurring module. However,

the deblurring module is used to estimate features instead of

images. We cannot explicitly constrain the features Fdeblur
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from the deblurring module. To overcome this problem,

we introduce an additional network Nadditional to gener-

ate an intermediate image from Fdeblur so that we can use

Nadditional(Fdeblur) and the bicubic downsampled images

of sharp HR images to constrain the network training of de-

blurring module:

Lpretrain =
1

N

N
∑

i=1

∥

∥Nadditional(F
i
deblur)− B(xigt)

∥

∥

1
,

(10)

where Lpretrain denotes the pre-training loss function;

Nadditional denotes the additional network which contains a

convolutional layer; Fi
deblur denotes the intermediate clear

features of the i-th blurry LR image; B(xigt) denotes the

bicubic downsampled image of i-th sharp HR image xigt; N
denotes the number of the training images.

The pre-training loss function Lpretrain and the addi-

tional network Nadditional are only used in pre-training

step.

Joint Training. After pre-training of deblurring mod-

ule, we jointly train the deblurring module and the super-

resolution module in an end-to-end manner. We adopt the

widely-used pixel-wise loss function to constrain the recov-

ered latent HR images:

Lpixel =
1

N

N
∑

i=1

∥

∥xi − xigt
∥

∥

1
, (11)

where Lpixel denotes the pixel-wise loss function; xi de-

notes the i-th recovered latent HR image. However, only

using (11) does not preserve the structural details well. We

further develop an effective constraint based on image gra-

dients,

Lgrad =
1

N

N
∑

i=1

∥

∥∇xi −∇xigt
∥

∥

1
, (12)

where Lgrad denotes the gradient loss function; ∇ is the

image gradient operator. Thus, the loss function for joint

training step is:

Ljoint = Lpixel + λLgrad, (13)

where Ljoint denotes the joint training loss function, and λ

is the weight parameter.

4. Experimental Results

4.1. Parameter settings and datasets
Parameter settings. To ensure the deblurring module and

the super-resolution module could play their expected roles,

we train the proposed method in two steps, where the de-

blurring network Ndeblur is trained firstly and then the two

networks Ndeblur and Nsr are jointly trained. In the train-

ing process, we adpot the ADAM optimizer [10] where the

parameters β1, β2, and ǫ are set to be the default values of

0.9, 0.999, and 10−8, respectively. For the training data, we

use a similar data augmentation method to [37]. The size

of the input LR patch is 64 × 64, and the size of the mini-

batch is set to 32. In the first training step, the learning rate

for the network Ndeblur is set to 1e−4, and in the second

step, the learning rates for the network Ndeblur and Nsr are

set to 1e−5 and 2e−4. The Cosine Annealing learning rate

scheme [27] is adopted. The loss function weight λ is set

to 0.1. We implement the proposed algorithm based on the

PyTorch. The source code and trained models are available

at https://github.com/csbhr/CNLRN.

Datasets. In this work, we apply the REDS dataset [17] to

train and evaluate the proposed method. REDS dataset has

240 training clips, 30 validation clips, and 30 testing clips

(each of them contains 100 frames). We use the 240 training

clips for training, but each frame is considered as a single

input without using the neighbor information. Then, we ex-

tract 300 frames (denoted by Val300) from the 30 validation

clips for quantitative evaluations, and 300 frames (denoted

by Test300) from the 30 testing clips for qualitative eval-

uations as their ground-truth images are not available. In

addition, we further adopt the DVD test dataset [22] to ver-

ify the generalization ability of the proposed algorithm. As

the DVD test dataset contains 10 clips with high-resolution,

we use the bicubic downsampling operation to generate LR

images and extract 100 frames (denoted by DVD100) from

these 10 clips for quantitative evaluations.

4.2. Quantitative evaluations
The proposed method aims to super-resolve the LR

images which contain motion blur, but a few methods

are designed for this problem. To evaluate the proposed

method, we first compare it against the image SR algorithms

(RCAN [35], RRDBNet (the generator of [28])) and blind

image SR method (IKC [6]). Then we compare with the

method GFN [33] which jointly solves image deblurring

and SR problems. As the image SR methods (RCAN [35],

RRDBNet [28]) are designed for clean LR images, directly

comparing with these methods may be unfair. To avoid this

problem, we use the existing image deblurring method (i.e.,

SRN [23]) and restoration method (i.e., MPRNet [32]) to

operate deblurring on blurry LR images, and then use these

image SR methods to generate clear high-resolution images.

And, these two steps are jointly trained. We retrain or fine-

tune these methods on the REDS train dataset to choose the

best results for fair comparisons, except IKC [6] which is

evaluated with the provided pre-trained model. To evalu-

ate the quality of the recovered images, we use PSNR and

SSIM as the evaluation metrics.

Table 1 shows the quantitative results on the Val300

dataset in terms of PSNR and SSIM. We note that di-

rectly using the image SR methods (RCAN [35], RRDB-

Net [28]) do not perform well as the existed motion blur
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Table 1. Quantitative evaluations on the Val300 dataset in terms of PSNR and SSIM. ∗ denotes the results generated by provided pre-trained

model; # denotes the results generated by the method with self-emsemble.

Methods Bicubic RRDBNet RCAN IKC∗ GFN MPRNet+RCAN SRN+RRDBNet SRN+RCAN Ours Ours#

PSNR 23.848 27.224 27.338 24.368 26.635 27.550 27.395 27.610 27.770 27.922

SSIM 0.6481 0.7647 0.7661 0.6913 0.7447 0.7740 0.7667 0.7745 0.7784 0.7813

Table 2. Quantitative evaluations on the DVD100 dataset in terms of PSNR and SSIM. ∗ denotes the results generated by provided pre-

trained model.

Methods Bicubic RRDBNet RCAN IKC∗ GFN MPRNet+RCAN SRN+RRDBNet SRN+RCAN Ours

PSNR 24.481 25.584 25.671 25.776 25.628 26.032 25.771 25.907 26.089

SSIM 0.7153 0.7769 0.7870 0.7746 0.7852 0.7876 0.7847 0.7888 0.7974

(b) HR patch (c) Bicubic (d) RCAN (e) IKC

(a) Ground truth HR image (f) GFN (g) SRN+RRDBNet (h) SRN+RCAN (i) Ours

Figure 3. Comparison of the SR results on the Val300 dataset. Our method recovers high-quality images with clearer structures.

(b) Input patch (c) Bicubic (d) RCAN (e) IKC

(a) Input blurry LR image (f) GFN (g) SRN+RRDBNet (h) SRN+RCAN (i) Ours

Figure 4. Comparison of the SR results on the Test300 dataset. Our method recovers high-quality images with fewer artifacts and clearer

structures.

(b) Input patch (c) Bicubic (d) RCAN (e) IKC

(a) Input blurry LR image (f) GFN (g) SRN+RRDBNet (h) SRN+RCAN (i) Ours

Figure 5. Comparison of the SR results on the Test300 dataset. Our method recovers clearer structures.
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(b) HR patch (c) Bicubic (d) RCAN (e) IKC

(a) Ground truth HR image (f) GFN (g) SRN+RRDBNet (h) SRN+RCAN (i) Ours

Figure 6. Comparison of the SR results on the DVD100 dataset. Compared with other evaluated methods, the proposed algorithm recovers

better structural details.

Table 3. Results of top methods in the NTIRE 2021 Challenge on

Image Deblurring.

Team Method PSNR SSIM

our team ours 28.51 0.8172

other teams

method1 28.44 0.8158

method2 28.44 0.8135

method3 28.42 0.8132

amplifies the difficulty of super-resolution. And the PSNR

value of our method is at least 0.43dB higher than these

SR methods. The blind image SR method IKC [6] does

not solve the blurry image SR problem well due to that

it is designed for handling the uniform blur. Although

the GFN [33] method solves the deblurring and SR prob-

lems in parallel, its SR process is still operated on blurry

LR images. Thus, its performance is limited. In addi-

tion, the PSNR and SSIM values of the cascaded meth-

ods (MPRNet [32]+RCAN [35], SRN [23]+RRDBNet [28],

SRN [23]+RCAN [35]) are lower than our method, due to

that their SR networks [28, 35] cannot effectively remove

the residual blur in intermediate deblurred images. In con-

trast, the proposed SR network (NLRN) embeds the non-

local blocks and progressive upsampling mechanism, which

is able to capture global information for better residual blur

removal, and further facilitate the super-resolution. Thus, it

can generate favorable results against these evaluated meth-

ods.

We further evaluate our method on the DVD100 dataset.

To verify the generalization ability of the proposed method,

we directly apply the models which are trained on the REDS

dataset. Table 2 shows that the proposed method performs

favorably against the other evaluated algorithms.

In Table 3, we include the top-6 methods from the

released contest results, and it shows that the proposed

method is among the top-performing methods in the low-

resolution track of the NTIRE 2021 Image Deblurring Chal-

lenge [18].

Table 4. Effectiveness of the deblurring on the Val300 dataset.

Methods w/o deblurring w/ deblurring(Ours)

PNSR 27.532 27.770

SSIM 0.7712 0.7784

Table 5. Effectiveness of the joint training on the Val300 dataset.

Methods SRN+RCAN SRN+NLRN SRN+NLRN(Ours)

Joint training % % "
PNSR 27.012 27.052 27.770

SSIM 0.7543 0.7549 0.7784

4.3. Qualitative evaluations

Figure 3 shows some visual comparisons of recovered

results generated by the evaluated methods on the Val300

dataset. We note that the SR method RCAN [35] does not

generate clearer results as it is mainly designed for super-

resolving clean LR images which cannot handle motion blur

well (Figure 3(d)). The blind image SR method IKC [6]

also does not perform well as it is designed for uniform

blur which is less effective for motion blur (Figure 3(e)).

Although the method GFN [33] involves the motion blur

removal and solves the deblurring and SR problems in par-

allel, its SR branch and deblurring branch are independent

which means the SR process is still affected by the mo-

tion blur. Thus, its generated results still contain signifi-

cant blur as shown in Figure 3(f). Furthermore, we com-

pare with the cascaded methods (SRN [23]+RRDBNet [28],

SRN [23]+RCAN [35]) where the deblurring and SR pro-

cesses are jointly trained. Although these cascaded methods

remove most of the blur, their generated results still contain

residual blur which cannot be removed by the existed SR

networks [28, 35] (Figure 3(g)-(h)). In contrast, our method

generates results with clearer structures and more details.

Figure 4-6 show the visual results on the Test300 dataset

and DVD100 dataset. The proposed method generates

much clearer results with better structural details.

5. Ablation Studies
Deblurring. To reduce the effects of the motion blur in LR

images, we develop a deblurring module before the super-
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(a) HR patch (b) Bicubic

(c) RCAN (d) w/o joint training

(e) w/o deblurring (f) Ours

Figure 7. Effectiveness of the deblurring and the joint training.

resolution process. One may wonder whether the deblurring

module helps the latent HR image recovery. To answer this

question, we remove the deblurring module and retrain this

baseline using the same training settings. Table 4 shows that

the deblurring module is able to improve the performance of

the super-resolution. And Figure 7(c) and Figure 7(e) show

that the deblurring module is able to reduce the effects of

motion blur and generate much clear results.

To demonstrate the effectiveness of the joint training, we

separately train the deblurring module and super-resolution

module. Table 5 shows that the proposed method with

joint training outperforms the methods which are separately

trained by a large margin in terms of PSNR and SSIM. Fig-

ure 7(d) further demonstrates that without joint training will

accumulate and amplify the errors which lead to significant

artifacts.

Non-local block. Although the most blur has been removed

by the deblurring module, the deblurred intermediate fea-

tures may still contain residual blur, which requires the

following SR module to further remove the residual blur

and explore more useful features. To this end, we develop

the NLRN embedded the non-local blocks which can cap-

ture global information for better residual blur removal. To

demonstrate the effectiveness of the non-local block, we re-

move the non-local blocks from the NLRN and retrain this

baseline. Table 6 shows that the method without the non-

local block (“baseline1” in Table 6) is less effective than

the proposed method.

Progressive upsampling mechanism. Most of existed SR

algorithms apply the post-upsampling mechanism, but it is

less effective for the large upsample scale (×4, ×8) as it

Table 6. Ablation study of the key components of the proposed

method on the Val300 dataset.

Methods baseline1 baseline2 baseline3 Ours

non-local block " " "

progressive upsampling " " "

gradient loss " " "
PNSR 27.541 27.588 27.660 27.770

SSIM 0.7726 0.7736 0.7762 0.7784

makes the deep model hard to learn. Thus, we adopt the

progressive upsampling mechanism to reduce the training

difficulty of the SR model. To demonstrate the effective-

ness of the progressive upsampling mechanism, we replace

the progressive upsampling with the post-upsampling and

retrain this baseline. Table 6 shows that the progressive up-

sampling mechanism is able to help the blurry image super-

resolution.

Gradient loss. The widely-used loss functions (L1-norm,

L2-norm) treat all pixels in the recovered image equally.

This may lose some details like edges, especially if the input

LR image contains significant blur. To avoid this problem,

we develop the gradient loss function to preserve the edges

of the recovered latent HR image. One may wonder whether

the gradient loss helps the latent HR image recovery. To an-

swer this question, we remove the gradient loss and retrain

this baseline using the same training settings. Table 6 shows

that the method without the gradient loss (“baseline3” in

Table 6) is less effective than the proposed method, which

demonstrates the effectiveness of the gradient loss.

6. Conclusions

We have proposed an effective cascaded non-local resid-

ual network which cascades the deblurring module and

super-resolution module to estimate latent high-resolution

images from blurry low-resolution ones. The proposed net-

work first uses the deblurring module to generate intermedi-

ate clear features and then develops a non-local residual net-

work as the super-resolution module to generate clear high-

resolution images from the intermediate clear features. In

addition, we have developed an effective constraint based

on image gradients for edge preservation and adopted the

progressive upsampling mechanism to reduce the training

difficulty. The proposed network is trained in an end-to-end

manner, and both quantitative and qualitative results on the

benchmarks demonstrate its effectiveness. Moreover, the

proposed method achieves top-3 performance on the low-

resolution track of the NTIRE 2021 Image Deblurring Chal-

lenge.
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