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Abstract

This paper reviews the NTIRE2021 challenge on burst

super-resolution. Given a RAW noisy burst as input, the

task in the challenge was to generate a clean RGB image

with 4 times higher resolution. The challenge contained two

tracks; Track 1 evaluating on synthetically generated data,

and Track 2 using real-world bursts from mobile camera.

In the final testing phase, 6 teams submitted results using a

diverse set of solutions. The top-performing methods set a

new state-of-the-art for the burst super-resolution task.

1. Introduction

Super-resolution (SR) is a fundamental computer vision

problem with numerous applications in e.g. mobile photog-

raphy, remote sensing, medical imaging. Given a single or

multiple images of a scene, SR aims to generate a higher-

resolution output by adding missing high-frequency details.

In recent years, the SR community has mainly focused on

the single-image super-resolution (SISR) task [8, 9, 24, 28,

22, 64, 49, 21, 27, 58, 53, 34]. Thanks to the development

of specialized network architectures [9, 24, 28, 22, 64, 49]

and training strategies [21, 27, 58, 53], the SISR methods

have achieved impressive SR performance. Despite these

advances, the SISR approaches are fundamentally limited

by the available information (single frame), and thus only

rely on learned image priors to recover the missing details.

In contrast, multi-frame super-resolution (MFSR)

approaches combine information from multiple low-

resolution (LR) images to generate a HR output. If the in-
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put images are captured using a non-stationary camera and

thus contain sub-pixel shifts w.r.t. each other, they provide

multiple LR samplings of the same underlying scene. By

effectively fusing this information, the MFSR methods can

reconstruct high-frequency details which otherwise cannot

be recovered using a single input image. This makes MFSR

especially tempting for the popular mobile burst photogra-

phy applications. Since the burst images contain sub-pixel

shifts due to natural hand tremors [55], MFSR can be em-

ployed to improve the image resolution which is otherwise

restricted by hardware constraints.

Despite the aforementioned advantages, the MFSR prob-

lem has received limited attention in recent years, compared

to the SISR task. The recent work [4] by Bhat et al. aims

to address this issue by introducing a synthetic, as well as

a real-world dataset for burst super-resolution, in addition

to a MFSR network architecture. The NTIRE 2021 Chal-

lenge on Burst Super-Resolution aims to further stimulate

research in the burst super-resolution task. The challenge

consists of two tracks. In Track 1, the methods are evaluated

on the synthetic burst dataset introduced in [4], and ranked

using standard fidelity score PSNR. Track 2 evaluates the

real world performance on the BurstSR dataset introduced

in [4]. The BurstSR dataset consists of bursts captured using

a hand held camera, along with a corresponding HR image

captured using a DSLR. The methods are ranked using a

combination of fidelity score as well as a human study.

In total, 6 teams participated in the NTIRE 2021 Chal-

lenge on Burst Super-Resolution. The participating teams

employed a variety of fusion approaches, alignment mod-

ules, and reconstruction networks. 4 of the 6 participating

teams outperformed DBSR [4] on Track 1, setting a new

state-of-the-art on the burst super-resolution task.

2. NTIRE 2021 Challenge

The goal of the NTIRE 2021 Challenge on Burst Super-

Resolution is to encourage further research in the burst SR
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task and provide a common benchmark for evaluating dif-

ferent methods. This challenge is one of the NTIRE 2021

associated challenges: nonhomogeneous dehazing [2], de-

focus deblurring using dual-pixel [1], depth guided im-

age relighting [10], image deblurring [39], multi-modal

aerial view imagery classification [30], learning the super-

resolution space [33], quality enhancement of heavily com-

pressed videos [56], video super-resolution [47], percep-

tual image quality assessment [12], burst super-resolution,

and high dynamic range [42]. The burst super-resolution

challenge contained two tracks. In both tracks, the meth-

ods are provided a noisy RAW burst containing 14 im-

ages. The task is to perform joint denoising, demosaicking,

and super-resolution to generate a clean RGB image with 4

times higher resolution. The participants were provided a

public toolkit (https://github.com/goutamgmb/

NTIRE21_BURSTSR) containing tools for training and

evaluation for both tracks. Next, we describe the two chal-

lenge tracks in more detail.

2.1. Track 1: Synthetic

Track 1 employs synthetic bursts generated using the

data generation pipeline employed in [4]. Given an sRGB

image, an inverse camera pipeline introduced in [5] is em-

ployed to convert the sRGB image to linear sensor space.

Next, a synthetic burst is generated by applying random

translations from the range [−24, 24] pixels, and random

rotations from the range [−1, 1] degrees. Each image in the

burst is then downsampled by a factor of 4 using bilinear

interpolation and then mosaicked using Bayer pattern. Fi-

nally, independent read and shot noise is added to each im-

age to obtain the noisy RAW burst. Due to the use of syn-

thetically generated data, an accurately aligned ground truth

image is readily available in Track 1. This allows evaluating

the impact of different architectural choices and loss func-

tions on the SR performance, computed in terms of pixel-

wise image quality metrics such as PSNR.

The public toolkit provided to the participants contained

data generation scripts which could be used to generate syn-

thetic bursts for training. We used the pre-generated syn-

thetic burst dataset introduced in [4] as the validation set

for Track 1. The dataset consists of 300 bursts, which have

been generated using sRGB images from the Zurich RAW

to RGB [19] test set. Each burst contains 14 RAW images

of resolution 96× 96. The participants could evaluate their

methods on the validation set using an evaluation server

during the development phase of the challenge. A public

leaderboard (https://competitions.codalab.

org/competitions/28078#results) was also

made available. The dataset for the final test phase, con-

sisting of 500 bursts, was synthetically generated using the

DSLR images from the BurstSR [4] test set. Similar to

the validation set, each burst in the test set contains 14

96× 96 RAW images. The participants were only provided

the RAW LR bursts, and asked to submit the predictions of

their methods.

2.2. Track 2: Real­World

In this track, we employ the BurstSR dataset introduced

in [4] for evaluating the methods. The BurstSR dataset con-

sists of 200 RAW bursts captured from a hand held mobile

camera. A corresponding higher-resolution image captured

using a DSLR is also provided for each burst to serve as

the ground truth. Compared to the synthetic dataset used

in Track 1, the BurstSR dataset allows evaluating the per-

formance of the methods on real-world degradation and

noise. However, as the input burst and the HR ground

truth are captured using different cameras, there are spatial

mis-alignment and color differences between the two. This

poses additional challenges on the training of the methods

as well as evaluation.

The BurstSR dataset is split into train, validation, and

test splits consisting of 160, 20, and 20 bursts, respectively.

We extracted 160× 160 crops from the bursts to obtain our

training, validation, and test sets consisting of 5405, 882,

and 639 crops, respectively. The participants were allowed

to use the provided training set, in addition to external syn-

thetic data, for training their methods. During the develop-

ment phase, the participants were also provided the valida-

tion set, along with the ground truth, for evaluating different

design choices. Unlike in Track 1, there was no evalua-

tion server in Track 2. For the final test phase, the partic-

ipants were provided only the LR bursts from the test set,

and asked to submit the network predictions.

3. Challenge Results

In this section, we report the final results on the test sets

of both Track 1 and Track 2. During the final test phase, the

participants were asked to submit their predictions on the

provided test data. In Track 1, there were 6 teams which

submitted their methods, while 5 different teams submitted

methods in Track 2. All the submitted methods are briefly

described in Section 4, while the members and affiliations

for each team are listed in Appendix A.

3.1. Evaluation Metrics

The aim in MFSR is to reconstruct the original HR im-

age by fusing information from multiple LR observations.

Thus, we employ fidelity based image metrics to evaluate

the prediction quality for different methods. Since there are

spatial and color mis-alignments between the input bursts

and HR ground truth in the BurstSR dataset employed for

Track 2, we additionally conducted a human study to eval-

uate the top ranking methods.

Track 1: Due to the use of synthetically generated dataset

for evaluation, an accurately aligned ground truth is avail-
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able in Track 1. This enables the use of pixel-wise image

quality metrics for evaluating the performance of different

methods. We use the fidelity-based Peak Signal-to-Noise

Ratio (PSNR) score to rank the methods. Additionally,

we also report the Structural Similarity Index (SSIM) [54]

as well as the learned perceptual score LPIPS [62] for all

the methods. The emphasis of the challenge is on learn-

ing to recover the HR signal, rather than learning any post-

processing steps. Thus, all metrics are computed in the lin-

ear sensor space, before applying white-balancing, gamma

correction, contrast enhancement etc.

Track 2: We follow the same evaluation procedure em-

ployed in [4] in order to handle the spatial and color mis-

alignments between the input bursts and HR ground truth.

The network prediction is first spatially aligned to the

ground truth, using pixel-wise optical flow estimated using

PWC-Net [48]. A linear color mapping between the input

burst and the ground truth, modeled as a 3x3 color correc-

tion matrix, is then estimated and used to transform the spa-

tially aligned network prediction to the same color space as

the ground truth. The spatially aligned and color corrected

prediction is then compared with the ground truth to com-

pute standard image quality metrics. The evaluation script

was included in the public toolkit released to the partici-

pants. We refer to [4] for more details about the evaluation

procedure.

We also conducted a human study on Amazon Mechani-

cal Turk (AMT) to evaluate the top performing methods on

Track 2. We manually selected 100 bursts from the test set

with diverse texture. Next, we extract 3 random 80 × 80
crops from the HR predictions of the methods for each of

these test images. The crops are then resized to 320 × 320
using nearest neighbor interpolation. The participants in the

user study were shown the full ground truth image, as well

as the network prediction crops, and then asked to rank the

predictions based on visual quality. We obtained 5 indepen-

dent rankings for each crop. The mean ranking (MOR) over

the 300 crops, as well as the percentage of times a method

was ranked first (%Top) are used as evaluation scores to

rank the methods.

3.2. Baselines

We compare the participating methods with two addi-

tional baselines.

SingleImage: We evaluate a baseline single frame SR

method. Our single image baseline passes the first image

in the burst through a series of residual blocks [15] with-

out batch normalization [20]. The extracted feature map is

upsampled using the sub-pixel convolution layer [46], and

passed through additional residual blocks to obtain the HR

RGB image.

DBSR [4]: We also evaluate the DBSR burst super-

resolution model introduced in [4]. DBSR employs the

PSNR↑ SSIM↑ LPIPS↓

Noah TerminalVision SR 46.85 0.983 0.018

MegSR 46.72 0.983 0.020

Inria 44.76 0.969 0.034

TTI 44.40 0.973 0.038

BREIL 39.22 0.918 0.104

MLP BSR 37.62 0.895 0.166

SingleImage 39.28 0.921 0.103

DBSR [4] 42.58 0.960 0.055

Table 1. Challenge results on the synthetic test set from Track 1,

in terms of PSNR, SSIM, and LPIPS. The top section contains

results for the participating methods, while baseline approaches

are included in the bottom section.

PWCNet [48] optical flow network align the input images.

The aligned images are merged using an attention-based fu-

sion approach.

3.3. Track 1: Synthetic

In this section, we present results of the submitted meth-

ods on Track 1. The mean PSNR, SSIM, and LPIPS

scores over the 500 bursts from the synthetic test set are

provided in Table 1. The team Noah TerminalVision SR

obtains the best results in terms of all 3 metrics with a

PSNR score of 46.85. Noah TerminalVision SR employs

the PCD module [51] to align the input images, which are

then merged using the attention-based fusion approach pro-

posed in [4]. MegSR achieves the second best performance

with a PSNR of 46.72. MegSR uses a modified version

of PCD, denoted FEPCD module for alignment. Fusion is

performed using a cross non-local fusion module based on

Non-Local network [52]. Team Inria, employing an opti-

mization based approach, obtains a PSNR score of 44.76.

The team utilizes the forward image formation model and

jointly optimizes the HR estimate as well as the motion

vectors. Note that four of the participating teams, namely

Noah TerminalVision SR, MegSR, Inria, and TTI outper-

formed the DBSR method [4], thus setting a new state-of-

the-art on the burst SR problem.

A qualitative comparison between the participating

methods is provided in Figure 1. The two top performing

methods Noah TerminalVision SR and MegSR obtain im-

pressive results which are very close to the ground truth.

The multi-frame approaches Noah TerminalVision SR,

MegSR, Inria, TTI, and DBSR better recover the high-

frequency details compared to the single image baseline,

thanks to the use of additional information from multiple

frames.

3.4. Track 2: Real­World

Here, we present the results on the real-world BurstSR

test set from Track 2. The mean PSNR, SSIM, and LPIPS
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Figure 1. Qualitative comparison on Track 1 test set (4x super-resolution).
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PSNR↑ SSIM↑ LPIPS↓ MOR↓ %Top ↑ Avg. Rank↓

MegSR 45.45 0.979 0.032 3.09 20.9 1.5

Noah TerminalVision SR B 45.26 0.978 0.026 2.96 29.7 2.0

Noah TerminalVision SR A 45.36 0.979 0.035 3.41 13.1 2.5

TTI 44.16 0.974 0.040 3.87 14.0 5.0

MLP BSR 41.40 0.952 0.101 - - -

BREIL 29.93 0.797 0.141 - - -

DBSR [4] 45.17 0.978 0.037 3.57 11.4 4.0

SingleImage 44.02 0.972 0.051 4.10 10.9 6.0

Table 2. Challenge results on BurstSR test set from Track 2.

PSNR, SSIM, and LPIPS scores are computed after spatial and

color alignment of the network prediction to the ground truth.

MOR denotes the mean ranking of the method from a human

study, while %Top corresponds to the percentage of time a method

was ranked as the best in the human study. The last column reports

the average of a methods ranking in terms of PSNR and MOR.

scores over the test set are provided in Table 2. Note that

all the metrics are computed after spatial and color align-

ment of the network prediction to the ground truth, as de-

scribed in Section 3.1. MegSR achieves the best results

in terms of PSNR and SSIM, with scores of 45.45dB and

0.979, respectively. Noah TerminalVision SR A, which is

trained using L1 loss with alignment similar to MegSR, ob-

tains the second best PSNR score of 45.36dB. In contrast,

Noah TerminalVision SR B which is trained using percep-

tual loss achieves the best LPIPS score of 0.026.

We also report results of the human study in Table 2, in

terms of Mean Opinion Ranking (MOR) and %Top met-

rics. Noah TerminalVision SR B obtains the best MOR

score of 2.96, while the second best results are obtained

by MegSR. A qualitative comparison between the meth-

ods is provided in Figure 2. As in Track 1, MegSR,

Noah TerminalVision SR, TTI, and DBSR generate more

detailed images compared to the single image baseline. The

results of Noah TerminalVision SR B are in general more

sharper compared to that of MegSR. This can be attributed

to the use of perceptual loss during training. However the

predictions of Noah TerminalVision SR B contain slight

high-frequency artefacts, as seen in third example in Fig-

ure 2.

4. Challenge Methods and Teams

In this section, we provide a brief description of the par-

ticipating methods. Training and inference times for differ-

ent methods are summarized in Table 3.

4.1. Noah TerminalVision SR

The team proposes NoahBurstSRNet for the task of Joint

Demosaicking, Denoising and Super Resolution (JDDSR)

of smart-phone burst Raw images. NoahBurstSRNet is in-

spired by two recent works: EDVR [51] and DBSR [4]. The

network architecture is shown in Figure 3.

Burst Raw images are passed to an encoder to extract

features. Those features are then aligned to the base feature

(the feature of the first Raw image) by a Pyramid, Cascad-

ing and Deformable (PCD) [51] module. With the aligned

features, a Weight Predictor (WP) is used to predict the fu-

sion weights between the base frame features and the other

frame features. Based on the predicted fusion weights, an

Attention-based Fusion (ABF) module is used to fuse the

aligned futures. The WP and ABF modules are very sim-

ilar to those proposed in [4], except that the optical flow

is not used as an input of WP. The spatial resolution of

the fused features is first increased by a factor of two us-

ing a Pixelshuffle layer [46]. The upsampled feature map

is then processed by a sequence of Residual Feature Dis-

tillation Blocks (RFDBs) [31] in order to reconstruct the

high-frequency details. Finally, the spatial resolution of the

feature map is further increased by a factor of 4 and the final

RGB image is predicted using pixelshuffle and convolution

layers.

For track 1, the NoahBurstSRNet was trained in a

fully-supervised manner on synthetic bursts generated us-

ing sRGB images from the Zurich RAW to RGB training

set. The network was trained using the L1 loss. For the

final submission, the team used a self-ensemble technique

proposed in [32] which can augment the input data while

preserving the bayer pattern.

For track2, the team employed a two-stage training

strategy. For the first stage, since the training data

is weakly-paired (i.e. they are not pixel-wise aligned),

the model was trained using the spatial and color align-

ment strategy proposed in [4]. This model is termed as

Noah TerminalVision SR A. Next, the ground truth linear

RGB images were spatially aligned and color matched to

the SR predictions of the model trained in stage 1 using

an in-house tool. The resulting aligned ground truth im-

ages were then used to fine-tune the model in stage 2 to ob-

tain Noah TerminalVision SR B. The fine-tuning was per-

formed using the SSIM and LPIPS [62] loss as these losses

can tolerate small misalignments in the training data.

4.2. MegSR

The team MegSR propose Feature Enhanced Burst

Super-Resolution with Deformable Alignment (EBSR)

framework, as shown in Fig. 4. EBSR solves the burst

SR problem in three steps: align, fusion and reconstruc-

tion. First, it extracts high-level features of the LR burst im-

ages. The features are then aligned by a Feature Enhanced

Pyramid, Cascading and Deformable convolution (FEPCD)

module. Next, the aligned features are fused by a Cross

Non-Local Fusion (CNLF) module. Finally, the SR image

is reconstructed by the Long Range Concatenation Network

(LRCN). In addition, EBSR builds a progressively scaled

residual pathway structure to further improve the perfor-

mance. Please refer to [35] for a detailed description.

Feature Alignment: EBSR extracts high level features

using Wide activation Residual Block (WARB) introduced

in [57]. The features are aligned by a Feature Enhance PCD
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Figure 2. Qualitative comparison on Track 2 test set (4x super-resolution).
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Track 1 Track 2

Team Name Codalab Username Train Time (days) Runtime (sec) Train Time (days) Runtime (sec)

Noah TerminalVision SR Noah TerminalVision 5 1.60 2 0.30

MegSR megviiLuo 7 0.15 3 0.18

Inria JohnDoe4598 2.5 0.65 - -

TTI TakahiroMaeda 18 2.14 16 5.50

BREIL chowy333 2.5 0.01 0.1 0.01

MLP BSR raoumer 10 0.33 - 0.88

Table 3. Information about the participating teams. We report the training time and inference time per burst provided by the teams.

Figure 3. Overview of the NoahBurstSRNet network architecture employed by team Noah TerminalVision SR

(FEPCD) module with multi-scale features. FEPCD is an

extension of the PCD module [51] where an initial feature

pyramid is used to first denoise and enhance the image fea-

tures The feature of the first frame from the LR image is

chosen as the reference, and the features from other LR im-

ages are aligned to this reference.

Fusion: In order to properly fuse the features from differ-

ent frames, EBSR introduces Cross Non-Local (CNL) mod-

ule which is based on Non-Local network [52]. The CNL

fusion module measures the similarity between every two

pixels from reference frame and other frame feature maps.

The more similar the feature representations between two

locations, higher the correlation between them. According

to this property, the valid regions of other frames are fused

into the reference frame.

Reconstruction: The final SR output is reconstructed by

the Long Range Concatenation Network (LRCN). It con-

sists of two parts: backbone module and upsample mod-

ule. The backbone module is composed of G Long-Range

Concatenation Groups (LRCG), and each LRCG contains

N Long-Range Residual Blocks with wide activation which

is inspired by WDSR [57]. Moreover, EBSR introduces a

progressive upsample module with pixelShuffle [17] and a

residual pathway structure to reconstruct the final SR im-

age. The reference frame goes through a pixelshuffle layer,

and is added to the outputs of pixelshuffle layers of recon-

struction module.

Training: For Track 1, the network is trained using the

charbonnier loss proposed by LapSRN [25]. The trained

model is then fine-tuned on the BurstSR train set to obtain

the model for Track 2. When training on BurstSR dataset,

the network predictions are first aligned to the ground truth

as described in [4]. In order to further improve the perfor-

mance, the team employs a multi-model ensemble training

strategy. Three trained EBSR models are loaded with frozen

weights, and a few additional convolution layers are trained

to fuse their outputs.

Testing: Team MegSR uses the Test Time Augmentation

(TTA) strategy which can be seen as a self-ensemble ap-

proach. Specifically, given the original input burst, each im-

age in the burst is transposed and the images in the burst are

shuffled. The two augmented bursts, along with the original

burst, are then passed through the network. The resulting

outputs are averaged after reversing the augmentation effect

to obtain the final prediction.

4.3. Inria

The method presented in this section corresponds to the

paper [26], where all details can be found. The brief de-

scription next, including figures, is borrowed from this pa-

per. Starting from a low resolution burst of raw images,

team Inria estimates a coarse block-parametric displace-

ment field using a robust multiscale Lucas-Kanade algo-

rithm [3]. Next, an estimate of the high resolution image

is obtained and the motion parameters are subsequently re-

fined alternatively. This iterative process involves a data-

driven prior—here, a convolutional neural network—which

helps removing artefacts. Model parameters are learned

end-to-end by backpropagating on real HR/synthetic LR ex-
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Figure 5. Overview of the network architecture employed by team Inria

amples. An overview of the network architecture is pro-

vided in Figure 5. The HR estimate as well as the refined

motion parameters are obtained using the image formation

model described next.

Inverse problem and optimization: The burst images are

obtained through the following forward model:

yk = DBWpk
x+ εk for k = 1, . . . ,K, (1)

where εk is additive noise. Here, both the HR image x and

the frames yk of the burst are flattened into vector form.

The operator Wpk
, parameterized by pk, warps x to com-

pensate for misalignments between x and yk caused by

camera or scene motion between frames and resamples the

warped image to align its pixel grid with that of yk. Finally,

the corresponding HR image is blurred to account for in-

tegration over space, and it is finally downsampled in both

the spatial and spectral domains by the operator D. The

spectral part corresponds to mosaicking operation of select-

ing one of the three RGB values to assemble the raw image.

The model (1) can be rewritten as y = Upx+ ε, where

Up=







DBWp1

...

DBWpK






,y=







y1
...

yK






,p =







p1
...

pK






, ε=







ε1
...

εK






. (2)

Given the image formation model of Eq. (1), recovering

the HR image x from the K LR frames yk in the burst can

be formulated as finding the values of x and p that minimize

1

2
‖y − Up x‖2 + λφθ(x), (3)

where φθ is a parameterized regularizer, which will be cho-

sen as a convolutional neural network, and λ is a param-

eter balancing the data-fidelity and regularization terms.

The objective (3) is minimized using the quadratic penalty

method [40, Sec. 17.1] often called half-quadratic splitting

(or HQS) [11]. Here, the original objective is replaced by

Eµ(x, z,p) =
1

2
‖y−Up z‖2+

µ

2
‖z−x‖2+λφθ(x), (4)

where z is an auxiliary variable, and µ is a parameter in-

creasing at each iteration, such that, as µ → +∞, the min-

imization of (4) with respect to x, z and p becomes equiv-

alent to that of (3) with respect to x and p alone. The se-

quence of weights (µt)t≥0 are learned end-to-end.

Estimating the HR image x: The estimate x is updated as

xt ← argmin
x

µt–1

2
‖zt − x‖2 + λφθ(x),

which amounts to computing the proximal operator of the

prior φθ. Following the “plug-and-play” approach [6, 44,

50], the proximal operator is replaced by a parametric func-

tion fθ(zt) (here, a CNN).

Initialization by coarse alignement: Each LR frame is

aligned to an arbitrary one from the burst (e.g., the first one)
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by using the robust Lucas-Kanade forward additive algo-

rithm [3, 45] which is known to be robust to noise. The

raw images are first converted to grayscale format by using

bilinear interpolation. Although sub-optimal, such a proce-

dure is sufficient for obtaining coarse motion parameters.

Learned data prior: Good image priors are essential for

solving ill-posed inverse problems. Instead of using a clas-

sical one, such as total variation (TV), team Inria learns an

implicit prior parameterized by a convolutional neural net-

work fθ in a data-driven manner. The ResUNet architecture

proposed in [61] is employed for this purpose.

Training: The model is trained using synthetic bursts gen-

erating using sRGB images from the training split of the

Zurich raw to RGB dataset [19], by minimizing the ℓ1 loss.

4.4. TTI

The team TTI adopt the Recurrent Back Projection Net-

work (RBPN) [14] for super-resolving burst frames. RBPN

constructs the projection module inspired by DBPN [13,

14] to iteratively refine an input frame using temporally-

nearby frames, along with corresponding flow vectors. An

overview of the approach is provided in Figure 6. In addi-

tion to the basic functions in RBPN, TTI applies deformable

convolutions to align features to the input frame. A flow re-

finement module is also proposed to minimize the flow esti-

mation error caused by noisy frames. This module is trained

explicitly using the ground-truth flow in track 1 but trained

implicitly solely on SR reconstruction loss in track 2. The

residual blocks in the projection module are initialized us-

ing Fixup Initialization [60] to stabilize the training process

of the normalization-free network.

Flow Estimation and Refinement: For initial flow estima-

tion between a reference frame I0 and frame It, TTI utilizes

PWCNet [48] with fixed pretrained weights. In order to fur-

ther refine the predicted flow, a UNet-like flow refinement

module is employed. The estimated flow is concatenated

with the reference frame I0 and frame It, and fed into the

refinement module to get the residual flow, which is then

added to the initial flow estimate.

Alignment Extractor: In the original RBPN, a single con-

volution layer is used for feature extraction from each in-

put frame, neighboring frame and the corresponding optical

flow triplet. In contrast, team TTI first concatenates fea-

tures from reference frame I0 and frame It, along with the

corresponding optical flow F0,t and passes this through a

convolution layer to obtain offsets. These offsets are then

used to align the frame It features to the base frame using a

deformable convolution layer.

Training: For Track 1, the model is trained on synthetic

burst data generated using sRGB image from [19], using

the L1 loss. Additionally, L1 loss between the ground-truth

flow F̂ and refined flow F is also used to train the flow

refinement module. In Track 2, the model was trained on

BurstSR training set, using the spatial and color alignment

strategy employed in [4], by minimizing the L2 loss. Since

ground-truth flow F̂ is not available in this case, the flow

refinement module was trained using only the final SR re-

construction loss, without any direct supervision.

Inference: To achieve a fast training process and memory

efficiency, the model is trained using bursts containing 8 im-

ages. During inference, original burst containing 14 frames

is divided into 7 subsets, each including the reference (first)

frame. The 7 SR predictions are averaged to output the final

SR image. No model-ensemble and self-ensemble are used.

4.5. MLP BSR

The team MLP BSR propose a deep iterative Burst

SR learning method (BSRICNN) that solves the Burst

SR task in an iterative manner. To solve the Raw Burst

Super-Resolution task, they rely on the forward observation

model,

yi = MHSi(x̃) + ηi, i = 1, . . . , B (5)

where, yi is an observed LR burst containing B images,

M is a mosaicking operator that corresponds to the CFA

(Color Filter Array) of a camera (usually Bayer), H is a

down-sampling operator (i.e. bilinear, bicubic, etc.) that re-

sizes an HR image x̃ by a scaling factor r, Si is an affine

transformation of the coordinate system of the image x̃ (i.e.

translation and rotation), and ηi is an additive heteroscedas-

tic Gaussian noise related to shot and read noise. Due to

the ill-posed nature of inverse problem, the recovery of x

from yi mostly relies on variational approaches for combin-

ing the observation and prior knowledge, and the solution is

obtained by minimizing the following objective function as,

x̂ = argmin
x

1

2σ2B

B
∑

i=1

‖yi−MHSi(x)‖
2

2
+λR(x), (6)

where, the first term is a data fidelity term that measures

the proximity of the solution to the observations, the sec-

ond term (i.e. R(x)) is the regularization term that is as-

sociated with image priors, and λ is the trade-off parame-

ter that governs the compromise between the data fidelity

and the regularizer term. The objective (6) is minimized

using Majorization-Minimization (MM) framework [18]

which has been previously employed in image restoration

tasks [38, 23].

The proposed Burst SR scheme is shown in Figure 7.

BSRICNN is unrolled into K stages, where each stage com-

putes the refined estimate of the solution. yi is an input

Raw LR burst, x0 is an initial estimate, and xK is a fi-

nal estimated SR image. In Figure 7, the Encoder-Resnet-

Decoder (ERD) architecture employed is similar to the one

used in [38]. Each network stage performs the efficient
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Proximal Gradient Descent [41] updates to solve the opti-

mization problem. The shared parameters across stages are

learned jointly by minimizing the L1 loss w.r.t. to all net-

work parameters. For Track 1, the network is trained using

synthetic bursts generated using 46,839 sRGB images from

the Zurich RAW to RGB dataset [19]. The same model was

then also employed for Track 2, without any finetuning on

the BurstSR dataset.

4.6. BREIL

The proposed model takes multiple LR RAW burst

images with noise {bi}
T
i=1

and predicts denoised single

HR RGB image IiHR. The kernel prediction network

(KPN) [37, 36] which has been recently employed for burst

image processing is utilized for aligning the images from

the burst. The overall model shown in Figure 8 consists

of two parts, i) a KPN-based module that aligns the burst

images and ii) a reconstruction network that increases the

resolution of images while fusing the output of the align-

ment module. Each of these modules are briefly described

next. Please refer to [7] for more details.

Weighted Multi-Kernel Prediction: The team BREIL

propose a weighted multi-kernel prediction network

(WMKPN) for aligning the images from the input burst.

WMKPN is an extension of MPKN approach introduced

in [36]. MKPN predicts multiple kernels of different sizes,

which are then used to align and fuse the burst images.

All the kernels are weighted equally in the MKPN frame-

work. In contrast, WMKPN predicts additional weights for

each kernel to adaptively weight the impact different ker-

nels. Furthermore, the predicted kernels are only used to

align the input images, while the fusion is performed by a

seperate network. WMKPN employs a modified U-net ar-

chitecture, resembling [37, 36, 59]. In the encoder part, the

spatial sizes of the feature maps are reduced by the average

pooling layer while using the convolution layer and ReLU

activation function. On the other side, the decoder increases

the spatial sizes of the feature maps by a bilinear upsam-

pling layer. WMKPN also exploits the convolution layer

and attention module, proposed in [59], which is composed

of a series of the channel attention (CA) [63] and the spatial

attention (SA) [16]. The encoded feature maps are concate-

nated to the decoder side that have the same spatial sizes

like U-net architecture [43]. This modified U-net consists

of two branches, the kernel prediction branch and the kernel

weight branch which predict kernels and weights, respec-

tively. Separable kernels are used for memory efficiency.

To provide discriminative mechanism, the kernel weights

are normalized using softmax operation applied across the

different kernels. The weighted kernels are then convolved

with the input burst images in order to align them.

SR Reconstruction Network: The aligned input images

are concatenated and passed through a reconstruction net-

work to obtain the SR image. The reconstruction network

10



Figure 8. Overview of the network architecture employed by team BREIL.

leverages the residual blocks with short connections which

are exploited in EDSR approach [29]. The SR network ex-

tracts deep features by passing the input through ten residual

blocks. The output is then upsampled using three sub-pixel

convolution layers [46] to obtain the final RGB image.

Training: The network is trained using a combination of

L1 and SSIM losses.

5. Conclusion

This paper describes the NTIRE2021 challenge on burst

super-resolution. Given multiple images of a scene captured

in quick succession, the burst super-resolution task aims to

generate a super-resolved output by merging information

from the input frames. The challenge tackled the problem

of RAW burst super-resolution, where the goal is to predict

a 4x super-resolved RGB image, given a RAW noisy burst

as input. The challenge contained two tracks, namely Track

1 and Track 2. In Track 1, a synthetically generated burst

dataset was used for evaluation, while Track 2 focused on

real-world SR using bursts captured from a hand held cam-

era. 6 teams submitted results in the final testing phase. The

participating methods, described in this report, employed a

diverse set of approach for the burst SR problem obtaining

promising results.
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