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Abstract

Modulating image restoration level aims to generate

a restored image by altering a factor that represents the

restoration strength. Previous works mainly focused on

optimizing the mean squared reconstruction error, which

brings high reconstruction accuracy but lacks finer texture

details. This paper presents a Controllable Unet Generative

Adversarial Network (CUGAN) to generate high-frequency

textures in the modulation tasks. CUGAN consists of two

modules - base networks and condition networks. The base

networks comprise a generator and a discriminator. In the

generator, we realize the interactive control of restoration

levels by tuning the weights of different features from dif-

ferent scales in the Unet architecture. Moreover, we adap-

tively modulate the intermediate features in the discrimina-

tor according to the severity of degradations. The condition

networks accept the condition vector (encoded degradation

information) as input, then generate modulation parame-

ters for both the generator and the discriminator. During

testing, users can control the output effects by tweaking the

condition vector. We also provide a smooth transition be-

tween GAN and MSE effects by a simple transition method.

Extensive experiments demonstrate that the proposed CU-

GAN achieves excellent performance on image restoration

modulation tasks.

1. Introduction

Deep learning methods have achieved great success in

many low-level vision tasks, such as image denoising, de-

blurring, and super-resolution. Various network architec-

tures and training strategies have been continuously improv-

ing the reconstruction quality (e.g., PSNR). Later on, to pur-

sue visually pleasing results, the generative adversarial net-
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Figure 1. The input image is with blur r2 (kernel width=2) and

σ30. Through the modulation on deblurring and denoising, users

could obtain a well restored image with rich texture details. Be-

sides, users are allowed to modulate on the green sliding bar to

achieve smooth transition between GAN and MSE effects.

work (GAN) [13] is introduced to encourage the network to

produce natural looking images. For most image restora-

tion tasks, a deep model learns a deterministic mapping

and outputs a fixed result for a pre-determined degrada-

tion type/level. For instance, many image restoration deep

models are trained for a single level (e.g., Gaussian noise

σ50). However, this deterministic mapping is not flexible,

as users cannot continuously modify the restoration effect or

strength based on personal preference. Moreover, when the

degradation model mismatches the degraded input, the out-
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Figure 2. Artifacts incurred by applying GAN-based and PSNR-

oriented model with mismatched restoration level. Models are

trained on blur r2+noise σ30, while the input image is with blur

r1+noise σ50.

put image will contain severe artifacts, especially for GAN-

based models, as shown in Figure 2. Therefore, develop-

ing modulation models that can flexibly handle a range of

degradations by sliding bars is essential and practical.

In recent years, several modulation methods [11, 16, 30,

31] have been proposed to adapt existing deep models to

other objectives. Specifically, they can generate continu-

ous restoration results between the pre-defined start level

and end level (e.g, denoising σ15 → σ50). Further-

more, CResMD [17] proposes a multi-dimension modula-

tion framework that allows jointly modulation for different

degradations. However, the above modulation methods are

all PSNR-oriented, which will produce over-smoothed re-

sults without sufficient high-frequency details. To obtain

modulation outputs with photo-realistic effect, this work

focuses on interactive modulation for GAN-based image

restoration.

The main challenges behind PSNR-oriented and GAN-

based modulation are different. For PSNR-oriented modu-

lation methods, such as CResMD, severe and mild degra-

dations have different magnitude orders on the MSE loss,

which will lead to the ”unbalanced learning” problem. This

phenomenon encourages models to focus on restoring im-

ages with severe degradations while ignoring the mild ones.

On the contrary, in GAN-based modulation, the generator

may ignore those severe degradations if we directly apply

a vanilla GAN. Specifically, for a vanilla discriminator, an

image restored from severe degradations will look like the

fake one compared with that from mild ones. This incorrect

judgment will lead to the vanishing generator gradient on

those severe degradations. Therefore, we need specific dis-

criminator to clarify images restored from various degrada-

tions. This discriminator could adjust its judgment criterion

based on the degradation of the input image.

In this paper, we introduce a novel GAN-based modula-

tion framework for photo-realistic image restoration. The

proposed controllable Unet generative adversarial network

(CUGAN) adopts the Unet architecture. We realize the in-

teractive control of the reconstruction result by tuning the

weights of different features from different scales or within

one scale in the Unet framework. To tackle vanishing gen-

erator gradient on severe degradations, we apply global fea-

ture modulation (GFM) [18] in the discriminator. Based

on the severity of degradations, the global feature modula-

tion adaptively modulates intermediate features of the dis-

criminator. The above modulation is achieved by the condi-

tion networks embedded in the CUGAN. The condition net-

works accept a condition vector that encodes the degrada-

tion information for each input image. Then, the condition

networks generate the tuning weights for the generator and

the parameters of global feature modulation (GFM) for the

discriminator. During testing, users can control the restora-

tion strength by tweaking the condition vector. We also pro-

vide the trade-off method between GAN and MSE effect,

allowing users to adjust the output effect in another dimen-

sion. Different from DNI [31], our interpolation works on

both the base network G and the condition network CG.

Figure 1 shows a qualitative example for the whole modu-

lation process.

To verify the effectiveness of the proposed method, we

conduct extensive experiments on modulation for image

restoration with multiple degradations. Experimental re-

sults show that the proposed CUGAN could achieve mod-

ulation with high visual quality, high reconstruction accu-

racy, or a compromise between them. We also demonstrate

its effectiveness on image restoration in real-world scenar-

ios. In this work, our main contributions can be summarized

as follows:

• We propose a novel GAN-based modulation frame-

work, named CUGAN, to obtain photo-realistic

restoration results by interactive modulation.

• We propose a discriminator equipped with global fea-

ture modulation to ease the vanishing generator gradi-

ent on severe degradations.

• We test the restoration performance on selected

datasets and real-world images. Extensive experiments

show the effectiveness of CUGAN in modulated image

restoration.

2. Related Work

Perceptual Image Restoration. With the rapid de-

velopment of deep learning in recent years, deep learn-

ing techniques have been widely explored to tackle im-

age restoration problems, such as image super-resolution,

denoising, deblurring, and compression artifacts reduction

[10, 14, 15, 34, 36, 37]. Focusing on optimizing PSNR, the

above methods tend to generate blurry images. In contrast,

perceptual image restoration targets to obtain better percep-

tual results with more texture details by appling GAN [13].



Ledig et al. [24] propose SRGAN that could generate photo-

realistic images in SR task. In the PIRM2018-SR Challenge

[3], ESRGAN [32] achieves state-of-the-art performance by

improving the network architecture and loss functions. Ben-

efiting from a learnable ranker, RankSRGAN [39] could

generate visually pleasant images that favor different per-

ceptual metrics.

Explorative Image Restoration. Despite that deep-

learning-based methods have achieved high qualitative per-

formance, most of them deal with image restoration prob-

lem by learning a deterministic mapping. To allow users

adjusting the restoration effects, Bahat et al. [2] propose an

editing module that could iteractively influence the texture

or brightness. With normalizing flows [9,23], SR-Flow [27]

takes a step forward to model the conditional distribution

of all possible SR reconstructions given an LR facial in-

put. Furthermore, DeepSEE [5] also adopts normalizing

flow to leverage semantic maps for explorative facial super-

resolution.

Modulation for Image Restoration. Although existing

methods could allow user to adjust restored effect, most im-

age restoration deep networks are trained on one specific

degradation level. Therefore, it is tiring to train N var-

ious models for N various degradations. DNI [31] and

AdaFM [16] find the high similarity on kernels between

models trained on various levels. Based on this observa-

tion, DNI directly interpolate parameters between two re-

lated networks to attain a smooth control of diverse imagery

effects. While AdaFM adopts a more efficient way: utilize

depth-wise convolution layers to modulate the intermediate

features instead of changing all convolution filters. Differ-

ent from above two interpolation-based methods, the work

in CFSnet [30] adaptively learns the interpolation coeffi-

cients and uses them to couple intermediate features from

the main branch and tuning branch.

However, In real-world scenarios, images contain mul-

tiple degradations, such as blur and noise. Since different

types of degradations are coherently related, modulation

for multiple degradations should be conducted jointly, not

independently. To address this, CResMD [17] regards the

modulation as a conditional image restoration problem, and

proposed a framework that accepts both corrupted images

and their degradation information as input. Thus, image

restoration is conditioned on the restoration/degradation in-

formation. Modulation for image restoration is essential in

practical usages not merely because that it enables a unified

framework to handle multiple degradations with arbitrary

levels. More importantly, it provides a flexible interaction

on the restoration strength.

3. Methods

Our goal is to design a GAN-based restoration model

that takes in both the degraded image and desired restora-

tion information as inputs and outputs visually pleasing re-

stored image. The restoration information, which is equal

to the degradation information, can be regarded as slid-

ing bars for users to modulate during testing. We achieve

such a photo-realistic modulation model by the following

approach. Given any corrupted image Idisi distorted with

some degradations, we want to restore it to a clear image

Iresi , which is close to the ground truth image Igt. To al-

low image restoration for different degradations, we accept

a condition vector z (zk ∈ [0, 1]). In particular, each di-

mension of z represents a certain degradation type while its

value encodes the degradation level. Therefore, our task is

to find a function F , such that: F (Idisi , zi) → Igt, where

i = 1, 2 . . . , N , and N indicates the number of all prede-

fined degradations. In addition, we introduce a conditional

discriminator, that aims to distinguish between the restored

image Iresi and the ground truth image Igt under condition

of zi. In particular, the discriminator accepts Iresi , Igt, and

zi as inputs, and outputs the two probabilities for restored

result and ground truth image, respectively.

3.1. Base Networks

The base networks consist of two parts: generator G and

discriminator D. The generator G accepts the input image

and outputs the restored result, while D aims to discrimi-

nate the restored result from the ground truth.

Generator. The architecture of the generator G is shown

in Figure 3. Basically, it is a Unet framework incorporated

with Residual Blocks. G consists of three scales, namely

scale1, scale2, and scale3. This multi-scale architecture

could help achieve better results for GAN-based modula-

tion compared with a plain network (Please see the experi-

mental results in Ablation Study). For each scale, there are

two residual blocks in the left and the other two in the right.

Each residual block contains two 3 × 3 convolution layers,

and a ReLU activation function between them. In scale1,

there are two 3 × 3 convolution layers at two ends. As for

scale2 and scale3, we begin by using 2 × 2 strided con-

volution to downscale the features and end up with 2 × 2
transposed convolution for upscaling. The number of chan-

nels for each layer from scale1, scale2, scale3 are set to

64, 128, and 256, respectively. Besides, each scale has a

short connection that could skip its successive scale. Note

that we also add a global connection to ease the difficulty

for restoration on mild degradations.

Discriminator. The discriminator D is to discriminate

ground truth images from restored images. It accepts

64×64 image patches, and outputs the predictions. The ar-

chitecture of D is shown in Figure 3. We follow the work

in [24], and design a discriminator that progressively down-

sample the feature maps to a feature vector. Specifically,

we use several strided convolution layers to half the sizes

of feature maps each time. On the other hand, we increase
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Figure 3. The framework of CUGAN. CUGAN consists of 2 base networks as well as 2 condition networks. The 2 base networks are

the generator G and the discrimiantor D. The 2 condition networks are condition network for generator (CG) and condtion network for

discriminator (CD). During training and testing process, the condition networks CG and CD accept degradation information and generate

tunning weights for G and D. In the modulation Unet, we provide Modulated Residual Block (MRB) and Modulated Scale Fusion (MSF)

to modulate features from different scales or within one scale. As for the modulation discriminator, we provide Global Feature Modulation

(GFM) to scale and shift intermediate feature maps.

the channels of feature maps by using convolution layers

with doubled number of filters. There are 10 convolution

layers in total. LeakyReLU [33] activation is adopted be-

tween convolution layers. After we obtaining the feature

maps with 512 channels, we use global average pooling and

two fully-connected layers (regression) to output the final

probability.

3.2. Condition networks

The condition networks mainly contain two parts, one

for the generator and the other for the discriminator, namely

as CG and CD, respectively. Each condition network ac-

cepts a condition vector that encodes the degradation infor-

mation for the input image, and outputs the parameters of

modulation operations that will be used to modulate the in-

termediate feature in the base networks G and D.

First, the degradation information of each corrupted im-

age x should be encoded into the condition vector z. Specif-

ically, for each degradation type, the corresponding degra-

dation level is scaled to a value within range [0, 1]. For

instance, given an input image with blur level r = 1
(r ∈ [0, 4]) and noise level σ = 10 (σ ∈ [0, 50]), we could

obtain a corresponding condition vector z = [0.25, 0.20] by

computing [1/4, 10/50].

The architectures of condition networks are shown in

Figure 3. Each condition network consists of several in-

dependent fully-connected layers (FC). To generate the tun-

ing weights for the generator, the i-th fully-connected layer

transforms the condition vector z of the input image x to

the tuning weight wi for the i-th modulation module in the

generator. The formulation can be written as follows:

wi = Fw
i (z),

where Fw
i (·) denotes the function of i-th fully-connected

layer. The dimension of wi is the same as the channel num-

ber of the corresponding feature maps to be modulated.

As for the i-th modulation module in the discriminator,

we use two independent fully-connected layers to respec-

tively generate the parameters of scaling and shifting oper-

ations for global feature modulation (GFM). In particular,

we have:

αi = Fα
i (z),βi = F β

i (z),

where Fα
i (·) and F β

i (·) denote the i-th fully-connected lay-

ers for generating parameters of scaling (α) and shifting (β)

operators, respectively. Note that the dimensions of αi and

βi are equal to the channel number of the intermediate fea-

ture maps in the i-th modulation module.

3.3. Modulation in Base Networks

In this section, we introduce our modulation strategies

adopted in the generator and discriminator, which are illus-

trated in Figure 3. The parameters of modulation operations

are generated by the condition networks.

For the generator, we impose controls on different fea-

tures from different scales as well as within one scale. As

we mentioned above, there are three scales in the generator.

In different scales, the feature maps have different spatial

sizes from high resolution to low resolution. In particular,

for two successive scales: scalem and scalem+1, we have:

x0
m = FG

m+1(xm) + xm,

where FG
m+1(·) denotes the transformation for scalem+1 in

the generator G, xm is the feature maps in scalem before

entering the scalem+1, and x0
m is the features maps ob-

tained after the addition of the feature maps from scalem+1.



Then, we formulate the modulated scale fusion (MSF)

on features from scalem and scalem+1:

x0
m = wi ∗ F

G
m+1(xm) + xm,

where wi is the tuning weight generated by the i-th fully

connected layer of the condition network for generator. Be-

sides, the dimension of wi is the same as the number of

feature maps. This controlling strategy could dynamically

change the weights for lower-resolution features. Intu-

itively, when the degradation information of the input image

is extremely mild, the tuning weights will be changed close

to zero, since there is no need to receive rich contextual in-

formation from low resolutions.

Within one scale, we formulate modulated residual block

(MRB) to achieve control. To be more exact, we have:

x0
i = wi ∗ f(xi) + xi,

where f(·) denotes the transformation in the residual

branch, xi and x0
i are the original and modulated feature

maps, respectively. wi is the corresponding tuning weight.

In the discriminator, we adopt global feature modulation

(GFM) to modulate the intermediate feature maps. To be

more specific, we scale and then shift the intermediate fea-

tures based on the condition. Practically, we perform mod-

ulation after batch normalization. In the i-th modulation

module, we obtain the modulated feature maps by:

x0
i = αi ∗ xi + βi,

where xi and x0
i are the original and modulated feature

maps. The multiplier αi and addition operator βi are respec-

tively generated by two independent fully connected layers

from the condition network for discriminator.

3.4. Interpolation between modulation models.

The proposed CUGAN can achieve modulation for

photo-realistic image restoration. To meet different user fla-

vors, we use the deep network interpolation strategy (DNI)

[31] to achieve smooth transition between GAN and MSE

effects. Specifically, we first train a PSNR-oriented modula-

tion model with MSE loss, and obtain the networks GMSE

and CMSE . For GAN training, we directly finetune all pa-

rameters of the PSNR-oriented modulation model, and ob-

tain the networks GGAN and CGAN . Then, we interpolate

all the corresponding parameters of these two modulation

models to obtain an interpolated modulation model, whose

parameters are:

θ
interp
G = (1− α)θGAN

G + αθMSE
G ,

θ
interp
C = (1− α)θGAN

C + αθMSE
C ,

where θ
interp
G , θMSE

G and θGAN
G are the parameters of the

base networks Ginterp, GMSE and GGAN , respectively,

θ
interp
C , θPSNR

C and θGAN
C are the parameters of the con-

dition networks Cinterp, CPSNR and CGAN , respectively,

and α ∈ [0, 1] is the interpolation coefficient.

For a given corrupted image x, we first specify an appro-

priate condition vector for photo-realistic image restoration.

Then, we change the coefficient α from 0 to 1 to obtain

smooth transition between GAN and MSE effects without

artifacts (see Figure 1, 4).

4. Experiments

4.1. Implementation Details

We use DIV2K training dataset [1], which is a high-

quality dataset and widely used in image restoration. We

follow the work in [17] to generate the degraded input im-

ages. Specifically, we add Gaussian blur and Gaussian noise

sequentially to every training image in DIV2K dataset with

random levels. The covariance range of Gaussian noise is

σ ∈ [0, 50], and the range of kernel widths for 21 × 21
Gaussian blur is r ∈ [0, 4]. We uniformly sample the degra-

dation levels with a stride of 0.1 and 1 for blur and noise,

respectively. Besides, the degradation information for each

degraded image is encoded into condition vector z.

The training process consists of two stages. First, we

pre-train the PSNR-oriented modulation model by only us-

ing MSE loss, named as CUnet. The base network G and

the corresponding condition network CG are jointly trained.

The learning rate is initialized as 5× 10�4 and decayed by

a factor of 2 every 2 × 105 iterations of update. The well-

trained model CUnet will serve as the starting point for the

next GAN training. In the second stage, the base networks,

G and D, as well as the condition networks, CG and CD are

jointly trained with the objective:

Ltotal = Lpercep + 0.005LGAN + 0.01LMSE

where LMSE is the MSE loss, LGAN denotes the stan-

dard GAN loss, Lpercep represents the perceptual loss.

The perceptual loss is the L1 distance between two ac-

tivated features obtained from VGG19-541. The initial

learning rate is set to 5 × 10�4 and will be halved at

[50k, 100k, 200k, 300, 400k]. The number of mini-batch is

set to 16, and the crop size is 64. For optimization, we use

Adam [22] with β1 = 0.9 and β2 = 0.999. Moreover, we aug-

ment the training data with random horizontal flips and 90-

degree rotations. All the models are implemented with the

PyTorch framework and trained on NVIDIA 1080Ti GPUs.

4.2. Evaluation for Modulation Performance

Settings. LIVE1 [29] and CBSD68 [28] are chosen to

evaluate our models. We evaluate the modulation results on

1We use pre-trained 19-layer VGG network, where 54 indicates fea-

tures output by the 4th convolution before the 5th maxpooling layer



Degradation Settings Single Degradation Two Degradations

blur 0 0 2 4 1 1 2 2 4 4

noise 30 50 0 0 15 30 30 50 30 50

condition vector [0.0, 0.6] [0.0, 1.0] [0.5, 0.0] [1.0, 0.0] [0.15, 0.30] [0.15, 0.60] [0.50, 0.60] [0.50, 1.00] [1.00, 0.60] [1.00, 1.00]

Metric Model Name

UGAN 0.0490 0.0957 0.0484 0.1331 0.0697 0.1140 0.2068 0.2557 0.3154 0.3510

LPIPS ↓ CUGAN 0.0522 0.0966 0.0525 0.1463 0.0714 0.1178 0.2019 0.2498 0.3075 0.3350

distance ↓ 0.0032 0.0009 0.0041 0.0132 0.0017 0.0038 -0.0049 -0.0059 -0.0079 -0.0160

UGAN 0.0603 0.0901 0.0499 0.1013 0.0716 0.0987 0.1430 0.1705 0.1994 0.2110

DISTS ↓ CUGAN 0.0639 0.0964 0.0525 0.1081 0.0727 0.1003 0.1392 0.1657 0.1982 0.2162

distance ↓ 0.0036 0.0063 0.0026 0.0068 0.0011 0.0016 -0.0038 -0.0048 -0.0012 0.0052

Table 1. Quantitative LPIPS/DISTS results for GAN-based modulation testing on LIVE1. ↓ means the lower the better. LPIPS/DISTS

distance are bolded to stress the modulation results.
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Figure 4. Qualitative results of Modulation for Image Restoration. For each group of images, three rows illustrate operations of denoising,

deblurring, and interpolation, respectively. The colored-boxed images are the chosen results of the corresponding modulation process.

Single Degradation Two Degradations

blur 0 0 2 4 1 1 2 4

noise 30 50 0 0 15 30 50 50

Unet (1.364M) 30.62 28.28 30.24 26.85 29.12 27.41 24.57 23.03

CUnet (1.370M) 30.50 28.16 20.07 28.63 29.04 27.35 24.55 23.02

PSNR Distance # 0.12 0.12 0.17 0.22 0.08 0.06 0.02 0.01

CResMD (2.50M) 30.43 28.06 30.09 26.53 29.00 27.28 24.48 22.95

Table 2. Quantitative PSNR results for MSE-based modulation

testing on CBSD68. The total parameter of the model is presented

in the bracket. ↓ means the lower the better. PSNR distance are

bolded to stress the modulation results.

single degradation and two degradations. For single degra-

dation, we choose denoising σ30, σ50 and deblurring r2,

r4. For two degradations, we choose deblurring+denoising,

[r1, σ15] [r2, σ15], [r2, σ30], [r2, σ50], [r4, σ30], [r4,

σ50]. We train two baseline models, baseline-MSE named

Unet (CUnet w/o condition network) and baseline-GAN

named UGAN (CUGAN w/o condition networks), for each

of chosen degradations. Specifically, we remove the condi-

tion networks and only use the base networks to train these

baseline models. The implementation details remain the

same with CUnet and CUGAN, except that every baseline

model is only trained on one specific degradation level.

Based on the evaluation results in PIPAL dataset [21],

LPIPS [38] and DISTS [8] have higher consistency with

human ratings than NIQE, PI, and MA on images from

the GAN model. Therefore, in our experiments, PSNR is

used to evaluate the performance of PSNR-oriented mod-

els, while DISTS and LPIPS are used to evaluate the GAN-

based models. Given the ground truth images, we calculate

the PSNR of CUnet and Unet and compute the PSNR dis-

tance. Then we calculate LPIPS and DISTS of CUGAN



Bicubic 

x4

ESRGAN 

Pretrained

SDSR (1.67M) 

AIM2019  Real SR 

Track1 1st

TDSR (1.67M) 

AIM2019 Real SR 

Track2 1st

RealSR (1.67M) 

NTIRE2020 Real SR 

1st

[ 0.65, 0.4]

α=0.2

[ 0.70, 0.4]

α=0.2

[ 0.75, 0.4]

α=0.2

Modulation Process of CUGAN (Ours, 1.37M)

[ 0.7, 0.5]

α=0.3

[ 0.65, 0.5]

α=0.3

Input

Figure 5. The qualitative comparison for blind SR task on DPED dataset [19]. The images in the first row show the modulation process

of CUGAN. The corresponding condition vectors and interpolation coefficients α are denoted. The red-boxed image is the visually best

result found by modulation. The number of total parameters of each model is presented in the bracket.

and UGAN and compute the LPIPS distance as well as the

DISTS distance. Lower PSNR/LPIPS/DISTS distance indi-

cates better modulation results.

Modulation for Image Restoration. Here, we evalu-

ate the modulation performance of the proposed CUGAN

quantitatively and qualitatively. The ideal performance of

CUGAN and CUnet is to approach the performance of base-

line models on every degradation level as close as possi-

ble. In Table 1, we evaluate the GAN-based modulation

across various degradations on LIVE1 dataset. For the sin-

gle degradation, the LPIPS/DISTS distances are all smaller

than 0.0041/0.0068. This result demonstrates that our CU-

GAN could achieve modulation with high quality. As for

two degradations (blur+noise), the modulation performance

of CUGAN is even better than UGAN on several degra-

dations: [r2, σ30], [r2, σ50], [r4, σ30], [r4, σ50]. The

quantitative results indicate that our CUGAN has better po-

tential and ability on image restoration when degradations

are more complex and severe. The first two rows of Fig-

ure 4 show the qualitative results, which present the smooth

and stable transitions by modulation through the condition

vector. In Table 2, we provide the PSNR-oriented modula-

tion evaluated on the CBSD68 dataset. The PSNR distances

for all degradations are below 0.22dB. Furthermore, CUnet

outperforms CResMD on almost all degradations. Specif-

ically, CUnet surpasses CResMD on deblurring r4 with

0.32dB, and denoising σ50 with 0.22dB, which indicates a

significant improvement. Moreover, CResMD contains 2.5

million parameters while ours contains 1.37 million param-

eters. These results prove the effectiveness and superiority

of our proposed multi-dimension modulation framework.

Smooth transition between MSE and GAN effects.

The proposed CUGAN provides the default modulation re-

sults with GAN effects. Meanwhile, CUnet provides recon-

struction style–MSE effect, which is consistent with high

reconstruction accuracy (high PSNR). We apply linear in-

terpolation for all parameters of CUnet and CUGAN to

achieve transition between GAN and MSE effect. In Fig-

ure 4, the third row illustrates the trade-off between these

methods a = 15 a = 25 a = 30 a = 50

BM3D 31.08 28.57 27.76 25.62

TNRD 31.42 28.92 27.66 25.97

DnCNN-B 31.61 29.16 28.36 26.23

IRCNN 31.63 29.15 28.26 26.19

FFDNet 31.63 29.19 28.26 26.29

CUnet 34.53 31.80 30.89 28.48

Table 3. Comparison with different image denoising methods in

term of PSNR on gray CBSD68. The highest PSNR on various

noise degrees are bolded.

two effects. After we have obtained a photo-realistic re-

stored image by modulation through the condition vector,

we could further smooth the image by changing an inter-

polation coefficient α from 0 to 1. In the transition, users

could make the unpleasing textures/artifacts gradually dis-

appear to obtain an artifact-free output.

4.3. Comparison on Image Denoising.

To show the competitive denoising ability of the pro-

posed model, we compare CUnet trained for Section 4.2

with several state-of-the-art denoising methods: BM3D [7],

TNRD [6], DnCNN [34], IRCNN [35] , FFDNet [36]. We

test them on gray CBSD68 using the mean PSNR as the

quantitative metric. To obtain degraded images, gaussian

noise of different levels (e.g., 15, 25, 30, 40, and 50) are

added to clean images. Then, we modulate the condi-

tion vector corresponding to the noise level to obtain re-

stored images. Table 3 provides the quantitative compar-

ison, which presents the competitive performance of our

method on image denoising. CUnet provides competitive

PSNR performance comparing with those state-of-the-art

denoising methods.

4.4. Modulation on Real-World Images

To further validate the generalization ability of the pro-

posed CUGAN, we evaluate the effectiveness of modulation

on real-world images SR and denoising.

Qualitative Results on DPED. In real-world image SR,

the LR images usually have unknown degradations, such

as complicated downsampling kernel and noise. Therefore,
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Figure 6. Modulation for image restoration in real-world images.

The input image with unknown noise is from NIND [4] data set.

Two rows present denoising and debluring, respectively.

the non-blind GAN-based SR methods fail to produce sat-

isfactory results. The proposed CUGAN could deal with

this situation through modulation. In Figure 5, given an LR

input from DPED [19], we first up-sample it by bicubic in-

terpolation. Then, we obtain the restored result by changing

the condition vector and interpolation coefficient. CUGAN

has a competitive performance compared with those winner

methods [12,20] in the AIM2019 [26] and NTIRE2020 [25]

real-world image SR challenge with fewer parameters.

Qualitative Results on NIND. As for real-world image

denoising, visual results are provided in Figure 6. The in-

put image from a real-world denoising dataset NIND [4]

contains noticeable but unknown noise. We first use our

CUGAN to eliminate the noise by changing the condition

vector from [0.0, 0.0] to [0.0, 0.8]. The restored image is

noise-free but slightly over-smoothing. Then, we sharpen

this restored image by changing the first element from 0.0
to 0.3. After the modulation process, we can obtain a noise-

free as well as a non-blurry restored result.

4.5. Ablation Study

Effect of the multi-scale architecture in the genera-

tor. To verify the effectiveness of the proposed multi-scale

architecture, we train three models CUGAN-1 (Plain Stru-

ture), CUGAN-2, and CUGAN-3 (Ours) under the same ex-

perimental settings. Specifically, these three models have

one scale, two scales, and three scales, respectively. Each

model has 12 residual blocks, and each scale has the same

number of residual blocks. The convergence curves on

LIVE1 dataset for degradations [r1,σ30] and [r2,σ15] are

presented in Figure 7. We use LPIPS to evaluate the perfor-

mance. In Figure 7, we can observe that CUGAN-3 (Ours)

surpasses CUGAN-1 and CUGAN-2 by a large margin on

those degradations. Therefore, the multi-scale architecture

is more effective in GAN-based modulation compared with

plain networks. More convergence curves are in the supple-

mentary.

Effect of modulation in the discriminator. In this sec-

tion, we investigate the effectiveness of the modulation in

the discriminator. Specifically, we train the GAN-based
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Figure 7. Convergence curves achieved by different models with

different number of scale in term of LPIPS on LIVE1 dataset.

modulation model without the global feature modulation

(GFM) in the discriminator and compare it with our CU-

GAN on different degradations evaluated by LIVE1 dataset.

The performance of these two models in terms of LPIPS

is shown in Figure 8. We can observe that our CUGAN

equipped with GFM outperforms the other one on all those

degradations. It is consistent with our assumption that the

condition information is essential for the discriminator to

make proper discrimination on restored images from differ-

ent degradations.

Degradation on LIVE1

0.25

0.3

0.35

L
P

IP
S

GFM (ours)

NONE

Figure 8. Results achived by CUGAN and CUGAN without GFM.

5. Conclusion

In this work, we propose a novel GAN-based modulation

framework named CUGAN. CUGAN consists of a gener-

ator and a discriminator, which are all controlled by con-

ditions vector. The key idea of the CUGAN is introduc-

ing a modulation for users to freely control the strength of

restoration and texture reconstruction with a photo-realistic

effect. We apply modulated scale fusion (MSF) and modu-

lated residual block (MRB) in the generator to achieve in-

teractive modulation. Moreover, the Global Feature Mod-

ulation (GFM) is brought into the discriminator to ease the

vanishing generator gradient. Although CUGAN could re-

alize modulation across multiple degradations, the modu-

lation strategy can be more effective and efficient. Better

solutions are expected for future research.
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