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Abstract

Deep learning methods have proven to be very effective

for the task of image denoising even when clean reference

images are not available. In particular, Noise2Noise, which

requires pairs of noisy images during the training phase,

has been shown to yield results as good as approaches using

pairs of noisy and clean images (Noise2Clean). However,

the performance of Noise2Noise drops when the amount of

training data is reduced, limiting its capability in practical

scenarios.

In this work, an analysis of the Noise2Noise learning

strategy is done using real noise and synthetic datasets.

This paper demonstrates, using diverse network architec-

tures and loss functions, that the duplicity of information in

the noisy pairs can be exploited to reach increased denois-

ing performance of Noise2Noise. Additionally, the issue of

overfitting in Noise2Noise is analyzed, given its relevance

when training with limited data, and an interpretable early

termination criterion is proposed.

1. Introduction

Image denoising is a well studied problem in many ap-

plications. Traditionally, it has been posed as a restoration

problem x̂ = x + n, where the variable of interest x is

corrupted with additive white Gaussian noise (AWGN),

resulting in the observed noisy image x̂. This model has

been used pervasively in denoising literature, yet several

studies have highlighted the importance of focusing on

realistic acquisition noise, given the several sources of

noise present in most modern imaging systems [43, 28].

Early popular denoising approaches used nonlocal filter-

ing [2, 6], and remarkably, they still serve as benchmark

for recent developments in AWGN denoisng [23, 38, 21].

Other established methods rely on the low-rank of image

features with respect to noise [45] or the possibility to

represent images sparsely [44]. Other approaches attempt

to embed popular denoisers as regularizer in minimization

frameworks [5]. A more exhaustive discussion on denois-

ing and restoration approaches is carried in [12], and [43].

Recent trends in image denoising indicate that deep learn-

ing approaches are superior to classical methods [1, 14].

These approaches, use pairs of noisy and clean images

to estimate the optimal parameters of a convolutional

neural network (CNN) [48, 51]. However, obtaining clean

counterparts of images acquired from imaging devices is

not trivial on most applications, including fluorescence

microscopy [49], medical imaging [42] and even normal

photography [29]. Additionally, there are applications in

which obtaining clean images is not possible at all, for

instance if the image’s content is especially volatile (e.g. in

cryo-electron microscopy [36, 10]).

For this reason, denoising methods that do not rely on

clean data are of particular interest and several such deep

learning based approaches have been proposed recently.

With milestone method Noise2Noise, Lehtinen et al. [23]

showed that pairs of noisy images of the same scenes can

also be used, with equally good results. Building on this

idea, other approaches require only single images instead of

pairs during the training phase. Krull et al. [18] proposed a

masking scheme to create blind spots in the receptive field

of the network, preventing the regression problem to result

in the network approximating an identity operator. The

most recent variants of this idea introduce noise modelling

to provide the algorithm with the information lost by the

blind spot [19, 30, 20]. While this is beneficial for the

denoising task, the usability of the method is conditioned

by the availability and the quality of the noise model.

Altogether, when enough pairs of noisy images are avail-

able, the Noise2Noise approach [23] is a good candidate

for denoising, it is straightforward, versatile, and does

not impose major constraints on the noise characteristics

(e.g. following a particular distribution), nor does it re-

quire much prior knowledge about the noise distribution.

Additionally, it has found success in various applica-

tions [42, 23, 49, 15, 9, 3].

1.1. Motivation and Contribution

The Noise2Noise training method achieves the same

performance as its traditional learning counterpart when



enough data is available [23]. Commonly used datasets

for training denoising networks are designed for synthetic

noise, which can be added on-the-fly, and are usually made

up of several hundred to several thousand images [14, 38].

This also holds for the original Noise2Noise work [23],

which reports that the performance of Noise2Noise learn-

ing is on-par with traditional learning. However, the smaller

training datasets get, the less one can theoretically ex-

pect Noise2Noise to remain competitive [22]. Accordingly,

other studies have shown a significant gap between net-

works trained with Noise2Noise and traditional strategies,

usually when smaller sets have been used [18, 16, 42, 52].

The core of this paper is the proposal of a simple mod-

ification of the Noise2Noise training method that consis-

tently enhances its denoising performance, getting closer to

and often surpassing equivalent traditional learning meth-

ods, even when training on relatively small datasets. The

experiments in this paper show that this holds across net-

work architecture, loss function and noise characteristics.

As additional work, overfitting in Noise2Noise is studied.

Generally, when training neural networks on small datasets,

overfitting is a likely event. Therefore it is common to set a

portion of the data aside (holdout) for validation and early

termination purposes [35, 7, 24]. This paper also describes

an interpretable Noise2Noise-specific termination criterion

that does not require a holdout, together with initial obser-

vations on data.

2. Methods

2.1. Theoretical Background

Traditional deep learning based methods [47, 14, 26] use

k pairs of clean and noisy images (xi, x̂i) to estimate the

optimal parameters θ of a network fθ in a regression prob-

lem, which in the simplest cases has the following form:

argmin
θ

k∑

i=1

L(fθ(x̂
i), xi), (1)

where L is a measure of dissimilarity between the network

output and the clean target x. This approach is hence-

forth denoted Noise2Clean. A more practical alternative,

Noise2Noise [23], replaces clean targets with noisy targets:

argmin
θ

k∑

i=1

L(fθ(x̂
i), ŷi), (2)

where, for a given pair i, ŷ and x̂ are now two independent

noisy instances of the same scene. They may have a dif-

ferent noise level, as long as the expected value of the true

images is the same, and the noise is zero mean.

In the original Noise2Noise work [23], several p-norms are

used as the loss function L. There is a direct relationship

between M-estimators such as the mean or the median and

p-norms. For instance, it is trivial to show that regression

using the ℓ2 norm is equivalent to the mean of several ob-

servations, and that the same holds between the ℓ1 norm

and the median. A similar argument can be made for Eq. 2

since it also defines a regression problem. In an effort to

minimize the distance between all the pairs of the problem,

the minimization problem must find a balance between all

the possible solutions of the problem, not unlike the com-

putation of the mean or the median of several observations.

This is illustrated in Fig. 1.

(a) noisy (b) median (c) mean (d) N2N
ℓ
1 (e) N2N

ℓ
2

Figure 1: The ℓ1 and ℓ2 norm loss functions as mean and

median estimators. 99 noisy images similar to (a) have been

aggregated using a per pixel median (b) and mean (c). (d)

and (e) display the output of Noise2Noise networks trained

with the ℓ1 and ℓ2 norms, respectively, which resemble the

output of the corresponding M-estimator.

2.2. Maximizing Noise2Noise’s use of limited data

When a Noise2Noise algorithm is trained with corrupted

data on-the-fly, the network fθ is given different noisy sam-

ples of input and target sets at each epoch. Providing multi-

ple corrupted samples of the same latent image contributes

positively to the learning task [23], since despite sharing

the same underlying structure, the mapping from noisy im-

age to noisy image is different, and the overall regression

task is populated with more data, resulting in a better esti-

mation of the true images (e.g. mean or median of possible

solutions, for ℓ1 and ℓ2).

However, the assumption of unlimited noisy samples per

scene is not realistic in many practical scenarios (e.g. if a

noise model is not known). Let us assume only two noisy

samples (ŷ, x̂) per scene are available, the minimum amount

that enables Noise2Noise learning. The goal now is to max-

imize the use of these two samples during the learning. As-

suming noisy samples are drawn from the same distribu-

tion, one obvious idea is that they can both be used as in-

put and target respectively (i.e. Eq. 2 can also have ŷ, x̂

swapped). By doing so, the amount of pairs available for the

Noise2Noise strategy is doubled, and one can expect gains

in the resulting denoising performance. Henceforth, we re-

fer to this approach as alternating Noise2Noise (AltN2N).

This idea can be taken one step further, by noting that,



in most cases, the regression problem in Eq. 2 computes

element-wise differences of pixels but the result of a net-

work fθ at a given image coordinate depends on a larger

region of pixels. The consequence of this is that changes in

only a few pixels in the input or the target can yield virtually

unseen samples of a scene.

In a Noise2Noise setting, the pixels (or pixel regions) in ŷ

and x̂ are interchangeable as long as the images are well-

aligned, and the noise is not correlated (or correlation is not

destroyed in the process). Under this assumption, one can

swap one or more single pixels (or pixel regions) between ŷ

and x̂, such that two new unseen yet plausible images ŷs and

x̂s are generated. These new images act as noise surrogates

of the original pair, and several new pairs can be generated

from the original pair, by randomly combining ŷ and x̂ into

new disjoint images. Interpreting images with n pixels as

points in an n-dimensional space, this swapping operation

can be understood as sampling the remaining vertices of the

n-dimensional hypercube that encloses all plausible sam-

ples given the information provided by ŷ and x̂. Although

still in the vicinity of ŷ and x̂, all of these new points ef-

fectively populate the overall regression problem with more

data. This is illustrated in Fig 2.

Lehtinen et al. [23] show that under a fixed capture bud-
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Figure 2: Illustration of the noise surrogates strategy, for a

Noise2Noise image pair (x̂,ŷ) of 3 pixels each.

get (where clean images can be generated by averaging sev-

eral noisy images) it is advantageous to use several noisy

samples in a Noise2Noise scheme rather than generating a

clean image out of several noisy samples in order to have

a noisy-clean pair and use the traditional learning scheme.

The generation of noise surrogates out of only two samples

as capture budget, is intended to simulate the process of ob-

taining a large amount of noisy samples for a given scene.

A different motivation to use the noise surrogate technique,

is to prevent overfitting, which may especially happen in

small datasets. Figure 3 shows a minimal example of over-

fitting in Noise2Noise. Since the targets are noisy, the net-

work eventually attempts to reproduce noise. In fact, due to

that reason, Noise2Noise training might be more suscepti-

ble to overfitting than equivalent Noise2Clean training, es-

pecially with high levels of noise (i.e very low capture bud-

(a) training loss and proposed termination Criterion

(b) x̂ (c) fθ30(x̂) (d) fθ60(x̂) (e) fθ90(x̂) (f) fθ180(x̂)

(g) ŷ (h) fθ30(ŷ) (i) fθ60(ŷ) (j) fθ90(ŷ) (k) fθ180(ŷ)

(l) x

Figure 3: Illustration of overfitting in Noise2Noise and the

proposed termination criterion, using a very small dataset.

(a) Training Loss and Curve of the termination criterion on

the training set. (b) and (f) are close-up images of one of the

training pairs. (g) and (k) are corresponding intermediate

outputs after a certain number of epochs (30,60,90,180) .

(l) close-up of the corresponding clean image.

get). With small but constant variation in input and target,

reproducing the noise in the targets should become more

challenging.

On a final practical note, this approach does not conflict

with traditional augmentation methods. Additionally, in

order to accommodate memory-performance requirements,

noise surrogates can be generated on the fly in Eq. 2, once

before every epoch, or a large number can also be precom-

puted before training. Henceforth a network trained with

this technique is denoted surrogate Noise2Noise.

2.3. Overfitting in Noise2Noise and Early Termina­
tion

Overfitting (i.e. the network reaches states where it per-

forms well the task on training data but performs poorly

to unseen data) is an undesired effect to be monitored es-



pecially when training on small datasets. This is typically

done by computing any meaningful measure (e.g. loss, ac-

curacy) on the validation set, a separate set that does not par-

ticipate in the minimization problem (hold-out). At some

point during training, the network reaches an optimal state,

after which it overfits. Discovering this inflection point is

the goal of early termination [4, 31], and is a popular ap-

proach to prevent overfitting in denoising and other applica-

tions [35, 7, 24]. However, setting a portion of the training

data aside for validation has several drawbacks, when data

is limited.

First, the amount of data actively participating in the min-

imization problem is reduced by the partition. This espe-

cially compromises the performance of the Noise2Noise al-

gorithm, with respect to an equivalent Noise2Clean algo-

rithm [22].

Second, if the performance of the algorithm is evaluated on

a too small validation set, it is likely to have a large stochas-

tic error [24]. Additionally, it is not easy to guarantee that

the validation set is representative of the training and test

sets. Even when strategies such as k-fold cross validation

are used, in the case of small datasets, the estimation of the

performance by the evaluation set is especially sensitive to

the way data is split into training and validation [46].

Third, in order to regularly obtain the performance esti-

mates, the network needs to be applied regularly on the

validation set. This computation results in a constant over-

head to the algorithm’s training time. Furthermore, when

datasets are small, it is advisable to use time-consuming k-

fold cross validation or similar strategies [11, 17].

All these problems could be solved if an estimate of the

performance of the network during training could be made

directly on the training set, and work in this direction has

been done in the past [24, 8].

Noise2Noise is a special case, given that the targets of the

regression problem are not actually the desired output im-

ages, but noisy images as well. Therefore, absolute overfit-

ting can be said to happen whenever the network perfectly

reproduces the noise in the targets of the training set, a trend

which becomes obvious after a certain amount of epochs as

shown in Fig 3. Assuming x̂ and ŷ are used both as input

and target to one another, then a perfectly overfitted net-

work is such that fθ(x̂) approximates ŷ and fθ(ŷ) approx-

imates x̂. In that case, the difference between the outputs

fθ(x̂) and fθ(ŷ) would be considerable. This means that

a poor performance of the network can already be detected

from the training set. On the other hand, if the network

is truly efficient at denoising, the difference between fθ(x̂)
and fθ(ŷ) should be minimal, since the latent image is the

same in both inputs, the only difference between them be-

ing the noise. From these observations the best performing

network state θ will be such that

argmin
θ

k∑

i=1

L(fθ(x̂
i), fθ(ŷ

i)). (3)

It is important to note that this cannot be a loss function,

since it does not guarantee fidelity to the latent images (e.g.

The problem in Eq. 3 has a clear minimum when the net-

work forces all output pixels to be 0). However, when com-

puted on the training set, besides the actual loss function,

this measure would be an indicator of when the noise in

the targets is attempted to be reproduced, and would, upon

divergence, signal the need for training to be terminated,

yielding an Early Termination rule.

This measure has a more clear interpretation than the val-

idation loss in a Noise2Noise setting (since the reference

images are noisy). On the other hand, one cannot exclude

the possibility that previous to the overfitting defined by Eq.

3 the network is not overfitting to certain features of the

training set, yet it does indicates a point after which overfit-

ting is certain and happens due the network replicating the

noisy targets. To illustrate these ideas with a minimal exam-

ple, Fig. 3 shows how at some point during the training an

optimal state is reached (according to a reference Fig. 3l),

approximately at the moment where the outputs fθ(x̂) and

fθ(ŷ) look more similar (Figures 3i and 3d), which in turn

coincides with the inflection point in Fig. 3a, representing

Eq. 3.

In order for fθ(x̂
i) and fθ(ŷ

i) to be available at every it-

eration, they both need to be computed, and could equally

contribute to the regression problem:

argmin
θ

k∑

i=1

1

2
L(fθ(x̂

i), ŷi) +
1

2
L(fθ(ŷ

i), x̂i). (4)

3. Experiments

The main goal of the experiments is to show that, under

several different circumstances, the proposed Noise Surro-

gate technique contributes positively to the denoising per-

formance of Noise2Noise. We start with various amounts

of synthetic noise and continue the same experiments with

real microscopy data. This is discussed in sections 3.1 and

3.2. Additionally, in section 3.2 we compare the curves of

the termination criterion with those of the validation loss in

different circumstances to reason about its usefulness.

3.1. Noise Surrogates and Synthetic Noise

In order to properly study the denoising capability of

several methods it is important to have high-quality images

as reference to quantify the fidelity of the restored images.

Therefore, these reference images should be free of noise

and distortion (e.g. compression artifacts). For this reason,

we use the TAMPERE17 dataset [29], which quantifies and



guarantees excellent image quality for grayscale images.

200 images are allocated for training, 50 for validation and

50 for testing. Noise is added synthetically to the reference

images in order to simulate noisy images. Additionally, af-

ter adding noise, the images are saved in 8-bit precision,

which results in a certain amount of quantization error.

The Gaussian distribution at various standard deviation lev-

els is a simple and popular noise generator in the denois-

ing literature [37, 32]. Therefore, the proposed methods

are tested with the gaussian standard deviation range σ =
(10, 30, 50).
The goal of experiments with synthetic noise is to show that

the proposed method has an advantage over Noise2Noise

generally across choice of loss function and network ar-

chitecture, and to this end, various network architectures

and loss functions are tested. First, the original U-Net

Noise2Noise network architecture from [23] (described in

detail in [22]) is adapted such that it does not add noise on-

the-fly and the noise surrogate generation runs previous to

every iteration. With that, the ℓ2 norm is used as loss func-

tion, since it is appropriate for Gaussian noise [50]. In addi-

tional experiments, the more recent BRDNet network [38]

architecture is also used as backbone. Likewise, the fol-

lowing loss function is also used (as an adaptation of the

methods described in [39]):

LH+MSSSIM(x, y) = (1− α)LH(x, y) + αMSSSIM (x, y),
(5)

where α ∈ (0, 1) is fixed to a constant. This loss is the

combination of the Huber loss (as the Moreau envelope of

non-differentiable ℓ1 norm [25]) and MS-SSIM [41] met-

ric.

For each combination of network architecture, loss func-

tion and noise level, the learning parameters are fixed such

that the traditional Noise2Noise (N2N) method converges,

and the same parameters are used for all the Noise2Noise

variants described in section 2.2. As baseline, the same

network is trained with clean targets (Noise2Clean). For

all methods, the network state achieving lowest validation

loss throughout the training is saved and tested on the test

set using popular PSNR (Peak Signal-to-Noise Ratio) and

SSIM [40] quality metrics.

The results for each noise level are summarized in Table

1 and example image results are displayed in Fig. 5. That

providing more noisy examples of the same scenes to the

Noise2Noise learning is advantageous can be clearly seen

in the table. There is clear indication that noise surrogate

generation provides new plausible noisy samples, since the

surrogate Noise2Noise (SN2N) consistently performs bet-

ter than the alternating Noise2Noise (AltN2N), which in

turn outperforms the traditional Noise2Noise (N2N). No-

ticeably, when the noise magnitude is small the surrogate

technique can improve the performance of Noise2Noise up

to or above the levels of Noise2Clean (N2C). Additionally,

Fig. 4 shows the trends of different methods. It can be seen

that while the Noise2Clean strategy quickly reaches higher

overall metric values, using the noise surrogate technique

eventually causes the learning trend to dissociate from the

trends of the other Noise2Noise techniques and eventually

reach levels comparable to those of the Noise2Clean ap-

proach.

The performance improvement is evident, yet the proposed

surrogate Noise2Noise inherits some of the limitations of

the traditional Noise2Noise method. The third row in Fig. 5

reveals the limitation of the noise distribution being as-

sumed 0 mean in all Noise2Noise approaches. Because the

noise deviates from perfect 0 mean in very dark or bright

areas of the image (due to clipping and quantization in the

range 0 - 255), there is a generalized mean error for all

Noise2Noise approaches in the darker areas.
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Figure 4: Average trends of PSNR(dB) and SSIM along

training among 5 training runs. Networks using different

learning methods have been saved at constant intervals and

used to compute PSNR and SSIM. Training has been inter-

rupted when overfitting acording to the validation set was

evident. For this illustration, all methods use the ℓ2 norm

and the U-Net network with same parameters on the TAM-

PERE17 dataset with σ = 30.

3.2. Noise Surrogates and Real Data

Three in-house electron microscopy datasets of different

specimens acquired using different acquisition parameters

have been used for evaluating the proposed strategy. Ex-

ample images are shown in Fig 6. For each scene of each

dataset, 99 images have been obtained. Two of these images

are saved as x̂ and ŷ. Both the mean and median aggrega-



σ = 10 σ = 30 σ = 50
PSNR SSIM PSNR SSIM PSNR SSIM

U-Net N2C
ℓ
2 34.5874 0.9209 29.1075 0.7922 26.9587 0.7162

U-Net N2N
ℓ
2 34.3260 0.9178 28.6850 0.7845 26.0085 0.6980

U-Net AltN2N
ℓ
2 34.3605 0.9202 28.8865 0.7875 26.0851 0.7039

U-Net SN2N
ℓ
2 34.5876 0.9213 29.0544 0.7918 26.3837 0.7137

U-Net N2CLH+MSSSIM
34.5080 0.9201 29.1305 0.7972 26.9581 0.7197

U-Net N2NLH+MSSSIM
34.0468 0.9182 28.4631 0.7798 25.7911 0.6915

U-Net AltN2NLH+MSSSIM
34.2641 0.9196 28.5562 0.7875 26.1675 0.7038

U-Net SN2NLH+MSSSIM
34.5135 0.9214 28.9889 0.7968 26.2981 0.7133

BRD-Net N2C
ℓ
2 34.6708 0.9203 29.2460 0.7931 27.0160 0.7096

BRD-Net N2N
ℓ
2 34.3689 0.9174 28.6932 0.7780 25.9583 0.6804

BRD-Net AltN2N
ℓ
2 34.5113 0.9200 28.8857 0.7852 26.0827 0.6944

BRD-Net SN2N
ℓ
2 34.5767 0.9208 29.1521 0.7948 26.4197 0.7134

Table 1: Results, PSNR(dB) and SSIM, for the TAMPERE17 dataset, including the different Noise2Noise variants and

the Noise2Clean counterpart on different combinations of loss function, network and noise level. The best results in each

category are highlighted.

(a) noisy (b) clean (c) N2N (d) AltN2N (e) SN2N (f) N2C

Figure 5: Example close-up results for the TAMPERE17

dataset on the U-Net Architecture, the ℓ2 norm loss function

and the several training versions described. Top using σ =
10. Middle using σ = 30. Bottom using σ = 50.

tion of the 99 images have been computed, and are used as

ground truth with the respective loss function (the ℓ1 and ℓ2

norm loss functions). Alignment is computed in a sub-pixel

exact way using the cross-correlation method described by

Guizar-Sicairos et al. [13]. Misaligned scene sets have been

discarded. After this preprocessing, datasets 1 and 2 have

84 1024×768 scenes for training, 15 512×768 scenes for

validation and 15 512×512 scenes for testing. Dataset 3 has

38 1024×768 scenes for training, 14 512×768 scenes for

validation and 14 512×512 scenes for testing. For the train-

ing and validation sets, 256×384 regions have been cropped

from the images in order to be fed to the networks. Addi-

tionally, simple data augmentation involving flipping (left-

to-right, up-to-down and both) is used.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 6: Sample images belonging to the in-house mi-

croscopy dataset.

The same Noise2Noise variants and setup are used as de-

scribed in section 3.1, with the only difference that noise

surrogates are generated by swapping entire horizontal lines

instead of single pixels. The reason for that is that elec-

tron microscopy images contain horizontal noise correla-

tion [33, 34]. Therefore, instead of swapping single pixels,

swapping entire horizontal lines is the correct noise surro-

gate generation approach, in order not to artificially modify

the noise characteristics that the network is expected to cope

with once trained.

Metric results of the different approaches are summa-

rized in table 2. Similar to the results for synthetic noise,

one can observe that the SN2N strategy enhances the per-

formance of the original Noise2Noise up to the level of

its Noise2Clean counterpart or even surpassing its perfor-

mance. Example result images are shown in Fig. 7.



Dataset-1 Dataset-2 Dataset-3

PSNR SSIM PSNR SSIM PSNR SSIM

U-Net N2C
ℓ
1 28.3522 0.5585 31.7210 0.7509 27.4497 0.8401

U-Net N2N
ℓ
1 28.1437 0.5570 31.6518 0.7465 27.3359 0.8328

U-Net AltN2N
ℓ
1 28.2461 0.5555 31.7324 0.7479 27.4755 0.8380

U-Net SN2N
ℓ
1 28.3436 0.5589 31.7665 0.7497 27.6054 0.8440

U-Net N2C
ℓ
2 29.1264 0.6122 32.1382 0.7736 27.6987 0.8511

U-Net N2N
ℓ
2 28.9760 0.6045 32.0096 0.7690 27.5145 0.8430

U-Net AltN2N
ℓ
2 28.9648 0.6005 32.0975 0.7698 27.7186 0.8504

U-Net SN2N
ℓ
2 29.1222 0.6097 32.1720 0.7751 27.8383 0.8561

Table 2: Results, PSNR(dB) and SSIM, of the different Noise2Noise variants and the Noise2Clean. The results of algorithms

using the ℓ2 and ℓ1 norms have been compared against the mean and median of 99 aligned noisy images, respectively. The

targets of the N2C are chosen accordingly.

(a) input (b) reference (c) N2N
ℓ
1

(d) AltN2N
ℓ
1 (e) SN2N

ℓ
1 (f) N2C

ℓ
1

Figure 7: Sample results for the different methods on im-

ages belonging to the microscopy dataset.

3.3. Termination criterion and validation loss

For all results in this section, standard Noise2Noise

training with the ℓ2 norm loss function is performed. In

parallel, the termination criterion (Eq. 3) is computed on the

training and validation sets separately using the same norm.

The setup is such that it surely leads to strong overfitting,

and the denoising performance is not relevant. In order to

show that the proposed termination criterion can correctly

estimate overfitting, the following observations are experi-

mentally shown:

First, with enough training iterations the termination crite-

rion computed on the training set eventually diverges. Ad-

ditionally, the termination criterion reacts to learning rate

changes similarly to the validation loss.

Second, when the termination criterion is computed in the

validation set during training, it starts to diverge in accor-

dance with divergence as observed by the validation loss.

Third, if the training set and the validation set are perfectly

representative of one another, then the termination criterion

computed on the training set correlates well with the termi-

nation criterion computed on the test set and, by extension,

also with the validation loss. Therefore, the termination cri-

terion computed on the training set is indicative of when to

halt the training.

For the first two observations, we use the datasets, with the

same partition as described in previous sections. We ob-

serve there is generally an inflection point after which di-

vergence is apparent, additionally, when the magnitude of

the learning rate is brought down, the termination criterion

on the training set indicates stronger overfitting, just like the

validation loss does. This is exemplary shown in Figs. 9a

and 9b. In these figures it can also be seen that the vali-

dation loss and the termination criterion computed on the

validation set start to diverge at the same epoch, albeit the

former is more noisy.

Showing that the termination criterion computed on the

training set has a similar trend than that of the one com-

puted on the validation set is conditioned to the training and

validation sets being representative of one another. This

property is hard to guarantee when partitioning small and

diverse image datasets (such as TAMPERE17). For this

reason, a small dataset of simple synthetic images based on

Perlin Patterns [27] is generated, with synthetically added

Gaussian noise (σ = 50). The dataset is made up of 20

image pairs for training and 20 image pairs for validation,

and each image is 256×256 pixels. Example images are



Figure 8: Example images (close-up) of Perlin Noise Pat-

terns, with the noisy versions used in the study and the cor-

responding latent images.

shown in Fig 8. The patterns are random but can be said to

be drawn from the exact same distribution for training and

validation. This is the reason why the termination criterion

computed in the training and validation sets appears to be

much more correlated (Figs. 9c and 9d). Furthermore, both

of these curves start to diverge similarly to the validation

loss.

These observations indicate that the termination criterion is

relatively orthogonal to the loss function, and therefore, the

proposed interpretable measure derived from the training

set alone can be indicative of overfitting. However, while

the trends during learning are illustrative, we acknowledge

the need to derive a quantitative measure in future work.

Another limitation of these observations is that they hold

in situations with high levels of noise, where overfitting to

noise is more likely to occurr early during training.

4. Conclusion

The main contribution of this paper is to show that swap-

ping pixels (or pixel regions) between the images in the

training data pairs allows to enhance the performance of

Noise2Noise generally. This is achieved while not imposing

any further requirement on the data, other than handling of

noise correlation. The proposed idea is extremely simple to

implement, causes a negligible overhead on top of the origi-

nal algorithm, and can be especially relevant in cases where

limited data is available (e.g. biomedical data). Addition-

ally, the issue of overfitting in Noise2Noise is analyzed. A

set of observations is collected indicating that the difference

between the denoised images in the training pairs can be an

estimator of the performance of the Noise2Noise network

and can be used as a termination criterion during training.

Both these contributions are expected to be of high inter-

est for the several applications where Noise2Noise has been

shown to be useful.

This study has been centered around grayscale images,

driven by the electron microscopy domain data. As future

work, authors intend to study how well these ideas translate

to color images, especially considering the noise surroga-

tion technique with the color channel dimension. In further

study, authors also intend to quantify the ideas surrounding

the proposed termination criterion on bigger datasets.
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Figure 9: Curves of the termination criterion and the valida-

tion loss on different datasets. The cyan curve is the valida-

tion loss and the pink and gray curves are training and vali-

dation versions of the termination criterion, respectively. In

9a and 9b the vertical dashed line indicates the point after

which the learning rate has been reduced towards 0.
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