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Figure 1. HDR reconstruction with denoising and dequantization from a single LDR image. We propose a novel learning based method for

single image HDR reconstruction with denoising and dequantization. The proposed method consists of a spatially dynamic encoder-decoder

network and a new Tanh L1 loss function. The visual comparison shows that our method reconstructs information in over-exposed regions

and also reduces the noise and quantization loss in well-exposed regions. All the images have been µ-law tone-mapped for display. We

slightly increase the contrast of patches in the bottom row for clearer visualization. Please zoom in for best view.

Abstract

Most consumer-grade digital cameras can only capture

a limited range of luminance in real-world scenes due to

sensor constraints. Besides, noise and quantization er-

rors are often introduced in the imaging process. In or-

der to obtain high dynamic range (HDR) images with ex-

cellent visual quality, the most common solution is to com-

bine multiple images with different exposures. However,

it is not always feasible to obtain multiple images of the

same scene and most HDR reconstruction methods ignore

the noise and quantization loss. In this work, we pro-

pose a novel learning-based approach using a spatially dy-

namic encoder-decoder network, HDRUNet, to learn an

end-to-end mapping for single image HDR reconstruction

with denoising and dequantization. The network consists

of a UNet-style base network to make full use of the hi-

erarchical multi-scale information, a condition network to

perform pattern-specific modulation and a weighting net-

work for selectively retaining information. Moreover, we

propose a Tanh L1 loss function to balance the impact of

over-exposed values and well-exposed values on the net-

work learning. Our method achieves the state-of-the-art

performance in quantitative comparisons and visual qual-

ity. The proposed HDRUNet model won the second place in

the single frame track of NITRE2021 High Dynamic Range

Challenge. The code is available at https://github.

com/chxy95/HDRUNet.

1. Introduction

High dynamic range (HDR) images are capable of

recording a more realistic appearance of the scene, which

can significantly improve the viewing experience. However,

limited by the sensor, most consumer-grade digital cameras

can only capture a limited range of luminance. In addi-

tion, noise and quantization errors are often introduced in
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the imaging processing. The most commonly used method

to generate an HDR image is to merge a set of LDR im-

ages captured with different exposures [9]. However, these

approaches have to deal with the object motion among dif-

ferent LDR images [51, 26, 39, 23], and multiple images

captured at the same scene are not always feasible. Besides,

most HDR reconstruction methods only focus on dynamic

range expansion [13, 44] and ignore the noise and quantiza-

tion loss in the well-exposed regions.

Single image HDR reconstruction with denoising and

dequantization is a challenging problem. First, it is hard to

recover the missing details in the under-/over-exposed re-

gions from a single LDR input due to severe information

loss. Second, dealing with the problem of joint HDR re-

construction, denoising and dequantization is a challenge

for the network design and training. Some traditional single

image HDR reconstruction approaches directly improve the

brightness or enhance the contrast of the input [37, 38, 1].

A number of techniques utilize image local heuristics to ex-

pand the dynamic range [4, 30]. Most recent data-driven

single image HDR reconstruction methods deal with the

problem by recovering the over-exposed regions [13]. Note

that these methods are all proposed to predict the linear

HDR values in luminance domain and do not explicitly per-

form denoising. There are also several methods that have

been proposed recently, aiming at predicting the non-linear

HDR values in display format under the HDR standard

[27, 28]. They also do not consider the denoising issues.

In this work, we aim to predict a non-linear 16-bit HDR

image after gamma correction from a single 8-bit LDR

noisy image. We propose a spatially dynamic encoder-

decoder network, called HDRUNet, to deal with restoration

details in under-/over-exposed regions along with denois-

ing and dequantization for the whole image. We design

our approach based on two observations. First, noise and

quantization errors certainly exist in LDR images in com-

parison with their HDR ground truths, and the patterns in

over-exposed regions are obviously different from those in

well-exposed regions. Second, distributions of noise are

spatially variant, which are not uniform like Gaussian white

noise. In order to address these issues, we first design a net-

work consisting of three parts, including a UNet-like base

network that can utilize multi-scale information, a condition

network that performs spatially dynamic modulation for dif-

ferent patterns, and a weighting network for adaptively re-

taining information of the input. Besides, we propose a new

Tanh L1 loss function that normalizes values into [0, 1] to

balance the impact of high luminance values and the other

values during training, in order to prevent the network from

only focusing on high luminance values.

Our contributions are three-fold:

• We propose a new deep network to reconstruct a high

quality HDR image with denoising and dequantization

from a single LDR image.

• We introduce a Tanh L1 loss for the task. Compared

to the other commonly used losses of image restora-

tion, this loss can lead to better quantitative perfor-

mance and visual quality.

• Experiments show that our method outperforms the

state-of-the-art methods both quantitatively and qual-

itatively, and we won the second place in the single

frame track of NTIRE2021 HDR Challenge [40].

2. Related Work

2.1. HDR Reconstruction

The task of image HDR reconstruction, which is also

known as inverse tone mapping [4], has been extensively

studied in the previous decades. The most common tech-

nique is to fuse a stack of bracketed exposure LDR images

[9]. There are also recent methods applying CNNs to fuse

multiple LDR images [51, 26, 14]. In this paper, we focus

on reconstructing HDR image from a single LDR image.

Traditional single image HDR reconstruction methods

exploit internal image characteristics to predict the lumi-

nance of the scene. For example, [1, 3, 4, 5] estimate

the density of light sources to expand the dynamic range

and [25, 30] apply cross-bilateral filter to enhance the input

LDR images. There are also several approaches [37, 38]

using global operator for approximating tone expansion to

improve the visual quality.

Recently CNNs have also shown great performance for

image restoration and enhancement tasks such as image

super-resolution [11], compression artifact reduction [10],

denoising [53], photo retouching [19] and inpainting [52],

etc. Several methods have been developed to learn a di-

rect LDR-to-HDR mapping. Eilertsen et al. [13] propose

HDRCNN to recover missing details in the over-exposed re-

gions and Santos et al. [44] improve the method by adding

masked features and perceptual loss. However, their meth-

ods ignore the quantization artifacts and noise in the well-

exposed areas. SingleHDR [34] learns LDR-to-HDR map-

ping by reversing the camera pipeline. These approaches

aim at predicting the linear HDR luminance. Kim et al. [27]

propose Deep SR-ITM to solve the problem of joint super-

resolution and inverse tone-mapping, while they aim to pre-

dict HDR pixel values in display format under HDR stan-

dard involving wide color gamut and HDR transfer func-

tion. In this work, we focus on the problem of single image

HDR reconstruction with denoising and dequantization.

2.2. Denoising

Image denoising is a classic topic in the field of low level

vision. Traditional methods use various models to model

the image prior to achieve denoising, such as [6, 35, 12,

16, 50]. These prior-based methods are generally time-
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consuming and involve manually chosen parameters. Re-

cently, there have been several attempts to preform denois-

ing by CNNs [53, 42, 36]. However, these methods are de-

signed for Gaussian white noise which usually generalize

poorly to real-world noisy images [41]. For addressing this

issue, several approaches are proposed by taking noise level

prior as network input to handle different noise levels and

spatially variant noise [54, 18, 17]. In this work, we add a

spatially dynamic modulation module to perform denoising

inside along with HDR reconstruction.

2.3. Dequantization

Quantization errors are inevitably occurred in the imag-

ing process. It is reflected in the image as scattered noise

and artifacts (e.g. contouring or banding artifacts) in regions

with smooth gradient changes. Previous works on bit-depth

expansion smooth image by applying the spatially adaptive

filter [8] or selective average filter [47], or even directly

adding noise to alleviate the artifacts [7]. Learning-based

methods [22, 32, 55, 43] have been proposed recently and

they usually focus on restoration from lower bit-depth input

to the 8-bit image. In this work, we aiming at recovering a

16-bit HDR image from an 8-bit LDR image.

3. Methodology

3.1. Observations

The problem of image HDR reconstruction is often ac-

companied with denoising and dequantization. To illustrate

this point, we visualize the gradient map of an LDR image

and the corresponding HDR image by Scharr operator [45]

as shown in Figure 2. Compared with the HDR image, gra-

dients are less visible in highlight areas of the LDR image,

due to the dynamic range compression and quantization. In

the well-exposed areas, gradients of noises are clear in the

LDR and HDR images, indicating that noise exists in both

images. Nevertheless, patterns of noise are markedly differ-

ent between LDR and HDR images due to different noise

levels. In addition, unlike Gaussian white noise that is uni-

formly distributed throughout the whole image, distribution

of noises in these images are not uniform. Therefore, the

pattern difference does not only exist between the highlight

and non-highlight areas, but also in different positions of

well-exposed regions. This inspires us to design a spatial-

variant modulation module for the network.

3.2. Network Structure

Based on the aforementioned observation, we design a

UNet-like network with spatial modulation for the single

image HDR reconstruction. The overall architecture of the

proposed method is depicted in Figure 3, which consists of

three main components – a base network, a condition net-

work and a weighting network.

Figure 2. Gradient maps calculated by Scharr operator [45] of the

LDR and HDR image. Note that the HDR image is not noise-free.

It can be observed that gradients of LDR and the corresponding

HDR image are obviously different both in over-exposed regions

and well-exposed regions.

Base Network. The base network utilizes a UNet-like

structure, which takes the 8-bit noisy LDR image as in-

put and reconstructs the 16-bit HDR image. The predicted

HDR images are supposed to contain more details in under-

/over-exposed areas with little noise. Many image recon-

struction algorithms [13, 34] have proven the effectiveness

of UNet-like structure, which can make full use of the hi-

erarchical multi-scale information from low-level features

to high-level features. We adopt similar concept for this

task. The encoder is devised to map the LDR image to high-

dimensional representations, and the decoder is trained to

reconstruct the HDR image from the encoded representa-

tions. To achieve better reconstruction performance, skip

connections are added between the encoder and decoder. In

the task of HDR reconstruction, the encoder and decoder

work in 8-bit and 16-bit, respectively. To ease the train-

ing procedure and maximize the information flow, several

residual blocks are utilized in the base network.

Condition Network. The key to reconstruct HDR im-

ages is to recover the missing details in under-/over-exposed

regions of the input LDR image. Different areas in one im-

age have different exposures and brightness. Further, vari-

ous images also have different holistic brightness and con-

trast information. Hence, it is necessary to deal with in-

put images with location-specific and image-specific oper-

ations. Besides, non-uniformly distributed noise also re-

quires the network to process various patterns well. How-

ever, conventional convolutional neural networks are spa-

tially variant, where the same filter weights are applied

across all images and local regions. Thus, inspired by
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Figure 3. Network structure of our HDRUNet with a base network, a condition network and a weighting network. The three modules

all take the LDR image as input. Particularly, the condition network predicts condition maps that afterwards utilized to modulate the

intermediate features in the base network.

[49, 33], we introduce a condition network with spatial fea-

ture transform (SFT) [49] to provide spatially variant ma-

nipulations. Specifically, the condition network accepts the

input LDR image and predicts the corresponding condi-

tional maps that are afterwards used to modulate the inter-

mediate features in the base network. The structure of the

condition network and the mechanism of SFT layer are por-

trayed in Figure 3.

SFT (x) = α⊙ x+ β, (1)

where ⊙ denotes the element-wise multiplication. x ∈

R
C×H×W is the intermediate features to be modulated.

α ∈ R
C×H×W and β ∈ R

C×H×W are two modulation co-

efficient maps predicted by the condition network. By lever-

aging such modulation strategy, our method can achieve lo-

cation and image specific manipulation according to differ-

ent inputs. Experiments have demonstrated the effective-

ness of such feature modulation for HDR reconstruction

with denoising and dequantization.

Weighting Network. The biggest challenge of HDR re-

construction is to restore fine details in under-/over-exposed

regions, while most of the well-exposed contents can be of

less contribution to the learning procedure. To this end, we

propose a weighting estimation network to forecast a soft

weighting map W on the well-exposed regions to be re-

tained. Thereupon, the whole network will pay more at-

tention to reconstruct the details of over-exposed areas.

Ŷ = W ⊙ I + G(I), (2)

where I is the input LDR image, Ŷ is the final reconstructed

HDR image, and G(I) is the output of the base network.

3.3. Loss Function

In real-world image HDR reconstruction, it is necessary

to consider not only the restoration of the dynamic range,

but also the reduction of noise and quantization artifacts.

However, loss functions that are commonly used in previ-

ous works of image restoration, such as L1 and L2 loss,

are not applicable to simultaneously deal with these afore-

mentioned problems. A loss function formulated directly

on HDR values will make the network focus on high lumi-

nance values and underestimate the impact in lower lumi-

nance values, resulting in worse quantitative performance

and visual quality. The experimental results can be found

in Section 4.2. Therefore, we propose a specially designed

Tanh L1 loss for the task, which is formulated as:

Tanh L1(Ŷ , H) =
∣

∣

∣
Tanh(Ŷ )− Tanh(H)

∣

∣

∣
, (3)
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where Ŷ and H represent the predicted HDR image and the

corresponding ground truth image, respectively.

4. Experiments

4.1. Experimental Setup

Dataset. Previous studies [14, 13, 34, 27] have adopted

different datasets on the task of image HDR reconstruction

for training and evaluation. In this paper, we use the dataset

proposed by NITRE 2021 HDR Challenge [40]. As de-

picted in this challenge, the dataset is a subset of images

selected from the HdM HDR dataset [15], where the HDR

images are captured by two Alexa Arri cameras with a mir-

ror rig and the corresponding LDR images are generated by

applying a degradation model (e.g., exposure gain, noise ad-

dition and quantization, clipping). In this dataset, there are

1494 LDR/HDR pairs for training, 60 images for validation

and 201 images for testing. Note that the LDR/HDR pairs

are aligned both in time axis and exposure level and stored

after gamma correction (i.e., they are non-linear images).

Since the ground truths of the validation and testing set are

not available, we conduct the experiments only based on the

training set. The training set is composed of 1494 consecu-

tive frames in 26 long takes. We randomly select 3 frames

in every long take, a total of 78 frames, as the verification

set, and the rest 1416 frames are used for training.

Evaluation Metrics. In the challenge, standard PSNR

directly computed in the output images (normalized to the

peak value of the ground-truth HDR image) and PSNR

computed in the µ-law tone-mapped images (normalized to

the 99 percentile of the ground-truth image and bounded

by a Tanh function to avoid excessive brightness compres-

sion) are used as the evaluation metrics. We represent these

two metrics as PSNR-L and PSNR-µ, respectively. It can

be seen that PSNR-L and PSNR-µ have different tenden-

cies for evaluating image quality. For s-PNSR, the accuracy

of highlight values is the most important influential fac-

tor. However, these values are often severely compressed

by tone mapping for visualization. While PSNR-µ directly

measures the tone-mapped values that can directly reflect

the visual similarity of the result and the ground truth.

Therefore, the main measure in quantitative comparisons is

PSNR-µ both in the challenge and in this paper.

Implementation Details. In the following experiments,

the number of residual blocks N is set to 8. Convolution

filters with stride of 2 are used for down-sampling and pixel

shuffle [46] is utilized for up-sampling. Before training, we

pre-process the data by cropping images into 480×480 with

step of 240. During training, the mini-batch size is set to 16

and the number of training iterations is set to 1×106. Adam

[29] optimizer and Kaiming-initialization [20] are adopted

for training. The initial learning rate is set to 2× 10−4 and

decayed by a factor of 2 after every 2 × 105 iterations. All

models are built on the PyTorch framework and trained with

NVIDIA 2080Ti GPU. When the patch size of input is set

to 256× 256, the total training time is about 5 days.

4.2. Ablation Study

In this section, we conduct ablation study to further in-

vestigate the different settings, including the training patch

size, loss functions, key modules and modulation strategies.

Training Patch Size. In practice, we find that the train-

ing patch size has an important influence on this task. In

general, small patch size (e.g., 32 × 32 or 64 × 64) is usu-

ally adopted during training in super-resolution networks

[11, 48]. However, HDR reconstruction is more than a sim-

ple local process. It involves more global and holistic ma-

nipulations, since different regions in LDR image require

different treatments. Besides, due to severe information loss

in over-exposed regions, we believe that restoration of the

details needs a large receptive field in these areas. As shown

in Table 1, with the increase of patch size, the quantitative

performance is gradually improved. To consider both per-

formance and computational cost, we select 256 × 256 as

the recommended patch size.

Patch size PSNR-L (dB) PSNR-µ (dB)

48 39.82 33.43

96 40.60 33.78

160 41.13 33.94

256 41.61 34.02

Table 1. Influence of training patch size.

Loss Function. In Section 3.3, we introduce a Tanh L1

loss for HDR reconstruction with denoising and dequanti-

zation. To accelerate the training process, we fix the patch

size to 160 × 160. To validate the effectiveness of our pro-

posed loss function, we conduct experiments with various

loss functions and make quantitative and qualitative com-

parisons. The quantitative results are shown in Table 2,

from which we can draw the following observations: 1)

Compared with L2 loss, L1 loss can obtain better quanti-

tative performance with higher PSNR-L and PSNR-µ val-

ues. 2) By introducing Tanh operation, the PSNR-µ can

be further improved at the cost of PSNR-L. To be specific,

using Tanh L1 loss improves PSNR-µ by 0.35 dB. This is

because when L1 or L2 loss function is used directly, the

training loss of the high brightness value has larger weight.

In this case, the network mainly focuses on the highlight

areas, leading to higher PSNR-L. However, as depicted in

Section 4.1, PSNR-µ can better reflect the visual similarity

of the output with the ground truth. Since the PSNR-µ is

also the main reference evaluation metric in the challenge,

we adopt Tanh L1 as the loss function.
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Loss PSNR-L (dB) PSNR-µ (dB)

L2 43.91 31.80

L1 44.10 33.59

Tanh−L2 40.02 33.92

Tanh L1 41.13 33.94

Table 2. Quantitative comparison of different loss functions.

Moreover, the loss function also has a significant impact

on the visual results. The visual comparison of these loss

functions are shown in Figure 4. We can see that results

generated by using L1 or L2 loss function perform badly for

denoising in well-exposed regions. In contrast, Tanh L1

loss achieves the best visual quality.

Figure 4. Visual comparison of different loss functions. It can be

obviously observed that L1 or L2 loss perform badly for denois-

ing, and our Tanh L1 loss achieves the best visual quality.

Effectiveness of Key Modules. In this section, we

demonstrate the effectiveness of each proposed component.

The experimental results are shown in Table 3. Note that we

set patch size of 160×160 for fast training. If we only adopt

a sole UNet-like base network, the PSNR-L and PSNR-

µ are 40.77 dB and 33.85 dB, respectively. By adopting

the weighting network branch, the performance is slightly

improved. If we combine the base network and the con-

dition network together, the PSNR-L and PSNR-µ are im-

proved by 0.27 dB and 0.06 dB. With all three key modules

equipped, our full model can further achieve higher quan-

titative results with PSNR-L of 41.13 dB and PSNR-µ of

33.94 dB. The results clearly validate the effectiveness of

the proposed key modules.

Exploration on Modulation Strategy. Feature modu-

lation has proven to be an effective way to tackle image-

specific and location-specific tasks, such as photo retouch-

Network Structure Base Network

Condition Network X X X X

Weighting Network X X X X

PSNR-L (dB) 40.77 40.85 41.04 41.40

PSNR-µ (dB) 33.85 33.90 33.91 33.94

Table 3. Effectiveness of each proposed component.

ing [19], image restoration [18, 17], image super-resolution

[49], as well as HDR reconstruction [27]. In this paper, we

adopt SFT to provide spatially variant manipulations. We

also compare other feature modulation vairants. In our con-

dition network, the size of the predicted condition maps is

C × H × W , thus, every unit of the feature maps in the

based network will be modulated. The condition maps can

also be of size 1×H×W , in which case the modulation pa-

rameters are spatial-variant but shared across channels. In

contrast, the modulation in CResMD [17] is global channel-

wise without considering spatial information.

Modulation strategy PSNR-L (dB) PSNR-µ (dB)

None 40.77 33.85

CResMD (C × 1× 1) 39.84 33.65

SFT (1×H ×W ) 40.65 33.82

SFT (C ×H ×W ) 41.04 33.91

Table 4. Comparison of different modulation strategies.

The comparison results of these modulation strategies

are listed in Table 4. Note that, to directly illustrate the dif-

ferences among various modulation methods, we eliminate

the weighting network in the experiments. From the results,

it can be observed that global channel-wise modulation has

little effect on HDR reconstruction, since it cannot provide

any spatially variant manipulation. By introducing SFT, the

performance is greatly improved, which validate our com-

ments that different areas in LDR image should be handled

differently. Moreover, spatial modulation with C ×H ×W

is superior to that with 1 × H × W , since it cannot only

involve spatial-wise but also channel-wise manipulations.

4.3. Comparison with State-of-the-art Methods

We compare our HDRUNet with several state-of-the-

art methods on image HDR reconstruction, including Lan-

disEO [31], HuoEO [24], HDRCNN [13], SingleHDR [34],

Deep SR-ITM [27] and a ResNet-style [21] network. How-

ever, most of these methods utilize different datasets that

contain many specific operations for the data to be pro-

cessed. We slightly modify these algorithms or add post-
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Figure 5. Qualitative comparison with other methods.
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processing for this dataset. For LandisEO and HuoEO, we

use the implementations in HDR Toolbox [2] and set the

gamma as 2.24. Besides, we implement gamma correc-

tion on the results because these are linear HDR values.

For HDRCNN, we retrain them on the same dataset as our

method. We use a convolution filter with stride of 2 for

down-sampling to match the size of input and output for

Deep SR-ITM. Since SingleHDR is only suitable for restor-

ing the linear HDR value in luminance domain, we directly

test the pretrained model on our dataset and implement post-

process as LandisEO and HuoEO. We also train a ResNet-

style model that is commonly used in image restoration and

utilize both L1 loss and the proposed Tanh L1 loss.

Method PSNR-L (dB) PSNR-µ (dB)

LandisEO 17.88 23.30

HuoEO 32.40 17.35

SingleHDR 32.32 19.54

HDRCNN 39.47 26.05

Deep SR-ITM 43.29 26.25

ResNet (L1) 41.92 33.24

ResNet (Tanh L1) 39.82 33.67

HDRUNet (Ours) 41.61 34.02

Table 5. Quantitative comparison with other methods.

Quantitative Comparison. We provide the quantitative

results in Table 5. As described in Section 4.1, PSNR-L

and PSNR-µ have different tendencies for evaluating image

quality. PSNR-L is used to measure the accuracy of the high

luminance values, while PSNR-µ reflects the visual similar-

ity between predicted HDR image and the ground truth. For

LandisEO, HuoEO and SingleHDR, these methods predict

linear HDR values. Although we perform gamma correc-

tion on the results, it is still very difficult to align the expo-

sure completely. Thus the results generated by these meth-

ods perform badly in such reference-based metrics. HDR-

CNN and Deep SR-ITM learn direct mapping from LDR

to HDR, while HDRCNN only processes values in over-

exposed regions. Deep SR-ITM uses a big network with

L2 loss function, which brings higher PSNR-L and lower

PSNR-µ. It can be seen that our method achieves the best

quantitative performance in PSNR-µ and far above average

performance in PSNR-L.

Qualitative Comparison. We provide the qualitative

comparison in Figure 5. Our method can not only restore

fine details in highlight regions but also greatly reduce noise

in lower luminance area. On the contrary, although the other

methods improve the brightness of the highlight areas, they

hardly recover details in these areas and some of them in-

troduce additional artifacts. LandisEO uses a global oper-

ator to increase the brightness in over-exposed regions but

can not generate details. HuoEO and ResNet generate some

details but introduce additional artifacts at the same time.

Additionally, these methods can not preform denoising and

dequantization well. Noise can be clearly observed in the

well-exposed regions. In comparison of these approaches,

results of our method achieve the best visual quality.

4.4. Results of NTIRE2021 HDR Challenge

We participated in the NTIRE2021 HDR Challenge [40]

and won the second place in the single frame track. The

results are shown in Table 6. Without using ensemble ap-

proaches, our method obtains similar PSNR-µ score as the

first place, only about 0.07 dB apart. Besides, the running

speed of ours is more than 116 times that of the first place.

Team PSNR-µ PSNR-L Runtime (s) Ensemble

NOAHTCV 34.804 32.867 61.52 X

XPixel (ours) 34.736 32.285 0.53 -

BOE-IOT-AIBD 34.414 33.490 5.00 -

CET CVLab 33.874 32.06 0.20 X

CVRG 32.778 31.021 1.10 -

Table 6. Results of the top5 methods in the challenge.

5. Conclusion

In this paper, we propose a spatially dynamic encoder-

decoder network, HDRUNet, with a novel Tanh L1 loss

function to solve the single image HDR reconstruction

problem. Our method won the second place in the sin-

gle frame track of NTIRE2021 HDR Challenge. Particu-

larly, the proposed network contains three modules which

are a base network, a condition network and a weighting

network. The base network can exploit multi-scale infor-

mation to reconstruct HDR image. The condition network

makes use of SFT layer to perform spatial-variant modu-

lation for various patterns. The weighting network can re-

tain useful information of the input LDR image for help-

ing learning. Moreover, we introduce a Tanh L1 loss to

balance the weight of learning for high luminance values

and the other values. Using this function greatly facilitates

learning for joint HDR reconstruction with denoising and

dequantization. Overall, our methods outperforms state-of-

the-art methods in quantitative and qualitative comparisons.
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Leonardis, Radu Timofte, et al. NTIRE 2021 challenge on

high dynamic range imaging: Dataset, methods and results.

In IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, 2021. 2, 5, 8

[41] Tobias Plotz and Stefan Roth. Benchmarking denoising

algorithms with real photographs. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1586–1595, 2017. 3
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