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Abstract

In this paper, we explore the role of Instance Normal-

ization in low-level vision tasks. Specifically, we present

a novel block: Half Instance Normalization Block (HIN

Block), to boost the performance of image restoration net-

works. Based on HIN Block, we design a simple and power-

ful multi-stage network named HINet, which consists of two

subnetworks. With the help of HIN Block, HINet surpasses

the state-of-the-art (SOTA) on various image restoration

tasks. For image denoising, we exceed it 0.11dB and 0.28

dB in PSNR on SIDD dataset, with only 7.5% and 30%

of its multiplier-accumulator operations (MACs), 6.8× and

2.9× speedup respectively. For image deblurring, we get

comparable performance with 22.5% of its MACs and 3.3×
speedup on REDS and GoPro datasets. For image derain-

ing, we exceed it by 0.3 dB in PSNR on the average result of

multiple datasets with 1.4× speedup. With HINet, we won

the 1st place on the NTIRE 2021 Image Deblurring Chal-

lenge - Track2. JPEG Artifacts, with a PSNR of 29.70.

1. Introduction

Normalization is widely used in high-level computer

vision tasks: Batch Normalization [18] and IBN [33] in

classification [28], Layer Normalization [4] in DETR [6]

and GroupNorm [47] in FCOS [40] for detection etc. Be-

sides, Instance Normalization [43] is used to style/domain

transfer [33, 16] tasks. However, the simple application

of normalization to low-level computer vision problems

can be suboptimal. For example, Batch Normalization

can’t improve the performance of the network in super-

resolution [26].

In this paper, we carefully integrate Instance Normal-

ization as building blocks to advance the network perfor-

mance in image restoration tasks. Specifically, we present

a Half Instance Normalization Block (HIN Block). Based

on HIN Blocks, we further propose a multi-stage network

called HINet, which consists of two subnetworks. By stack-

*Equally contribution.

Figure 1: Visualized results of HINet on various image

restoration tasks. Left: degraded image. Right: the pre-

dicted result of HINet. From top to bottom: image de-

noising, image deblurring, and image deraining task respec-

tively.

ing HIN Block in each subnetwork’s encoder, the receptive

field at each scale is expanded, and the robustness of fea-

tures is also improved. In addition to the architecture of

each stage, we adopt cross-stage feature fusion [55] and su-

pervised attention module [55] between two stages to en-

rich the multi-scale features and facilitate achieving perfor-

mance gain respectively.

Compared with the state-of-the-art architecture MPR-

Net [55], HINet surpasses it on various image restoration

tasks. For image denoising, we exceed it 0.11 dB and 0.28

dB in PSNR on SIDD [1] dataset, with only 7.5% and 30%



of its multiplier-accumulator operations (MACs), 6.8× and

2.9× speedup respectively. For image deblurring, we get

comparable performance with 22.5% of its MACs and 3.3×
speedup on REDS [30] and GoPro [31] datasets. For image

deraining, we exceed it by 0.3 dB in PSNR on the aver-

age result of multiple datasets following [56], with 1.4×
speedup. Visualized results of various image restoration

tasks are shown in Figure 1. In addition, we apply HIN

to various models and various datasets, the results demon-

strate the generalization ability of HIN. For example, with

the help of HIN, DMPHN [57] increased 0.42 dB in PSNR

on GoPro [31] dataset.

Our contributions can be summarized as follows:

• We carefully integrate Instance Normalization as

building blocks and proposed a Half Instance Normal-

ization Block. To the best of our knowledge, it is the

first model to adopt normalization directly with state-

of-the-art performance in image restoration tasks.

• Based on HIN Block, we design a multi-stage architec-

ture, HINet, for image restoration tasks, and achieves

the state-of-the-art performance with fewer MACs and

inference time compares to the SOTA method [55].

• Extensive experiments are conducted to demonstrate

the effectiveness of our proposed HIN Block and

HINet. With the help of HIN Block and HINet, we

won 1st place on the NTIRE 2021 Image Deblurring

Challenge - Track2. JPEG Artifacts [32], with a PSNR

of 29.70.

2. Related Work

2.1. Normalization in low­level computer vision
tasks:

Normalization has become an essential component in

high-level computer vision tasks (especially Batch Normal-

ization) but is rarely used in low-level computer vision

tasks. [31] modified the ResBlock [15] by removing batch

normalization since they trained the model with a mini-

batch of size 2 in deblur. [26] removed batch normaliza-

tion in super-resolution, which the batch normalization get

rid of range flexibility from networks. As the disharmony

between image restoration tasks and Batch Normalization

(BN) discussed in [51], image restoration tasks commonly

use small image patches and small mini-batch size to train

the network, which causes the statistics of BN unstable.

Moreover, the image restoration task is a per-image dense

pixel value prediction task, which is scale sensitivity. While

BN is usually helpful in scale insensitive tasks.

In addition to the above, Instance Normalization [42] is

proposed to replace Batch Normalization in [41] to improve

the performance of the style transfer task. [16] demon-

strates Instance Normalization is the normalization of low-

level features to some extent. They proposed adaptive in-

stance normalization to the style transfer task by align-

ing the channel-wise statistics in Instance Normalization

of style image to content image. Based on [16], [20]

adopts an adaptive instance normalization as a regularizer

to build denoiser and transfers knowledge learned from syn-

thetic noise data to the real-noise denoiser. Unlike [20], we

extend the Instance Normalization as a method of feature

enhancement and apply it to the image restoration tasks di-

rectly without transfer learning.

2.2. Architectures for Image Restoration

The single-stage methods are widely used in image

restoration tasks, and these methods generally improve

the network capacity through the complex network struc-

ture [3, 60]. The multi-stage methods decompose the com-

plex image restoration task into smaller easier sub-tasks,

employing a lightweight subnetwork at each stage. [11] in-

troduce the mature Gaussian-Laplacian image pyramid de-

composition technology to the neural network, and uses a

relatively shallow network to handle the learning problem at

each pyramid level. [35] proposes a progressive recurrent

network by repeatedly unfolding a shallow ResNet [15],

and introduces a recurrent layer to exploit the dependen-

cies of deep features across stages. [58] proposes a deep

stacked hierarchical multi-patch network. Each level fo-

cus on different scales of the blur and the finer level con-

tributes its residual image to the coarser level. [55] pro-

poses a multi-stage progressive image restoration architec-

ture, where there are two encoder-decoder subnetworks and

one original resolution subnetwork. [55] also proposes a

supervised attention module (SAM) and a cross-stage fea-

ture fusion (CSFF) module between every two stages to en-

rich the features of the next stage. Our model also uses these

two modules to facilitate achieving significant performance

gain and uses two simple U-Nets [36] as the subnetworks.

3. Approach

In this section, we provide more detailed explanations

about HINet and HIN Block in the following subsections.

Specifically, we introduce HINet in 3.1 and HIN Block in

3.2.

3.1. HINet

The architecture of our proposed Half Instance Normal-

ization Network (HINet) is shown in Figure 2. HINet con-

sists of two subnetworks, each of which is a U-Net [36].

As for U-Net in each stage, we use one 3× 3 convolutional

layer to extract the initial features. Then those features are

input into an encoder-decoder architecture with four down-

samplings and upsamplings. We use convolution with ker-

nel size equal to 4 for downsampling, and use transposed



SAM

Stage 1

ReV BORckReV BORckHIN BORckHIN BORckHIN BORck

SkiS CRQQecW

Stage 2

ReV BORckReV BORckHIN BORckHIN BORckHIN BORck

SkiS CRQQecW

SAM FeaWXUe

SAM FeaWXUe

CSFF
CSFF

SkiS CRQQecW

SkiS CRQQecW

: Feature Map : Conv : identity : Instance Norm : LeakyReLu : UpSample/DownSample : Add : Concat

Figure 2: Proposed Half Instance Normalization Network (HINet). The encoder of each subnetwork contains Half Instance

Normalization Blocks (HIN Block). For simplicity, we only show 3 layers of HIN Block in the figure, and HINet has a total

of 5 layers. We adopt CSFF and SAM modules from MPRNet [56].

convolution with kernel size equal to 2 for upsampling. In

the encoder component, we design Half Instance Normal-

ization Blocks to extract features in each scale, and double

the channels of features when downsampling. In the de-

coder component, we use ResBlocks [15] to extract high-

level features, and fuse features from the encoder compo-

nent to compensate for the loss of information caused by

resampling. As for ResBlock, we use leaky ReLU [29] with

a negative slope equal to 0.2 and remove batch normaliza-

tion. Finally, we get the residual output of the reconstructed

image by using one 3× 3 convolution.

We use cross-stage feature fusion (CSFF) module and

supervised attention module (SAM) to connect two subnet-

works, where these two modules come from [55]. As for

CSFF module, we use 3 × 3 convolution to transform the

features from one stage to the next stage for aggregation,

which helps to enrich the multi-scale features of the next

stage. As for SAM, we replace the 1 × 1 convolutions in

the original module with 3 × 3 convolutions and add bias

in each convolution. By introducing SAM, the useful fea-

tures at the current stage can propagate to the next stage and

the less informative ones will be suppressed by the attention

masks [55].

In addition to the network architecture, we use Peak

Signal-to-Noise Ratio (PSNR) as the metric of the loss func-

tion, which is PSNR loss. Let Xi ∈ R
N×C×H×W denotes

the input of subnetwork i, where N is the batch size of data,

C is the number of channels, H and W are spatial size.

Ri ∈ R
N×C×H×W denotes the final predict of subnetwork

i, and Y ∈ R
N×C×H×W is the ground truth in each stage.
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Figure 3: Proposed Half Instance Normalization Block

(HIN Block) and ResBlock in details.

Then we optimize HINet end-to-end as follows:

Loss = −

2∑

i=1

PSNR((Ri +Xi), Y ) (1)



3.2. Half Instance Normalization Block

Because of variance of small image patches differ a lot

among mini-batches and the different formulations of train-

ing and testing [51], BN[18] is not commonly used in low-

level tasks [23, 26]. Instead, Instance Normalization (IN)

keeps the same normalization procedure consistent in both

training and inference. Further, IN re-calibrates the mean

and variance of features without the influence of batch di-

mension, which can keep more scale information than BN.

We use IN to build Half Instance Normalization Block (HIN

block). By introducing HIN block, the modeling capacity

of HINet is improved (as shown in Figure 4). Moreover, the

extra parameters and computational cost introduced by IN

can be ignored.

As shown in Figure 3 a. HIN block firstly takes the input

features Fin ∈ R
Cin×H×W and generates intermediate fea-

tures Fmid ∈ R
Cout×H×W with 3 × 3 convolution, where

Cin/Cout is the number of input/output channels for HIN

block. Then, the features Fmid are divided into two parts

(Fmid1
/Fmid2

∈ R
Cout/2×H×W ). The first part Fmid1

is

normalized by IN with learnable affine parameters and then

concatenates with Fmid2
in channel dimension. HIN blocks

use IN on the half of the channels and keep context infor-

mation by the other half of the channels. Later experiments

will also show that this design is more friendly to features

in shallow layers of the network. After the concat opera-

tion, the residual features Rout ∈ R
Cout×H×W are obtained

by passing features to one 3 × 3 convolution layer and two

leaky ReLU layers, which is shown in Figure 3 a. Finally,

HIN blocks output Fout by add Rout with shortcut features

(obtained after 1× 1 convolution).

4. Experiments

We evaluate our approach on multiple datasets across

image restoration tasks. We report the standard metrics in

image restoration including PSNR and SSIM. The datasets

used for training are described next.

4.1. Implementation Details

Datasets As in [56], we train our models on SIDD [1]

for image denoising, GoPro [31] for image deblurring, and

13,712 clean-rain image pairs (for simplicity, denoted as

Rain13k in the following) gathered from [10, 25, 49, 60,

61] for image deraining. In addition, we use REDS [30]

dataset for image deblurring with JPEG artifacts, and we

denote it as REDS dataset for simplicity. For evaluation, we

follow the setting in the NTIRE 2021 Challenge on Image

Deblurring [32], i.e. use 300 images in the validation set of

REDS, denoted as REDS-val-300 next.

Training The networks are trained with Adam optimizer.

The learning rate is set to 2×10−4 by default, and decreased

to 1 × 10−7 with cosine annealing strategy [27]. We train

SIDD [1]

Method PSNR SSIM

DnCNN [64] 23.66 0.583

MLP [5] 24.71 0.641

DM3D [8] 25.65 0.685

CBDNet∗ [14] 30.78 0.801

RIDNet∗ [2] 38.71 0.951

AINDNet∗ [20] 38.95 0.952

VDN [52] 39.28 0.956

SADNet∗ [7] 39.46 0.957

DANet+∗ [53] 39.47 0.957

CycleISP∗ [54] 39.52 0.957

MPRNet [56] 39.71 0.958

HINet 0.5×(ours) 39.82 0.958

HINet (ours) 39.99 0.958

Table 1: Denoising comparisons on SIDD [1] dataset. ∗

denotes the methods that use additional training data. Best

and second best scores are highlighted and underlined. Our

HINet achieves 0.28 dB absolute improvement in PSNR

over the previous best method MPRNet [56].

GoPro [31]

Method PSNR SSIM

Xu et al. [48] 21.00 0.741

Hyun et al. [17] 23.64 0.824

Whyte et al. [46] 24.60 0.846

Gong et al. [13] 26.40 0.863

DeblurGAN [21] 28.70 0.858

Nah et al. [31] 29.08 0.914

Zhang et al. [62] 29.19 0.931

DeblurGAN-v2 [22] 29.55 0.934

SRN [39] 30.26 0.934

Gao et al. [12] 30.90 0.935

DBGAN [63] 31.10 0.942

MT-RNN [34] 31.15 0.945

DMPHN [57] 31.20 0.940

Suin et al. [37] 31.85 0.948

MPRNet [56] 32.66 0.959

HINet (ours) 32.71 0.959

Table 2: Deblurring comparisons on GoPro [31] dataset.

Best and second best scores are highlighted and underlined.

Our HINet achieves 0.05 dB absolute improvement in

PSNR over the previous best method MPRNet [56].

our models on 256 × 256 patches with a batch size of 64

for 4 × 105 iterations. We apply flip and rotation as data

augmentation. Following [65], we customize the network

to the desired complexity by applying a scale factor s on

the number of channels, e.g. “HINet s×” denotes scaling

the number of channels in basic HINet s times.

4.2. Main Results

We show the effectiveness of HINet on different datasets

in Table 1, Table 2 and Table 3. In addition, we compare

the MACs (i.e. multiplier-accumulator operations) and in-

ference time of MPRNet [56] and HINet in Table 4. MACs

is estimated when the input is 1×3×256×256. Moreover,

we conduct quality experiments to show the superiority of

our method as shown in Figure 5.



Test100 [61] Rain100H [49] Rain100L [49] Test2800 [10] Test1200 [60] Average

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet [9] 22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835 22.48 0.796

SEMI [45] 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822 22.88 0.744

DIDMDN [60] 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 29.65 0.901 24.58 0.770

UMRL [50] 24.41 0.829 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 28.02 0.880

RESCAN [24] 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 28.59 0.857

PreNe [35] 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 29.42 0.897

MSPFN [19] 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.75 0.903

MPRNet [56] 30.27 0.897 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 32.73 0.921

HINet (ours) 30.29 0.906 30.65 0.894 37.28 0.970 33.91 0.941 33.05 0.919 33.03 0.926

Table 3: Deraining comparisons on Test100 [61], Rain100H [49], Rain100L [49], Test2800 [10] and Test1200 [60]. In

addition, the average results over these datasets are provided. Best and second best scores are highlighted and underlined.

Our HINet achieves 0.3 dB absolute improvement in PSNR over the previous best method MPRNet [56].

Dataset Method PSNR MACs(G) Time(ms) speedup

SIDD [1]

MPRNet [56] 39.71 573.50 100% 78.8 1×

HINet 0.5× 39.82 42.88 7.5% 11.6 6.8×

HINet 39.99 170.71 29.8% 27.0 2.9×

REDS [30]
MPRNet [56] 28.81 760.11 100% 90.1 1×

HINet 28.79 170.71 22.5% 27.0 3.3×

GoPro [31]
MPRNet [56] 32.66 760.11 100% 90.1 1×

HINet 32.71 170.71 22.5% 27.0 3.3×

Rain13k

MPRNet [56] 32.73 141.28 100% 37.4 1×

HINet 33.03 170.71 120.8% 27.0 1.4×

Table 4: Comparing the PSNR and MACs of MPRNet [56]

and ours. For Rain13k, we compare the average PSNR over

Test100 [61], Rain100H [49], Rain100L [49], Test2800 [10]

and Test1200 [60]. MACs and Time are estimated with the

input size of 1 × 3 × 256 × 256. The proportion of the

calculations and the speedup compared to MPRNet [56] are

also listed. Runtimes are computed with the Tesla V100

GPU.

SIDD [1] For image denoising, we train our model on the

320 high-resolution images of the SIDD dataset, and test on

the 1280 patches from SIDD dataset. The results are shown

in Table 1 and Table 4. Surprisingly, using only 7.5% of

MPRNet [56]’s MACs, our model exceeds it by 0.11 dB in

PSNR. Moreover, our model exceeds MPRNet a big mar-

gin, 0.28 dB in PSNR under 30% of the MACs, and is 2.9

times faster than MPRNet.

REDS [30] and GoPro [31] For image deblurring, we train

our model on REDS [30] dataset with jpeg compression ar-

tifacts, and evaluate the results on REDS-val-300 as we de-

scribed above. In addition, we conduct experiments on Go-

Pro [31] dataset for image deblurring following [56, 57]

etc. It contains 2103 image pairs for training and 1111 pairs

for evaluation. In Table 2 and Table 4, we compare our

approach to the state-of-the-art methods. We get a compa-

rable performance to MPRNet [56] with only 22.5% MACs

and 3.3× speed advantage. It indicates the efficiency of our

model.

Rain13k For image deraining, we train our model on

Rain13k as described above and evaluate results by Y chan-

nel in YCbCr color space following [19, 56]. It contains

13712 image pairs in the training set, and we evaluate the

results on Test100 [61], Rain100H [49], Rain100L [49],

Test2800 [10], Test1200 [60]. We show the results in Ta-

ble 3. HINet achieves 0.3 dB absolute improvement in

PSNR over the previous best method MPRNet [56] and

1.4× faster than it.

4.3. Ablation

The core idea of HINet lies in HIN Block. We evaluate

it from multiple perspectives in this subsection. It should be

noted that these experiments are not to achieve the perfor-

mance of the state-of-the-art, but to illustrate the superior-

ity of HIN on various models and image restoration tasks.

Therefore we mainly use the UNet of the first stage of HINet

0.5×, without skip connections between encoder and de-

coder for ablation experiments for fast feedback, and we

denoted the UNet as “HINet Simple” in next. It is trained

on 512×512 patches with a batch size of 32 for 3×105 iter-

ations. For optimizer, we follow the settings in [56] except

we set the learning rate to 4× 10−4 instead of 2× 10−4.

The effectiveness of Half Instance Normalization: We

conduct experiments on various models and datasets, as we

shown in Table 5.

On REDS [30] dataset (shown in Table 5a), HIN brings

0.12 dB in PSNR for HINet Simple. This illustrates the

effectiveness of HIN on the REDS [30] dataset and HINet

Simple model.

On GoPro [31] dataset (shown in Table 5b), we reimple-

ment the DMPHN(1-2-4-8) [57]. We set the learning rate to

2× 10−4 and decreased to 1× 10−6 with cosine annealing

strategy [27]. We train the model on 256 × 256 patches,

with a batch size of 32 for 2× 105 iterations. Flip and rota-

tion are applied as data augmentation. HIN brings 0.42 dB

boost in PSNR, it demonstrates HIN is effective on different

models and different datasets.

We train PRMID [44] and CycleISP [54] on SIDD [1]

dataset as shown in Table 5c. For PRMID, we set the ini-

tial learning rate to 3 × 10−3 with a batch size of 16 for



REDS [30]

Method HIN? PSNR SSIM

HINet Simple - 28.11 0.847

HINet Simple X 28.23 0.850

(a) Comparison of the models with/without HIN on REDS [30]

dataset for deblurring. HIN brings 0.12 dB in PSNR to HINet Sim-

ple.

GoPro [31]

Method HIN? PSNR SSIM

DMPHN(1-2-4-8) [57] - 30.98 0.943

DMPHN(1-2-4-8) [57] X 31.40 0.948

(b) Comparison of the models with/without HIN on GoPro [31]

dataset for deblurring. HIN brings 0.42 dB in PSNR to DMPHN(1-

2-4-8) [57]. It indicates HIN’s effectiveness is robust to datasets and

models.

SIDD [1]

Method HIN? PSNR

PRMID [44] - 39.30

PRMID [44] X 39.39

CycleISP [54] - 39.50

CycleISP [54] X 39.56

(c) Comparison of the models with/without HIN on SIDD [1] dataset

for denoising. HIN brings 0.09 dB and 0.06 dB in PSNR to

PRMID [44] and CycleISP [54] respectively. It indicates HIN’s ef-

fectiveness is robust to image restoration tasks and model size.

Table 5: To demonstrate the effectiveness of HIN, we con-

duct experiments on various datasets and models.

4 × 105 iterations. For CycleISP, we set the initial learn-

ing rate to 2 × 10−4 with a batch size of 16 for 3 × 105

iterations. Adam optimizer, cosine annealing strategy [27]

and flip/rotation as data augmentation are adopted in both

cases. HIN brings 0.09 dB and 0.06 dB boost in PSNR

on PRMID and CycleISP respectively. Since SIDD [1] and

GoPro [31]/REDS [30] are different image restoration task

datasets, it demonstrates that HIN is effective in different

image restoration tasks.

Comparison with other Normalizations: Normalization

has not been fully explored in image restoration tasks. We

compare HIN with other normalizations to demonstrate the

superiority of our proposed HIN. We conduct experiments

on REDS [30] dataset on HINet Simple. The results are

shown in Table 6. We denote the HINet Simple w/o. Norm

as the baseline in the following. BN [18] results a signifi-

cant performance drop compares to baseline, i.e. 0.12 dB in

PSNR. We conjure that is because of the inaccurate batch

statistics estimation when batch size is small. It is allevi-

ated by SyncBN [59] in some extent, i.e. HINet Simple w/.

SyncBN brings 0.1 dB gain compares to HINet Simple w/.

BN. However, it is still inferior to baseline (28.09 dB vs.

28.11 dB in PSNR). As we can see, with the help of IN [43],

28.23 

28.29 

28.31 

28.11 

28.17 

28.20 

28.08

28.13

28.18

28.23

28.28

28.33

300 600 900

P
S
N
R

iterations(k)

HINet Simple w/. HIN

HINet Simple w/o. HIN

Figure 4: Effectiveness of HIN when training more itera-

tions.

HINet Simple w/. IN exceed baseline by 0.03 dB in PSNR.

It indicates IN facilitates the training of image restoration

tasks. As shown in Table 6, HIN exceeds its counterparts,

and it brings 0.12 dB gain in PSNR compares to baseline. It

demonstrates the superiority of our proposed HIN.

Method PSNR

HINet Simple w/o. Norm 28.11

HINet Simple w/. BN [18] 27.99

HINet Simple w/. SyncBN [59] 28.09

HINet Simple w/. LN [4] 28.09

HINet Simple w/. IN [43] 28.14

HINet Simple w/. IBN [33] 28.18

HINet Simple w/. GN [47] 28.19

HINet Simple w/. HIN(ours) 28.23

Table 6: Comparison of different normalization approaches

on the image restoration task. Experiments are conducted

on REDS [30] dataset. HINet Simple w/. BN means a fully

normalized model with BN in the encoder.

More training iterations: We analyze the impact of in-

creasing the number of training iterations based on HINet

Simple. We train the model on REDS [30] dataset for 300k,

600k, and 900k iterations with/without HIN respectively.

The results are shown in Figure 4. The gap between HINet

Simple w/. HIN and HINet Simple w/o. HIN does not de-

crease as the number of iterations increased. We conjure

that this is because HIN increases the upper limit of the

model, not just speeds up the convergence.

Guideline of add HIN layer in an existing network:

HINet Simple consists of 5 encoder blocks and 5 decoder

blocks. We further explore the appropriate add location of

HIN Block. The results are shown in Table 7. It indicates

that adding HIN to all encoder blocks gets the highest score.

In addition, adding HIN to the encoder and decoder causes

performance drop i.e. 28.23 dB to 28.21 dB. It demonstrates



that adding more HIN does not necessarily lead to better

performance. In practice, add one HIN layer to each en-

coder block might be a good choice.

Encoder

Method 1 2 3 4 5 Decoder PSNR

HINet Simple

- - - - - - 28.11

X X - - - - 28.15

- X X - - - 28.19

- - X X - - 28.19

- - - X X - 28.21

X X X - - - 28.19

- X X X - - 28.20

- - X X X - 28.21

X X X X - - 28.21

- X X X X - 28.22

X X X X X - 28.23

X X X X X X 28.21

Table 7: Guideline of add HIN layer in an existing network

(e.g. HINet Simple): adding HIN to all encoder blocks gets

highest score, while more HIN does not necessarily lead to

better performance.

4.4. Extension to HINet:

In order to achieve better performance on NTIRE 2021

Image Deblurring Challenge Track2. JPEG artifacts [32],

we extend HINet, and adopt test time augmentation strategy.

To further enhance the performance, we ensemble 3 similar

models. In this subsection, we discuss the impact of these

three methods on the results. And at the end, the results

of the development phase and the test phase are provided.

The results are evaluated on REDS-val-300, except the test

phase result.

Wider, Deeper: It has been demonstrated that scaling up

the model from width and depth improves the model ca-

pacity [38, 51]. For width, we simply use HINet 2×. For

depth, we add two residual blocks at the end of each encoder

block and decoder block. It achieves a PSNR of 29.05 dB

on REDS-val-300.

Test Time Augmentation and Ensemble: We adopt flip

and rotation as test time augmentation. It brings about 0.14

dB in PSNR. In addition, we randomly crop hundreds of

patches, randomly adopt flip and rotation augmentation on

them. It brings about 0.05 dB in PSNR. We simply average

the predictions of 3 models as a model ensemble. It brings

about 0.01 dB in PSNR. With these strategies, our model

boost PSNR from 29.05 dB to 29.25 dB.

Development phase result: For the development phase,

we randomly crop 720 patches. The results are shown in

Table 8.

Test phase result: For the test phase, we randomly crop

1000 patches. The results are shown in 9.

Participants PSNR SSIM rank

ours 29.25 0.8190 1

participant A 29.17 0.8183 2

participant B 29.14 0.8170 3

participant C 29.11 0.8171 4

participant D 29.10 0.8165 5

participant E 29.01 0.8141 6

participant F 28.94 0.8145 7

participant G 28.75 0.8093 8

participant H 28.68 0.8103 9

participant I 28.66 0.8082 10

Table 8: Development phase result of NTIRE 2021 Image

Deblurring Challenge Track 2. JPEG artifacts [32]. Best

and second best scores are highlighted and underlined. Our

proposed method outperform others by 0.08 dB in PSNR.

Participants PSNR SSIM rank

ours 29.70 0.8403 1

Noah CVLab 29.62 0.8397 2

CAPP OB 29.60 0.8398 3

Baidu 29.59 0.8381 4

SRC-B 29.56 0.8385 5

Mier 29.34 0.8355 6

VIDAR 29.33 0.8565 7

DuLang 29.17 0.8325 8

TeamInception 29.11 0.8292 9

Giantpandacv 29.07 0.8286 10

Maradona 28.96 0.8264 11

LAB FHD 28.92 0.8259 12

SYJ 28.81 0.8222 13

Dseny 28.26 0.8081 14

IPCV IITM 27.91 0.8028 15

DMLAB 27.84 0.8013 16

Blur Attack 27.41 0.7887 17

Table 9: NTIRE 2021 Image Deblurring Challenge Track 2.

JPEG artifacts result [32]. Best and second best scores are

highlighted and underlined. We exceed other participants

over 0.08 dB in PSNR.

5. Conclusion

In this work, we reuse Normalization in image restora-

tion tasks. Specifically, we introduce Instance Normal-

ization into a residual block and design an effective and

efficient block: Half Instance Normalization Block (HIN

Block). In HIN Block, we apply Instance Normalization for

half of the intermediate features and keep the content infor-

mation at the same time. Based on HIN Block, we further

propose a multi-stage network called HINet. Between each

stage, we use feature fusion and attention-guided map [55]

across stages to ease the flow of information and enhance

the multi-scale feature expression. Our proposed HINet sur-

passes the SOTA on various image restoration tasks. In ad-

dition, by using HINet, we won 1st place on the NTIRE

2021 Image De-blurring Challenge - Track2. JPEG Arti-

facts [32].



Figure 5: More visualized results of HINet on various image restoration tasks. For each image pair, the left one is degraded

and the right one is predicted by HINet.
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