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Abstract

Nonhomogeneous haze removal is a challenging prob-

lem, which does not follow the physical scattering model

of haze. Numerous existing methods focus on homogeneous

haze removal by generating transmission map of the image,

which is not suitable for nonhomogeneous dehazing tasks.

Some methods use end-to-end model but are also designed

for homogeneous haze. Inspired by Knowledge Transfer

Dehazing Network and Trident Dehazing Network, we pro-

pose a model with super-resolution method and knowledge

transfer method. Our model consists of a teacher net-

work, a dehaze network and a super-resolution network.

The teacher network provides the dehaze network with re-

liable prior, the dehaze network focuses primarily on haze

removal, and the super-resolution network is used to cap-

ture details in the hazy image. Ablation study shows that

the super-resolution network has significant benefit to im-

age quality. And comparison shows that our model out-

performs previous state-of-the-art methods in terms of per-

ceptual quality on NTIRE2021 NonHomogeneous Dehaz-

ing Challenge dataset, and also performs well on other

datasets.

1. Introduction

Haze is a common natural phenomenon that causes im-

age perceptual quality decrease. Haze can block objects in

the image, results in image color distortion and visibility de-

crease. Thus restoring hazy images has been a challenging

ill-posed problem drawing great attention.

Deep models have made significant progresses in vi-

sion tasks [13, 14, 21, 16, 15, 22] recently. Since im-

age dehazing has been put forward as a challenging prob-

lem, a number of learning-based image dehazing methods

[9, 30, 23, 36, 10, 26, 28, 11, 31, 25, 34] have been proposed

and outperformed non-learning methods [12, 32, 18, 7]. A
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Figure 1. The left is the output generated by Knowledge Transfer

Dehazing Network. The right is groundtruth. It can be seen that

KTDN gets a blurry result.

great number of these methods, including some learning-

based methods, are based on physical scattering model of

haze [27], which can be represented by the following equa-

tion:

I(x) = J(x)t(x) +A(1− t(x))

t(x) = exp(−βd(x))

where I refers to the hazy image, J refers to the original

image, t refers to the transmission map, A is the global at-

mospheric light, and d(x) is the distance between object

and camera. As for the nonhomogeneous dehazing task, A

is often represented as A(x) to describe haze with fluctuat-

ing density. However, the estimation of transmission map

t(x) and atmospheric light map A(x) are difficult to imple-

ment, and the solution of J(x) may accumulate error. Thus

results of models using physical scattering model on non-

homogeneous dehazing tasks are often not as satisfactory

as is expected. Meanwhile, various learning-based methods

without dependence of the physical scattering model has

been proposed recently. However, some of these end-to-end

methods, like GCANet [10], FFANet [28], EPDN [29] and

MSBDN-DFF [11], are not designed for nonhomogeneous

dehazing, while other methods like BPPNet [31] suffer from

color distortion, which needs further work.

In NTIRE 2020 NonHomogeneous Dehazing Challenge

[5], team ECNU KT proposed a knowledge distillation

[20] model, Knowledge Transfer Dehazing Network (aka.

KTDN) [34], and won 2nd prize. KTDN trains a teacher



Figure 2. The results of DCP on RESIDE OTS, RESIDE ITS, O-HAZE and I-HAZE datasets. As is shown in the figure, DCP generates

outputs with incorrect color when background color is bright, or objects’ brightness is similar to the background.

network firstly. While training the dehaze network, KTDN

uses teacher network to produce downsampled high-level

feature map, and uses L1 loss between the feature map of

teacher network and the one of dehaze network to let de-

haze network imitate teacher network. Although KTDN

achieved high PSNR and SSIM and 2nd MOS ranking in

the challenge, we find that KTDN is not capable of captur-

ing details in the input images, and the output is relatively

more blurry than groundtruth, which can be seen in Figure

1.

For this reason, inspired by [25], we infer that a net-

work used for capturing high-frequency details may prevent

the result from blurry. Thus we propose Super Resolution

Knowledge Transfer Dehazing Network (SRKTDN). Our

main contribution is to connect a super-resolution network

to the dehaze network to refine the result, and to prove its

effectiveness. The super-resolution network runs in paral-

lel with the dehaze network, and output of two networks

are concatenated to go through a tail block. Ablation study

shows that, evaluated by SSIM, the super-resolution net-

work greatly enhances the result, avoiding the result to be

blurry. Our method got 20.6192 on PSNR (ranked 4) and

0.8349 on SSIM (ranked 7) in final test of NTIRE2021 Non-

Homogeneous Dehazing Challenge [6].

2. Related Work

In this section, we take a look at former methods for

single image dehazing, and introduce knowledge distilla-

tion. Former methods can be classified into three groups:

prior-based methods, physical-model-based learning meth-

ods and physical-model-independent learning methods.

2.1. Priorbased methods

Early single image dehazing methods are usually prior-

based. Prior-based methods, based on various prior knowl-

edge or assumptions, use interpretable constraints to restore

the image [12, 32, 18, 7, 1], mainly by restoring transmis-

sion map t(x). Fattal [12] proposed a method using surface

shading information to estimate transmission map. Tan et

al. [32] removed single image haze by maximizing con-

trast and smoothing airlight using Markov matrix. He et

al. [18] proposed a method using dark channel prior to

estimate transmission map. Berman et al. [7] estimated

transmission map by finding non-local haze-lines in hazy

images. Recently, Ancuti et al. [1] proposed a novel fusion-

based method to enhance both day-time and night-time hazy

scenes and outperformed several previous state-of-the-art

models, but the method is designed for homogeneous haze.

Although these prior-based methods worked well in regular

homogeneous hazy scenes, the results are easily violated

when priors and assumptions are not suitable in some situ-

ations. Taking dark channel prior (DCP) as an example, we

can see in Figure 2 that DCP generates relatively reliable

result on RESIDE OTS dataset [24], but fails to generate

correct output for RESIDE ITS, O-HAZE [3] and I-HAZE

[4]. And these methods are also not suitable for nonhomo-

geneous dehazing task.

2.2. Physicalmodelbased learning methods

A great amount of learning-based dehazing methods rely

on physical model [9, 30, 23, 36]. Setting A = 1, Cai et al.

proposed DehazeNet [9] to estimate transmission map and

use physical scattering model to calculate hazy-free image

J . Ren et al.[30] proposed Multi-scale CNN with a coarse

network and a fine network to estimate and refine t(x).



AOD-Net [23] used a K-estimation module and a clean im-

age generation module to estimate K(x), which joins esti-

mation of t(x) and A together, and calculate hazy-free out-

put. These methods usually consider atmosphere light A as

a constant, which is appropriate for homogeneous haze re-

moval, but not for nonhomogeneous dehazing tasks. Mean-

while, although some methods like DCPDN [36] regarded

A as a function, most of them are also based on assumption

that atmospheric light map is homogeneous.

2.3. Physicalmodelindependent learning methods

Recently, a number of learning-based methods indepen-

dent of physical model are established [10, 26, 28, 11, 31,

25, 34]. GCANet [10] is an end-to-end network that uses

smoothed dilated convolution and a gate fusion sub-network

to fuse features from different levels. GridDehazeNet [26]

proposed a novel backbone module with attention-based

multi-scale estimation. FFA-Net [28] proposed channel at-

tention block and pixel attention block to provide model

flexibility. MSBDN-DFF [11] applied boosting algorithm

to single image dehazing using a designed SOS boosted

module. However, these methods are also based on as-

sumption that haze is homogeneous. Meanwhile, though

BPPNet [31] produced reliable results on nonhomogeneous

haze dataset, NH-HAZE [2], it suffered from color distor-

tion.

In NTIRE2020 NonHomogeneous Dehazing Challenge,

Trident Dehazing Network (TDN) [25] and Knowledge

Transfer Dehazing Network (KTDN) [34] won the 1st and

2nd prize respectively. These two methods also took no

consideration of physical methods.

3. Method

In this section, we introduce the network architecture of

the proposed Super Resolution Knowledge Transfer Dehaz-

ing Network (SRKTDN), and the loss functions we used for

model training.

3.1. Network Architecture

We propose a dual network, designed based on Knowl-

edge Transfer Dehazing Network. As is shown in Figure 3,

the teacher network and dehaze network share identical net-

work structure after the encoder, and the output of dehaze

network is concatenated with the output of super-resolution

network. The teacher network is used to generate high-level

feature map produced by the encoder. We train the teacher

network with groundtruth of the dataset to let the teacher

learn the distribution of the high-level feature map required

to recover the real groundtruth image. Then we use knowl-

edge transfer loss to let the output of dehaze network’s en-

coder resemble the produced feature map. As the teacher

network is capable of restoring the groundtruth, the dehaze

network should also be capable if the outputs of encoders

are identical, due to similar network structure.

Encoder. We use ResNet18 as encoder of teacher net-

work, and Res2Net101 for dehaze network. The ResNet18

and Res2Net101 encoders are pretrained on ImageNet, pro-

vided by [19] and [17] respectively. While ResNet18 is al-

ready capable of feature extraction for image restoring task

with little CUDA memory cost, Res2Net101 has greater

ability capable of learning dehazing knowledge. We remove

the last layers of encoders and reserve the rest for only 16x

downsample.

We use knowledge transfer loss to transfer the knowl-

edge from the ResNet18 encoder of teacher network to the

Res2Net101 encoder of dehaze network. Using L1 loss to

restrict the output of dehazing encoder, the dehazing en-

coder can output feature map similar to the teacher, which

is used for the decoder to restore haze-free image.

Decoder. As is shown in Figure 2, we use identical net-

work architecture of decoder to KTDN.

The attention module in the model contains a channel at-

tention block and a pixel attention block proposed in [28].

The input feature map first passes through a channel at-

tention block (CA), then a pixel attention block (PA). The

channel attention block consists of an average pooling layer,

a 1x1 convolution layer, a ReLU layer, another 1x1 con-

volution layer and a Sigmoid layer subsequently, provid-

ing refinement with identical weight for each channel. The

pixel attention block is similar to channel attention block,

but without pooling layer, and has only 1 output channel,

providing pixel-wise refinement. Both CA and PA calculate

product of produced weights and the original input to pro-

duce the refined feature map, in order to refine important as-

pects such as color and thick haze, as important information

gets a higher weight. The attention module has two convo-

lution layer and a ReLU layer with a skip connection before

attention blocks, and another skip connection through the

whole module to preserve features from former modules.

The model uses PixelShuffle layers to upsample, which

is lightweight and does not cause checkerboard artifact, un-

like transposed convolution. There are skip connections

between the encoder and the decoder on x4 and x8 down-

sampled feature maps. After upsampled, x4 and x8 down-

sampled feature maps are concatenated and sent to attention

modules.

At tail of teacher network and dehaze network is a PSP-

Net [38] module. The PSPNet module combines features

of different levels together to refine local area with global

features. Thus the PSPNet module is used to learn context

information of different receptive fields to enhance the re-

sult.

Super Resolution Network. Inspired by TDN, we use

a super-resolution network to restore high gradient image

details. The network architecture of super-resolution net-



Figure 3. The upper is the architecture of SRKTDN. The teacher network uses knowledge transfer loss to restrict intermediate output of

the dehaze network. The output of super resolution network and dehaze network are concatenated and pass through a tail block. There are

skip connections between the encoder and the decoder on x4 and x8 downsampled feature maps. The lower is structure of blocks used in

SRKTDN.

work is the same as Detail Refinement Net in TDN. The

network uses an inverse pixel shuffle layer after a 3x3 con-

volution and batch normalization to x4 downsample the fea-

ture map, and uses a 3x3 convolution, a batch normalization

layer, three wide activation block [35], and a 3x3 convolu-

tion to capture details. Finally, the network uses a pixel

shuffle layer to upsample, followed by a batch normaliza-

tion layer and a 3x3 convolution. The wide activation block

uses residual scaling inspired by [33] to prevent training in-

stability, shown in Figure 2. The super-resolution can refine

the result to be clearer on details.

The outputs of dehaze network and super-resolution net-

work go through a tail block to integrate features. The tail

block contains a reflection padding layer, a 7x7 convolution

layer and a tanh layer.

3.2. Objective Function

We implement the loss function with four portions, each

with a specific reason: L1 loss, Laplacian loss, Lab-color-

space L2 loss and Knowledge Transfer loss.

L1 loss. L1 loss is one of the most commonly used loss

functions in various tasks. L1 loss is calculated by the fol-

lowing formula, where I and J refer to the hazy image and



groundtruth, and M(·) stands for the main network.

L1 = |J −M(I)|1

Laplacian loss. Laplacian loss uses Laplacian pyramid

representation of the image and calculates L1 loss for 5 lev-

els [8]. Lj(·) in the following formula is the j-th level of the

Laplacian pyramid representation. Laplacian loss focuses

on edge of the image and prevent the output from blurry to

some extent.

Llap =

5∑

j=1

22j |Lj(J)− Lj(M(I))|

Lab-color-space L2 loss. L2 loss of Lab color space is

used to refine color of the output image. Different from L1

loss, L2 loss pay more attention to pixels that have a rela-

tively high deviation from the groundtruth. Besides, unlike

RGB color space, Lab color space is designed to resemble

human vision. Lab(·) in the following formula refer to the

RGB-to-Lab transformation.

LLab = |Lab(J)− Lab(M(I))|2

Knowledge Transfer loss. Identical to the method pro-

posed in [34], Knowledge Transfer loss is L1 loss between

feature map of dehaze network and the one of teacher net-

work. Knowledge Transfer loss helps the Res2Net101 en-

coder to imitate the teacher’s output, hence learning infor-

mation of haze removal. In the following formula, I ′ and J ′

refer to the output feature map of dehaze network’s first at-

tention module and teacher network’s first attention module

respectively.

LKT = |J ′ − I ′|1

The total loss is calculated using the following formula.

L = λL1×L1+λlap×Llap+λlab×LLab+λKT ×LKT ,

where λL1, λlap, λLab and λKT are coefficients of each loss

function.

4. Experiments

In this section, we clarify training details and the datasets

we used for model training and testing, evaluate and com-

pare our results with other models, and show our ablation

study results.

4.1. Training Details

During training, the images of train dataset are randomly

cropped into 256 × 256 fragments, and augmented with

random rotation and flip, and the fragments are packed into

batches sized 15. The optimizer is Adam optimizer with

β1 = 0.9, β2 = 0.999 and ε = 10−8. The learning rate is

10−4 and is decreased by 0.025 every 4 epochs. We train

400 epochs with 100 iterations for each epoch, and be-

cause the dataset and batch we used is small in size, we

train 100 epochs in train mode to improve generalization

performance, and switch the model to evaluate mode af-

ter 100 epochs to stabilize batch normalization layers. The

coefficients of loss functions are λL1 = 1, λlap = 0.3,

λLab = 0.5 and λKT = 1. The teacher network and

the main network shares identical training method, and we

use parameters pretrained by ImageNet to initialize the en-

coders.

We implement the model by PyTorch 1.7.1 on Ubuntu.

The model is trained with three RTX2080Ti and the training

time is about 8 hours. We augment the input with 90◦ clock-

wise rotation, horizontal and vertical flip to get 8 inputs dur-

ing evaluation and test, and the result is average of output

images. The runtime for one image on one RTX2080Ti is

1.770s on average.

4.2. Datasets

During training and testing, we used NTIRE 2021 Non-

Homogeneous Dehazing Challenge dataset and part of NH-

HAZE dataset [2] as extra data.

The NTIRE 2021 NonHomogeneous Dehazing Chal-

lenge dataset contains 25 pairs of training images, 5 valida-

tion images and 5 test images. The resolution of each image

is 1600x1200. The haze in the hazy images are nonhomo-

geneous, which indicates the density of haze is not evenly

distributed. In the competition, we used 20 pairs of training

images for training and preserve 5 pairs for validation.

NH-HAZE is the nonhomogeneous haze dataset used in

NTIRE 2020 NonHomogeneous Dehazing Challenge [5],

which contains 45 pairs of training images, 5 pairs of vali-

dation images and 5 pairs of test images. The resolution of

each image is 1600x1200. Among the 55 pairs of hazy and

haze-free images, we chose 10 pairs whose image bright-

ness resemble the challenge dataset: the 6th, 8th, 9th, 15th,

23th, 24th, 25th, 40th, 46th and 48th as extra dataset for

model training, in order to augment color and haze density

distribution variety of dataset.

4.3. Evaluation Metrics

For evaluation, we used Peak Signal to Noise Ratio

(PSNR) and Structural Similarity Index (SSIM) as metrics

to evaluate image quality. PSNR and SSIM are often used

for image quality evaluation as criteria in similar tasks. Be-

sides, to evaluate perceptual quality, we also introduced

LPIPS [37] as criterion.

4.4. Ablation Study

To prove the effectiveness of super-resolution network,

we implemented a series of experiments as ablation study.

We analysed the effectiveness of knowledge transfer loss



Table 1. Results of previous state-of-the-art methods and ours on O-HAZE, I-HAZE and NTIRE2021 Challenge dataset

model
O-HAZE I-HAZE NTIRE2021 Challenge

Runtime
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DCP 14.69 0.5779 0.3294 11.53 0.5912 0.3062 11.10 0.5337 0.4208 0.419

AODNet 18.08 0.6514 0.2903 14.95 0.7274 0.2024 15.20 0.6413 0.3103 0.054

FFANet 21.62 0.7381 0.2552 14.33 0.7541 0.2155 20.99 0.8020 0.1825 0.870

MSBDN-DFF 23.72 0.7524 0.2111 19.85 0.8047 0.1510 20.11 0.8004 0.1909 0.437

TDN 23.97 0.7763 0.2327 20.40 0.8484 0.1667 21.24 0.7882 0.1740 0.279×8

Ours(SRKTDN) 24.83 0.7808 0.2407 19.09 0.8397 0.1700 20.13 0.8034 0.1664 0.221×8

Figure 4. The outputs of experiments for ablation study. All is the result with all parts of network and loss function. On the right are the

zoomed-in results of ablation study on super-resolution network, where Dehaze is the result without knowledge transfer loss and super-

resolution network, Dehaze + KT is the result with knowledge transfer loss but without super-resolution network, and Dehaze + KT + SR

is the result with both.

and super-resolution network by following experiments:

train without knowledge transfer loss and super-resolution

network; train with knowledge transfer loss but without

super-resolution network; train with both knowledge trans-

fer loss and super-resolution network. And to evaluate the

effectiveness of loss functions we used, we implemented

some other experiments: train without Laplacian loss and

Lab-color-space L2 loss, train with Laplacian loss but with-

out Lab-color-space L2 loss, and train with both.

Table 2. The results of ablation study. Dehaze is to train only de-

haze network, Dehaze + KT is to train dehaze network with knowl-

edge transfer loss, and Dehaze + KT + SR is to train dehaze net-

work and super-resolution network with knowledge transfer loss.

L1 + KT is to train with only L1 loss and Knowledge Transfer loss,

L1 + KT + Lap is to train with Laplacian loss in addition, and L1

+ KT + Lap + Lab is to train with all loss functions we used.

method PSNR SSIM LPIPS

Dehaze 18.82 0.7631 0.2540

Dehaze + KT 19.35 0.7519 0.2892

Dehaze + KT + SR 20.13 0.8034 0.1664

L1 + KT 20.01 0.7993 0.1634

L1 + KT + Lap 19.70 0.8011 0.1651

L1 + KT + Lap + Lab 20.13 0.8034 0.1664

As is shown in Table 2, it’s obvious that super-resolution

network have tremendous positive effect on SSIM, mainly

because of capturing high-frequency information; and the

improvement from training without knowledge transfer loss

to training with it is not as obvious. Compared to those two

factors, the effectiveness of other loss functions are rela-

tively low. By examining outputs of these experiments, we

can find the outputs are almost identical from a low-level

perspective, but it’s worth notice that results without super-

resolution network have lost high-frequency information.

As is shown in Figure 4, the results of using only dehaze

network and using dehaze network and teacher network are

apparently blurry, while the results of training dehaze net-

work, super-resolution network and teacher network suc-

ceed in detail reservation.

4.5. Comparison with other methods

We have done a number of experiments on previ-

ous state-of-the-art methods to make comparisons between

those methods and SRKTDN. We trained learning-based

models on corresponding datasets for a more accurate com-

parison. The models we used are DCP [18], AOD-Net [23],

FFA-Net [28], MSBDN-DFF [11] and TDN [25].

O-HAZE dataset. O-HAZE [3] is an outdoor real scene



Figure 5. The results on O-HAZE dataset.

Figure 6. The results on I-HAZE dataset.

haze dataset, which was used in NTIRE 2018 Dehazing

Challenge and contains 45 pairs of hazy and haze-free im-

ages of various size. Among these 45 pairs of images,

5 pairs are used as validation dataset and 5 pairs as test

dataset, and the rest is train dataset. We used train dataset

and validation dataset to train models, and test dataset to

validate. During test, because the images are too large, we

cropped the input image in some experiments to prevent

running out of memory.

I-HAZE dataset. Same as O-HAZE, I-HAZE [4] is an

indoor real scene haze dataset, which was used in NTIRE

2018 Dehazing Challenge and contains 30 pairs of hazy

and haze-free images of various size. Among these 30

pairs of images, 5 pairs are used as validation dataset and

5 pairs as test dataset, and the rest is train dataset. We used

train dataset and validation dataset to train models, and test

dataset to validate. During test, because the images are too

large, we cropped the input image in some experiments.

NTIRE2021 NonHomogeneous Dehazing Challenge

dataset. The competition dataset contains 25 hazy im-

ages for training, 5 images for validation and 5 images for

testing. Since groundtruth of validation dataset and test

dataset are not accessible, we picked 5 images among train-

ing dataset as validation dataset, and used the rest to train



Figure 7. The results on NTIRE2021 NonHomogeneous Dehazing Challenge dataset.

models.

Results. The results are shown in Table 1. On real out-

door scene dataset O-HAZE, our method outperformed all

listed methods on PSNR and SSIM, and has a relatively

high performance on LPIPS among these methods. On real

indoor scene dataset I-HAZE, our method’s performance is

only lower than Trident Dehazing Network on PSNR and

SSIM. Since I-HAZE has more objects in images and has

a greater color variety than O-HAZE, dehaze on I-HAZE

dataset is more difficult. As is shown in Figure 5 and Fig-

ure 6, we can find that colors in results of DCP are dis-

torted greatly. AOD-Net failed to remove haze on both O-

HAZE and I-HAZE dataset. The results of FFANet remains

hazy in some parts of cropped images, showing that FFANet

fails to dehaze evenly for each pixel in an image. Although

MSBDN-DFF got the best performance on LPIPS, color

distortion at monochromatic areas in output images can be

seen. Our method still got reasonable results on I-HAZE.

The results on NTIRE2021 Challenge dataset shows that

while our PSNR is lower than TDN and FFANet, our SSIM

and LPIPS outperformed all other methods. As is shown

in Figure 7, the 5th result of us suffered from color dis-

tortion in some area, but the rest 4 results highly resemble

groundtruth. Meanwhile, MSBDN-DFF has a color distor-

tion much severer than us, AOD-Net failed to remove non-

homogeneous haze, mainly due to its dependence on phys-

ical model, and DCP got a wrong color. Although FFANet

got a high PSNR, haze of the 5th image is not successfully

removed. The comparison shows that our method is highly

competitive due to preserving the most details and outper-

forms previous state-of-the-art models on perceptual qual-

ity.

We also recorded runtime for one 1600x1200 image of

each method on one RTX2080Ti during our experiments.

Table 1 shows that although our runtime is relatively low

for one image, the total time is relatively high because we

augmented the input with flip and rotation. Besides, TDN

has a higher runtime than us, and FFANet got an unreason-

ably high runtime per image. Although AODNet has the

shortest runtime, it is not capable of nonhomogeneous de-

hazing tasks.

5. Conclusion

In this paper, we proposed a model, Super Resolution

Knowledge Transfer Dehazing Network (SRKTDN), which

uses knowledge distillation method to transfer knowledge

from teacher network to dehaze network, and uses a super-

resolution network to refine details. By ablation study,

we proved the super-resolution network produce signifi-

cant positive effect on the result, and the method reached

a higher PSNR and SSIM value and a lower LPIPS than the

implementation without this network. We made a compari-

son between our method and various previous state-of-the-

art solutions and drew a conclusion that our model outper-

formed those models on perceptual quality on nonhomoge-

neous dehazing task, and is also capable of homogeneous

haze removal with a high performance.
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