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Abstract

We describe our solution for the NTIRE–2021 High Dy-

namic Range Challenge with Single Frame Track where we

achieved the 3
rd place in terms of muPSNR and the 1

st

place in terms of PSNR. Aiming at this challenge we intro-

duce the Task-specific Network based on Channel Adaptive

RDN(TCRDN) that achieves good performance on the sim-

ilarity with the ground truth. The network is divided into

three subnets: Image Reconstruction(IR), Detail Restora-

tion(DR) and Local Contrast Enhancement(LCE). Each

subnet processes its own task, and results are fused to pro-

duce the HDR output. We carefully design these subnets so

that they are properly trained for their intended purpose:

detail restoration in the IR subnet and contrast enhance-

ment in the LCE subnet. The Channel Adaptive RDN is a

novel network working as the subnet backbone that com-

bines the classic Residual Dense Network(RDN) and the

Gate Channel Transformation layer. The L1 loss is used

for training the network and the final model can balance

the trade–off between PSNR and muPSNR for high perfor-

mance in the competition’s task.

1. Introduction

HDR images are capable of capturing rich real-world

scene appearances including lighting, contrast and details.

However, consumer-grade digital cameras can only cap-

ture images within a limited dynamic range due to sen-

sor constraints. The most common approach to generate

HDR images is to merge multiple LDR images captured

with different exposures [1]. Such a technique performs

well on static scenes but often suffers from ghosting arti-

facts on dynamic scenes or hand-held cameras. Further-

more, capturing multiple images of the same scene may

not always be feasible [8].Single-image HDR reconstruc-

tion aims to recover an HDR image from a single LDR in-

put. The problem is challenging due to the missing infor-

mation in under-/over- exposed regions. Recently, several

methods [3, 4, 9, 15, 13] have been developed to reconstruct

an HDR image from a given LDR input using deep convo-

lution neural networks(CNNs). However, learning a direct

LDR-to-HDR mapping is difficult as the variation of HDR

pixels is significantly higher than that of LDR pixels.

The challenge on High Dynamic Range proposed within

the 2021 CVPR workshop on New Trends in Image

Restoration and Enhancement workshop and challenges

(NTIRE–2021) was the first in its kind to tackle this prob-

lem. That is, the task of recovering an HDR image from one

or multiple input Low Dynamic Range (LDR) images that

are affected by noise, quantization errors, and might suf-

fer from over- and under-exposed regions due to the sensor

limitations. The provided datasets is composed of a varied

number of scenes, comprising outdoors and indoors scenes,

including both daylight and nightlight scenes, with an em-

phasis on complex moving lights and a very wide range of

brightness levels within the same scene (e.g. high radiance

light sources such as lamps combined with very dark shad-

owed areas). The datasets is a subset of images selected

from the HdM HDR datasets (captured with a two Alexa

Arri cameras with a mirror rig) where the respective LDR

triplets are generated by applying a degradation model (e.g.

exposure gain, noise addition and quantization, clipping) to

three consecutive frames. Two tracks were proposed in the

competition and we joined in the track 1:

• Track 1: Single Frame HDR, the aim is to obtain a

solution capable to produce the HDR results with the

best fidelity to the ground truth by one image input.

• Track 2: Multiple Frames HDR, the aim is to ob-

tain a solution capable to produce HDR results with

the best fidelity to the ground truth by three different

exposure images input.

For the fidelity evaluation, the standard Peak Signal to
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Noise Ratio (PSNR) is directly computed in the output im-

ages, and the muPSNR is also a kind of PSNR computed in

the mu-law tone-mapped images. The PSNR and muPSNR

are both expected above the average for the top rank HDR

solutions in the competition.

In the Single Frame HDR track, we identified two ma-

jor challenges: image content enhancement, due to the

image denoising and image content similarity; and HDR

enhancement, due to the dynamic range expanding and

bit depth increasing. Our solution was built upon the

Task-specific Network based on Channel Adaptive RDN

(TCRDN) network [11], combining both the Task-specific

Network and the RDN Network. First, Task-specific net-

work is the architecture of JSI-GAN proposed by Kim et al,

and gets favorable performance on single image HDR en-

hancement [6]. And second, the Channel Adaptive RDN,

which combines the classic RDN [16] and the Gate Channel

Transformation layer [14], can improve the fidelity on im-

age enhancement and make training stable by hierarchical

features learning and channels relationship analyzing.

Despite the good performance of JSI-GAN, it has ob-

vious problems of high complexity and training difficulty.

Our main contribution is to redesign an HDR network fol-

lowing the JSI-GAN, and make it easy and stable for train-

ing and deploying. We summarize our contributions as fol-

lows:

• We propose to combine the RDN and Gate Channel

Transformation layer to generate the novel network of

Channel Adaptive RDN.

• We propose to simplify all the subnet of JSI-GAN gen-

erator with Channel Adaptive RDN and reproduce a

new Task-specific network.

2. Network Architecture

The network architecture is basically based on the clas-

sical theory of single image HDR enhancement. The theory

can be described by the following equations [2]:

Iblur = BLUR(Iori) (1)

Idetail = Iori/Iblur (2)

IHDR = Iblur ∗ coef + Idetail (3)

For single image HDR enhancement, the blur image Iblur is

calculated from input image Iori by classic blur filter such

as Gaussian Filter or Bilateral Filter, and the detail image

Idetail can be obtained by division between Iori and Iblur.

At last, the HDR image output IHDR is calculated by equa-

tion (3).

The Task-specific network for single image HDR is de-

signed with the equations above. The diagram of the ar-

chitecture is shown in Fig 1. Similar with the JSI-GAN,

the TCRDN architecture is composed of Image Reconstruc-

tion(IR) subnet that reconstructed the coarse HDR image,

Detail Restoration(DR) subnet that restored the image de-

tails to be added on the coarse HDR image, and Local

Contrast Enhancement(LCE) subnet that generated the lo-

cal contrast mask to boost the contrast in this image. For

each subnet, the LDR image is directly input to the IR sub-

net, the guided filter is used for getting the blur image by

filtering the LDR image, and the blur image is input to LCE

subnet, the detail image that input to DR subnet is generated

by subtraction between LDR image and blur image, that is

different with JSI-GAN which gets the detail image by di-

vision.

The Channel Adaptive RDN has been deployed for each

subnet, that designed by classic RDN [16] network with

the Gate Channel Transformation(GCT) layer added to each

RDB block. The RDB block shown in Fig 2 is the classic

residual dense block architecture and set by 6 dense-layers,

channel growth rate of 32, the input and output channels of

64, the convolution filter of 3 × 3 and stride 1. Based on

the classic RDN architecture, the image input is filtered by

two 3x3 convolution layers for shallow feature extraction,

and output 64 channels. After the three RDBs, the output

channels of each RDB are concatenated. Therefore, the 1x1

convolution layer is used to reduce the channels to 64, and

the 3x3 convolution layer is used to global feature fusion.

At last, the output features by the first convolution and the

global features are added to learn the global residual, and

the global residual is filtered by the last 3x3 convolution

layer to output the HDR result.

The GCT layer is a method that can create competition or

cooperation relationship among the channels, and optimize

the convolution weight towards more accurate for their task.

It includes three parts called Global Context Embedding,

Channel Normalization and Gating Adaptation, shown in

Fig 3. The Global Context Embedding is used to aggregate

global context information in each channel, as the informa-

tion with a large receptive field is useful to avoid local am-

biguities [5, 12] caused by the information with a small re-

ceptive field (e.g., convolution layer). Given the embedding

weight α = [α1, ..., αC ], the module is defined as:

sc = αc ∥ xc ∥2= αc{[
H∑

i=1

W∑

j=1

(xi,j
c )2] + ϵ}0.5 (4)

where xc is the channel of features, ϵ is a small constant to

avoid the problem of derivation at the zero point.

Channel Normalization is the method that can create

competition relationship between neurons (or channels) [7]

with lightweight computing resource and a stable training
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Figure 1. Task-specific Network based on Channel Adaptive RDN (TCRDN)

Figure 2. RDB Architecture [16]

Figure 3. GCT Architecture [14]

performance. The l2 normalization is created to operate

across channels. Let s = [s1, ..., sC ], the formula of chan-

nel normalization is:

ŝc =

√
Csc

∥ s ∥2
=

√
Csc

[(
C∑

c=1

s2c) + ϵ]0.5
(5)

where ϵ is a small constant. The scalar
√
C is used to nor-

malize the scale of ŝ, avoiding a too small scale of ŝ when

C is large.

The gating mechanism is used to adapt the original fea-

ture. By introducing the Gating Adaptation, the GCT layer

can facilitate both competition and cooperation during the

training process. Let the trainable gating weight γ =
[γ1, ..., γC ] and the trainable gating bias β = [β1, ..., βC ],
the gating function is:

x̂c = xc[1 + tanh(γcŝc + βc)] (6)

With the combination of Task-specific architecture, RDN

and GCT modules, the solution proposed can tackle the sin-

gle image HDR task effectively and obtain favorable perfor-

mance in the competition.

3. Training and Inference

For the HDR competition, the PSNR is the key parame-

ter for model evaluation. Therefore, we use L1 loss function

and Adam optimizer to train the model. The L1 loss func-

tion is defined as follow:

L =
1

N

N∑

i=1

| Iipred − Iigt | (7)

For fidelity of the competition, PSNR and muPSNR are

available for the model performance evaluation. The PSNR
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Figure 4. Example outputs and performance for image 00647.png in the HDR training set that were used only for validation

Figure 5. Example outputs and performance for image 00969.png in the HDR training set that were used only for validation

of the normalized images is defined as follow:

PSNR = −10 log
10
[
1

N

N∑

i=1

(Iipred − Iigt)
2] (8)

where the images of Ipred and Igt are the prediction HDR

image and ground truth HDR image normalized to the max

value of the ground-truth HDR image.

The muPSNR is the PSNR of normalized images by mu-

law tone mapping, that is defined as follow:

MU(I) =
log(1 +mu ∗ tanh(I))

log(1 +mu)
(9)

muPSNR = −10 log
10
[
1

N

N∑

i=1

(MU(Iipred)−MU(Iigt))
2]

(10)

where MU(I) is the tone mapping function of image I ,

mu = 5000 is the parameter controlling the compression

performed during tone mapping. The images of Ipred and

Igt are the prediction HDR image and ground truth HDR

image normalized to the 99 percentile of the ground-truth

HDR image.

During the training stage, we used the validation images

to calculate the PSNR and muPSNR for every epoch, and

saved the model with corresponding PSNR and muPSNR.

It is convenient to observe the of training convergence and

finding the best model for fidelity performance.

For inference stage, we first produce four different im-

ages as input, that are original input, flip horizontal input,

flip vertical input and 180 degree rotating input. We input

the four images to the model, align the output images to the

original image, and calculate the average image as the final

output.

4. Experiments

4.1. Settings

We run training and testing the task on Tesla V100

GPUs. We randomly chose 60 images in different scenes

from the training set for validation during training. We

trained using patch size 160 × 160. We trained our model

using Adam optimizer with constant learning rate 10−4. We

set the batch size to 1 patch, and training epoch is 300. After
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Rank muPSNR PSNR

1
st 34.80 32.87

2
nd 34.74 32.29

3
rd(ours) 34.41 33.49

Table 1. NTIRE 2021 HDR competition result with top 3 on Single

Frame track [11].

every epoch we run the validation of our 60 images.

4.2. Performance

We report a running time about 1.0 [s] to process a LDR

image (1900 × 1060) on a Tesla V100 GPU, without using

the multi-input inference approach. For our submissions we

use the system in the slowest mode, which uses multi-input

inference approach. By using this approach it takes 4.7[s]
to process a 1900× 1060 image. The multi-input approach

gives a slight increase in PSNR(about 0.15dB). The settings

used for the competition are purposely not practical for ap-

plications as they focus exclusively on image quality.

4.3. Challenge Results

The Single Frame HDR track of the NTIRE 2021 HDR

challenge had 120 participants, with 7 finalists submitting

results for the test stage. As shown in Table 1, our results

obtained the 3
rd place, with an average muPSNR of 34.41

dB in the full output images of the test set. This is, 0.39 dB

below the top score winner. For PSNR score, we obtained

the 1
st place, with an average PSNR of 33.49 dB in the

full output images of the test set, that is 0.62 dB ahead to

the 2
nd place. Compared with the top 3 scores, the differ-

ence between muPSNR and PSNR of our solution is about

1dB, and it is more than 2dB for the other two solutions.

Therefore, our solution seems more balance on fidelity per-

formance than other solutions for Single Frame HDR track.

Figures 4 and 5 show examples of our best results for the

fidelity of Single Frame HDR track on images used for val-

idation during our training process. These images show the

values of PSNR/muPSNR for measuring fidelity, and the

significant PSNR proves that the TCRDN has good abil-

ity for image de-noising. For the images 00647.png and

00969.png, we observe that our results restore more de-

tails at over-exposure area and reduce noise obviously. For

image 00647.png, the brightness is very high especially

at the area of lamp bulb, but our output shows that the over-

exposure area is restored and more details are displayed

which similar to the ground truth. For image 00969.png,

the flame area of the input image is saturated and lost the

detail information. Therefore, our model can not restored

all the details well. The saturation problem can be solved

by GAN [6]. According to the fidelity evaluation for com-

petition, we didn’t use GAN to generate more details as the

Variant muPSNR PSNR

IR 34.18 35.87

IR+DR 33.72 36.22

IR+LCE 33.97 36.59

IR+DR+LCE 34.83 36.41

Table 2. Ablation study on the subnets.

Method muPSNR PSNR

ExpandNet [10] 30.44 31.49

TCRDN 34.83 36.41

Table 3. Quantitative Comparison.

GAN may randomly generate details at other area that lead

to the PSNR reduction. However, the GAN is still available

for practical application of single image HDR.

We also performed the an ablation study on three sub-

nets in TCRDN, by retraining different variants of the net-

work. Table 2 shows the muPSNR/PSNR performance of

four combinations(variants) of the three subnets, where the

IR subnet is essential for all cases. The muPSNR/PSNR

performance is evaluated by the same validation images of

the competition datasets.

As shown in Table 2, employing the DR subnet to the

IR subnet brings 0.35 dB gain in PSNR, and additionally

using the LCE subnet, further increases the PSNR by 0.19
dB, resulting in a total 0.54 dB gain over only using the IR

subnet. It is also noted that employing the LCE subnet to

the IR subnet achieve the better PSNR than three subnets

combination. That means, the LCE subnet is significantly

beneficial with the IR subnet in PSNR. However, the three

subnets combination achieves significantly better muPSNR

than other variants of subnets. Employing the LCE sub-

net or the DR subnet to the IR subnet suffers the muPSNR

reduction compared to the IR subnet only. Therefore, the

architecture of the TCRDN with the three subnets combina-

tion is more suitable for muPSNR than other variants of the

network, and that’s why the TCRDN architecture is decided

to deploy in the competition.

The Table 3 shows the quantitative comparison be-

tween TCRDN and ExpandNet [10]. The ExpandNet is

also a Task-specific architecture for single image HDR en-

hancement with Local Branch, Dilation Branch and Global

Branch. The standard ExpandNet is trained with the HDR

competition datasets, and test the model with the best

performance epoch as the TCRDN. As shown in Table

3, TCRDN is obviously better than ExpandNet in both

PSNR/muPSNR. That means, TCRDN has better perfor-

mance of fidelity than ExpandNet.
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5. Conclusion

In this paper, we proposed a novel network called

TCRDN that achieved the good performance of fidelity in

NTIRE 2021 HDR competition. The TCRDN is combined

the Channel Adaptive RDN to Task-specific architecture

designed according to the classic HDR enhancement the-

ory. The result of the competition shows that, for the single

image HDR enhancement, TCRDN has its own advantage

for fidelity performance and over-exposure area adjustment.

However, for saturation area, the TCRDN can’t restore the

losing details very well. Therefore, we will focus on the

GAN training method that can make the model generate

more details in saturation area, and optimize the network

to make it suitable for practical applications.
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