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Abstract

Burst image super-resolution is an ill-posed problem that

aims to restore a high-resolution (HR) image from a se-

quence of low-resolution (LR) burst images. To restore a

photo-realistic HR image using their abundant information,

it is essential to align each burst of frames containing ran-

dom hand-held motion. Some kernel prediction networks

(KPNs) that are operated without external motion compen-

sation such as optical flow estimation have been applied to

burst image processing as implicit image alignment mod-

ules. However, the existing methods do not consider the

interdependencies among the kernels of different sizes that

have a significant effect on each pixel. In this paper, we

propose a novel weighted multi-kernel prediction network

(WMKPN) that can learn the discriminative features on

each pixel for burst image super-resolution. Our experi-

mental results demonstrate that WMKPN improves the vi-

sual quality of super-resolved images. To the best of our

knowledge, it outperforms the state-of-the-art within ker-

nel prediction methods and multiple frame super-resolution

(MFSR) on both the Zurich RAW to RGB and BurstSR

datasets.

1. Introduction

Recently, burst image processing algorithms [3, 1, 21,

10, 25, 29, 30, 48, 42] have been introduced to be utilized

for various applications in computer vision tasks. Burst im-

ages captured with the fast shutter speed of the cameras are

generally used to express the continuous motion of the ob-

jects. The image devices such as mobile phone cameras for

capturing burst images become more portable and smaller,

the spatial resolution of the image sensor also goes limited.

Burst image super-resolution [9, 6, 3, 2] attempts to over-

come this limitation by estimating HR images in certain

applications such as surveillance [33, 46, 23] and compu-

tational photography [28, 45]. It takes advantage of being

able to utilize abundant information from multiple frames,

but it is necessary to consider that each multi-frames con-

tains shot noise from short exposure of the camera and ran-

(a) Reference Image (b) GT (c) MKPN (d) Ours

(e) Heatmaps of multiple kernels on a sequence of burst frames

Figure 1: (top) Qualitative results of MKPN [29] and our

model. Weighted multi-kernel prediction helps our model

to restore the high-frequency details compared to [29]. (bot-

tom) Visualization of activated values for different sizes of

kernels S ∈ {1, 3, 5, 7} (each column) on the center pixel of

the red box in (a) using [29] and ours, respectively (first row

and second row). We find that several kernel values, which

are implicitly important for image restoration, are empha-

sized with higher activation values.

dom hand-held motion [43] among a sequence of burst im-

ages.

The recent advances of Multi-Frame Super-Resolution

(MFSR) make it possible to utilize abundant information

of multiple images through several alignment modules.

[26, 4, 38, 40, 3] show outstanding performance with the

methods based on optical flow estimation as image align-

ment modules. Despite these approaches, the potential

problem which can lead to artifacts for image restoration

still exists in real-world applications [16, 39, 5] due to the

errors in estimated optical flow. In contrast, the kernel pre-
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diction network (KPN) [30] alleviates this issue by utilizing

the implicit alignment module for burst image processing.

KPN predicts the kernels existing for each spatial loca-

tion corresponding to each temporal image and these ker-

nels are used to be convolved with the input of burst im-

ages. As the further improvement of KPN, it is followed by

multiple kernel prediction network (MKPN [29]) to acquire

various receptive field sizes [24].

However, the existing MKPN method does not take into

account the interdependencies between multiple kernels.

MKPN utilizes the kernels which are averaged based on the

largest size of them. It implies that the different sizes of

kernels are treated equally. In previous works [13, 50], they

pointed out that lack of discriminative learning ability hin-

ders the representation power of deep networks. To solve

this problem, each of the weights corresponding with the

channel of the feature maps is utilized as explicit constraints

to learn discriminatively the global distribution of channel-

wise feature response and increase the performance.

Therefore, we address this issue with a novel weighted

multi-kernel prediction network (WMKPN), which can lead

to restoring the high-quality images, while considering the

interdependencies between multiple kernels by assigning

the global weights for each of them.

In this paper, we propose a weighted multi-kernel pre-

diction to address this issue and enhance the existing kernel

prediction method. We developed a dynamic and discrim-

inative mechanism, which helps multiple kernels to learn

the interdependencies among the different sizes of kernels.

Predicted weights for each kernel induce the model to dis-

criminatively aggregate the features from each kernel and

improve the image quality of the reconstructed HR image.

The contributions of this paper are summarized as follows:

• We introduce a weighted multi-kernel prediction that

can allow the model to induce to learn the interde-

pendencies among the different sizes of kerenl using

global weights for each of them and align the LR fea-

tures without external motion compensation such as

optical flow estimation.

• We propose a novel burst image super-resolution

framework that is an end-to-end network utilizing the

WMKPN as a powerful alignment module.

• Extensive experiments with various KPN methods are

conducted in both Zurich RAW to RGB [15] and

BurstSR dataset [3]. We improve the performance of

the existing method while outperforming the state-of-

the-art MFSR architecture with public metrics on im-

age restoration.

2. Related Work

Multi-frame Super Resolution MFSR aims to reconstruct

HR images from multiple LR frames containing the same

scene. Farsiu et al. [11] design a hand-crafted MFSR al-

gorithm that is robust to motion blur and noise by using

the L1 norm. [6] concentrates pre-processing step that is

composed of blur image filtering, denoising, and alignment

rather than the SR step that is implemented by bicubic up-

sampling and merged with the L2 norm [11]. Reddy et

al. [34] also use a two-step approach to solve the MFSR

problem in the Ocular Biometrics domain. It uses a dis-

crete cosine transform interpolation filter to perform up-

scaling and denoising, followed by deep learning-based de-

blurring. Kawulok et al.[18] propose a method of mapping

multi-frame images to multiple HR images using SRRes-

Net [22] before the EvoIM [17] process. HighRes-net [7]

extracts the features of LR frames into the latent represen-

tations using an encoder that is a recursive scheme. The

single global encoding is fed to the decoder that is followed

by ShiftNet and Lanczos resampling to reconstruct. Deep-

SUM [31] leverages the registration filter that is the output

of RegNet to fuse HR images from multiple feature maps.

RAMS [36] harnesses attention mechanisms which are tem-

poral and feature attention in the architecture. The model is

composed of RFAB and RTAB that contain 3D and 2D con-

volution respectively. Bhat et al. [3] propose a novel deep

learning-based BurstSR method that aligns burst frames us-

ing optical flow vectors and fuses images with an attention

mechanism.

In this paper, we focus on burst image super-resolution

covering RAW burst LR images acquired from hand-held

cameras such as Wronski et al. [43]. Our method is differ-

ent from the above methods in terms of alignment module

that is inspired by the kernel prediction network. [30]

Kernel Prediction Network Given a sequence of burst im-

ages, the model generates per-pixel kernels that are con-

volved with the input frames to produce high quality im-

ages. It can be used as efficent image alignment mod-

ules that can implicitly capture the motion from burst im-

ages without external motion compensation. Since the KPN

achieved improvements, several KPN based methods have

been proposed. MKPN [29] uses the different sizes of

the kernel with separable convolution and kernel fusion

for computational efficiency. AME-KPNs [48] predict spa-

tially adaptive kernels and weight maps to consider spatial-

temporal components. In the Xia et al [44], inspired by

self-similarity, model extracts 3D kernel basis and coeffi-

cient maps to reduce the computational costs.

We exploit KPN that can be used as the alignment mod-

ule before the SR phase which reconstructs the HR image

from the feature maps.

3. Method

The proposed model takes multiple LR RAW burst im-

ages with noise {bi}
T

i=1 where T is the burst length and
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Figure 2: The total architecture of the proposed framework with WMKPN. Predicted images from WMKPN are concatenated

in channel dimension for exploiting abundant information to be provided for the SR network

predicts denoised single HR RGB image IHR. Inspired by

the success of KPN [30] for burst image processing, we em-

ploy it as the backbone of our architecture for the image

alignment. Our overall model as shown in Figure 2, con-

sists of two significant parts: A module that aligns the burst

of image and a network that increases the resolution of im-

ages while fusing the output of the align module.

Input of burst images are fed into the modified U-net as

shown in Figure 3, which can be formulated as:

I(x, y) = HWMKPN (Fconcat({bi}
T

i=1)(x, y)) (1)

where Fconcat(·) denotes function of concatenation in chan-

nel dimension and I(x, y) where (x, y) means spatial lo-

cations is the output of the modified U-net before splitting

into two branches as illustrated in Figure 3. The accumu-

lated kernels are estimated by using outputs from each of

two branches as shown in Eq. 9. The estimated kernels are

then directly convolved with the input to generate T images,

which is described in Eq. 2:

Îi(x, y) = K̃i(x, y) ∗ Pi(x, y) (2)

Here Îi(x, y) is the output of WMKPN. K̃i(x, y) is accu-

mulated kernel and Pi(x, y) is patch of the input image.

Îi(x, y) are provided for the SR reconstruction network af-

ter being merged into channel dimension, which can be for-

mulated as:

M = FSR(Fconcat(Îi(x, y))) (3)

Before the prediction of the single HR RGB image, global

residual skip connection [19] is utilized to help the model

to restore the high frequency of image, as shown in Eq. 4:

Mres = Hres(Fconcat({bi}
T

i=1)) (4)

The last convolution layer is used to predict the final RGB

output image from integrated information. as shown in Eq

5.

ISR = Conv(M +Mres) (5)

where + means the element-wise addition for global resid-

ual learning.

3.1. Separable Kernel Estimation

KPN estimates the s2 parameters for each pixel in the

image where s is kernel size. It can be a burdensome task

in terms of computation and memory consumption. The

separable kernel estimation [29, 32] is leveraged to alleviate

this issue and It can be formalized as follows:

Ks
i (x, y) = ksi1(x, y)⊗ ksi2(x, y) (6)

where Ks
i (x, y) is estimated kernel from separable kernel

estimation. ksi1(x, y), k
s
i2
(x, y) are the pairs of one by s di-

mensional kernels that are predicted from the image. s × s

kernel can be obtained from the outer product operation.

This method helps model to reduce s2 memory consump-

tion costs to 2s.

3.2. Weighted MultiKernel Prediction

Inspired by comprehensive experiments, [24] show that

multi-scale information is crucial to restoring high image

quality. For this reason, the different sizes of multiple ker-

nels are also widely used for burst image processing. How-

ever, existing multi-kernel prediction methods [29] treat
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Figure 3: Overview of the WMKPN architecture. The input of our network is a sequence of burst that has T burst length (T

= 14) and C channels (C = 4) per single burst image. The network is split into two branches i.e. kernel prediction branch and

kernel weight branch.

multiple kernels equally, which does not consider the inter-

dependencies among the different sizes of multiple kernels

that are computed by each pixel. We propose our WMKPN

which is an extension of [29] to deal with this issue.

The architecture of WMKPN is illustrated in Figure 3.

In the encoder part, the spatial sizes of the feature maps are

reduced by the average pooling layer. On the other side,

the decoder increases the spatial sizes of the feature maps

by a bilinear upsampling layer. In addition, we exploit the

attention module, proposed in [48], which is composed of

a series of the channel attention (CA) [50] and the spatial

attention (SA) [14]. Also, encoded feature maps are con-

catenated to the decoder side that have the same spatial

sizes like U-net architecture [35]. This modified U-net is

split into two branches i.e. kernel prediction branch, kernel

weight branch which predicts kernels and weights, respec-

tively and it can be formulated as:

Ks
i (x, y) = Bk(Ii(x, y)), w

s
i (x, y) = Bw(Ii(x, y)) (7)

where Bk is kernel prediction branch and Bw is kernel

weight branch. Bk extracts 2p * 3TC channels where p,

T, C are the sum of different kernel sizes (e.g. p = 1 + 3

+ 5 + 7 = 16), length of the sequence of burst and channel

of the single input burst image, respectively. On the other

branch, kernel weights that have 3TM output channels are

extracted where M means the number of different sizes of

the kernel (e.g. M = 4, S ∈ {1, 3, 5, 7}) where S is different

sizes of kernels and we additionally use 3 sets of filters to

make output have 3 channels.

Next is the weighted multi-kernel prediction which is

conducted on a pixel by pixel as shown in Figure 4. First,

extracted feature maps from each branch are reshaped in the

temporal dimension. In the case of one spatial pixel that is

from a temporally reshaped tensor, multiple kernels which

𝑊𝐻

𝐻 𝑊 2𝑝 ∗ 3𝑇𝐶

3𝑇𝑀

𝑇

𝑇

3Multiple kernels

Weights

Reshape

Element-wise Sum & Avg

Multiplication

Zero paddingConvolution

Feature map

Single input image Accumulated kernel Intermediate output

⨉

3⨉

Figure 4: The procedure of weighted multi-kernel predic-

tion. Feature maps from each of two branches are utilized

to estimate the accumulated kernel. In the case of the pro-

cess for a spatial pixel location, reshaped feature maps that

come from the kernel prediction branch are multiplicated

by corresponding to those of reshaped feature maps that are

estimated by the other branch. The accumulated kernels are

calculated by summation and average of zero-padded mul-

tiple kernels. After that, the predicted kernels are convolved

with the input of burst images.

have C channel dimension can be generated by separable

convolution. Similarly, kernel weights that correspond to
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each kernel also can be obtained from the kernel weight

branch. To provide a discriminative mechanism, kernel

weights are normalized with the softmax operator where it

is applied in M dimension, which can be formulated as:

W̃i =
ewi(x,y)

∑

j e
wj(x,y)

(8)

The multiple kernels obtained in the kernel prediction

branch are multiplied by the corresponding kernel weights.

The weighted kernels are then added and averaged after zero

padding for element-wise calculation, which can be formu-

lated as:

K̃i(x, y) =
1

|S|

∑

s∈S

Ks
i (x, y) · W̃

s
i (x, y) (9)

After that, The accumulated kernel is convolved with the

input of burst image, as shown in Eq. 2. This kernel allows

the model to learn the interdependencies among the multi-

ple sizes of kernels, therefore, increases the performance of

the network.

3.3. SR Reconstruction Network

We leverage the residual blocks (RBs) with local skip

connections which are exploited in enhanced deep SR

(EDSR) network [27]. For utilizing abundant informa-

tion of features, this network takes T temporarily aligned

and concatenated images that come from the output of

WMKPN. SR network extracts deep features without up-

sampling the spatial size for efficient computation and

speeding up the SR process [8]. This network is composed

of tens of RBs and three sub-pixel convolution layers [37]

to upsample the resolution of the image.

3.4. Loss Funcution

In several super-resolution literature, they use a simple,

L1 or L2 loss for better HR reconstruction. Some compre-

hensive experiments [51] in image restoration tasks show

that L2 loss tends to give strong penalty to outliers, which

leads to poor image quality. Therefore, we utilize the L1

loss for reconstruction loss, which can be formulated as:

LSR =
1

N

N
∑

i=1

∣

∣

∣

∣

∣

∣
HSR({bj}

T

j=1)− IiHR

∣

∣

∣

∣

∣

∣

1
(10)

where HSR is our total network for burst image super-

resolution.

Perceptual loss functions such as VGG loss [22] or the

structural similarity index measure (SSIM) [41] loss are

also utilized to train the model for visual qualitative results.

SSIM loss is motivated by SSIM that takes into account

contrast, structure and luminance of the images, which can

be expressed as:

LSSIM (P ) =
1

N

∑

p∈P

1− SSIM(p) (11)

defined via the dependence of means and standard devia-

tions on pixel p that is in some boundary region P.

In this paper, we use two loss functions that are com-

posed of the mean absolute error (MAE) and the SSIM loss

to train our model. Utilizing these two loss functions, the

total loss function is computed as follows:

LTotal = λSR ∗ LSR + λSSIM ∗ LSSIM (12)

where λSR and λSSIM are coefficients as hyper-parameters

which are assigned to each loss function for a balanced

learning scheme of consistency and visual quality.

4. Experiments

4.1. Dataset

We evaluate our model on both the synthesized Zurich

RAW to RGB [15] and BurstSR datasets [3]. The syn-

thetic datasets have 46839 HR RGB images for training,

1204 images for testing. To obtain the pair of synthesized

LR burst images and HR RGB images, ground-truth im-

ages are warped by affine transform that includes rotation

and translation, utilizing several camera pipeline parame-

ters i.e. color correction matrix, color gains, gamma expan-

sion, etc. Those HR images are downsampled with bilinear

downscale degradation models.

Meanwhile, the BurstSR datasets have 200 RAW burst

sequences with their corresponding HR RGB images. Con-

figuration of datasets is 160 images for training, 20 for val-

idation, 20 for the test, respectively. LR burst sequences

are acquired in identical settings of devices such as Sam-

sung Galaxy S8 mobile phone camera. HR RGB images

as ground-truth are collected by Canon 5D Mark 4 DSLR

camera.

4.2. Training settings

We implement our SR framework based on WMKPN in

PyTorch and use an Nvidia Titan V to train the model with

a batch size of 8. Each batch has 14 LR noisy burst frames

and HR RGB images that are flipped and randomly cropped

to make the sizes of patches (48 × 2) s × (48 × 2) s where s

is the upsampling scale factor. Our network is trained with

Adam optimizer [20] where β1 = 0.9, β2 = 0.999, ǫ = 10−8.

The learning rate is initialized as 1 × 10−4 and reduced to

half for every 30 epochs.

4.3. Evaluation metrics

All downsampled images including validation and test

datasets are super-resolved to a scale of 4. The recon-

structed images are evaluated by the Pixel Signal to Noise
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Ratio (PSNR), the Structural Similarity Index Measure

(SSIM), and Learned Perceptual Image Patch Similarity

(LPIPS) [49]. For the PSNR metric, we ignore the bound-

ary forty pixels to measure the image quality. SSIM score

is calculated for each channel and then averaged. LPIPS

is also used to measure the perceptual similarity between

output images and ground truth.

5. Experimental Results

5.1. Ablation Study

Alignment Loss Inspired by KPN as powerful alignment

tools, we utilize the KPN as a baseline of our model for the

alignment module of our super-resolution framework. Sev-

eral networks such as MKPN and AWE-KPNs derived from

KPN exploit the annealed loss to prevent kernels existing

in each temporal frame from being biased to the reference

frame. We experiment on the annealed loss as alignment

loss to investigate the impact of it in our case. The loss

is calculated for the difference between the predicted in-

termediate output from WMKPN and LR ground-truth im-

ages from the bilinear downsampled from the HR ground

truth images. To match the number of channel dimensions,

the intermediate feature maps from WMKPN are summated

and averaged over the temporal axis. We report the quanti-

tative results on the test set of Zurich RAW to RGB datasets.

We find that alignment loss has no remarkable changes and

even reduces the performance of the architecture as shown

in Table 1. These results allow us to design the final loss

function for our framework.

Impact of Abundant Features In our burst super-

resolution framework, the intermediate outputs from

WMKPN are concatenated in channel dimension and then

fed to the SR reconstruction network that is composed of

several residual blocks. Aligned features that are calcu-

lated by kernels for each temporal frame are provided after

concatenation in channel-wise to allow the SR network to

fully utilize the aligned features. We observe that utilizing

the aggregated feature maps before being provided for the

SR reconstruction network increases the performance of our

model.

Weighted Kernel Prediction We analyze the impact of the

weighted kernel prediction module on our super-resolution

framework. We compare our WMKPN with the method that

does not use the weighted kernel. As the results are shown

in Table 1, we find that the model with PSNR of 36.5641dB,

considering the weights for multiple kernels outperforms

the comparison model with PSNR of 36.3066dB. These ex-

periment results imply that the interdependencies among

the multiple kernels affect the performance of our architec-

ture in our task.

Method PNSR SSIM LPIPS

Alignment Loss 36.4742 0.9105 0.1185

No Concat 36.3811 0.9095 0.1200

WMKPN - W 36.3066 0.9059 0.1288

WMKPN 36.5641 0.9120 0.1172

Table 1: Ablation study on a synthetic dataset, investigating

the model that can lead to the best performance of our re-

sults. All values are reported in terms of averaged score on

test set. Bold indicates the best score on this table.

Method PSNR SSIM LPIPS

Synthetic dataset

KPN 36.2047 0.9046 0.1319

EfDeRain 36.1701 0.9044 0.1303

MKPN 36.2895 0.9056 0.1302

AWE-KPNs 36.3054 0.9063 0.1286

WMKPN 36.5641 0.9120 0.1172

WMKPN* 36.8959 0.9170 0.1095

BurstSR

KPN 41.6928 0.9562 0.0785

EfDeRain 41.6091 0.9548 0.0856

MKPN 41.6972 0.9562 0.0780

AWE-KPNs 41.7260 0.9564 0.0777

WMKPN 41.8740 0.9585 0.0746

WMKPN* 41.8472 0.9584 0.0745

Table 2: Comparison of other KPN approaches with our

proposed model. WMKPN* means the other version of our

model that uses the concatenation of different sizes of the

kernels without exploiting the kernel fusion that is proposed

in [29]. Bold and underline indicate the best and the second-

best score respectively.

Method PSNR SSIM LPIPS

Bilinear 26.4749 0.7337 0.1410

HighRes-net 41.3086 0.9520 0.0881

RAMS 41.5722 0.9555 0.0916

WMKPN 41.8740 0.9585 0.0746

Table 3: Comparison of the existing MFSR architecture

with our proposed model in BurstSR dataset.

5.2. Comparison with other KPN approaches

Next, we report the results of different KPN architec-

tures on the test set of both the synthetic dataset and the

BurstSR dataset. We compare with the other four models:

i) KPN that introduces the kernel prediction network for

burst image denoising, ii) EfDeRain [12] that propose the

enhanced version of KPN with dilated convolution [47] for

efficient deraining, iii) MKPN using the multiple kernels to
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(a) Reference (b) GT (c) KPN (d) EfDeRain (e) MKPN (f) AWE-KPNs (g) Ours

Figure 5: Qualitative comparison of different KPN methods on synthetic dataset.

(a) Reference (b) GT (c) Bilinear (d) HighRes-net (e) RAMS (f) Ours

Figure 6: Qualitative comparison of MFSR model on BurstSR dataset.

have various receptive field. iv) AWE-KPNs utilizing the

attention module on the modified U-net and allocating the

weights for the predicted output image. As a module for

alignment before being provided for the SR reconstruction

network, the performances of each model are compared in

the same environment based on our SR framework. We re-

ported the results with averaged PSNR, SSIM and LPIPS

scores on the test set as shown in Table 2. In the synthetic

dataset, we find that concatenating the multiple kernels in-

creases the model capacity which helps the model enhance
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(a) Reference (b) GT (c) KPN (d) EfDeRain (e) MKPN (f) AWE-KPNs (g) Ours

Figure 7: Qualitative comparison of different KPN methods on BurstSR dataset.

the quantitative results, but training speed slows down to

converge and the number of model parameters increases in-

efficiently.

5.3. Comparison with other MFSR architectures

To compare the existing MFSR architectures with our

model, we conduct a comparison study in the BurstSR

dataset. We compare our model with two architectures that

are from remote sensing applications: i) HighRes-net [7]

which consists of an encoder with recursive fusion, decoder

and ShiftNet for image registration, and ii) RAMS [36] that

has RFAB and RTAB with 3D convolution layer. To eval-

uate in RAW burst image super-resolution application, we

adapt the model to fit the BurstSR dataset. For a fair com-

parison, each of these architectures is employed on the de-

fault settings, respectively. The results of the comparison

studies are shown in Table 3. We observe that our WMKPN

method outperforms the recent MFSR architecture on the

test set of BurstSR for real-world applications.

6. Conclusion

In this paper, we propose a novel framework: WMKPN

for burst image super-resolution. WMKPN is motivated by

KPN as an image alignment module that captures implic-

itly the random hand-held motions among temporal frames

and improved by taking into account the interdependencies

between the multiples sizes of kernels. We present that

WMKPN helps ours framework to improve the performance

for burst image super-resolution. The extensive experi-

ments demonstrate that our model outperforms other super-

resolution frameworks including the existing KPN methods

and the state-of-the-art MFSR method. In future work, we

would like to test our model in broad multiple frame im-

age restoration tasks, such as burst image denoising, video

deblurring, multiple frame image super-resolution.
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