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Abstract

This paper explores an efficient solution for Space-

time Super-Resolution, aiming to generate High-resolution

Slow-motion videos from Low Resolution and Low Frame

rate videos. A simplistic solution is the sequential running

of Video Super Resolution and Video Frame interpolation

models. However, this type of solutions are memory inef-

ficient, have high inference time, and could not make the

proper use of space-time relation property. To this extent,

we first interpolate in LR space using quadratic modeling.

Input LR frames are super-resolved using a state-of-the-art

Video Super-Resolution method. Flowmaps and blending

mask which are used to synthesize LR interpolated frame is

reused in HR space using bilinear upsampling. This leads

to a coarse estimate of HR intermediate frame which of-

ten contains artifacts along motion boundaries. We use a

refinement network to improve the quality of HR intermedi-

ate frame via residual learning. Our model is lightweight

and performs better than current state-of-the-art models in

REDS STSR Validation set.

1. Introduction

With the easy availability of high resolution (HR) dis-

plays such as UHD TVs and monitors, the need for visual

content to be available at higher resolution is also grow-

ing exponentially. However, the video quality in terms of

resolution is not available up to the mark of available dis-

plays. For instance, most of the visual content available

has a resolution of 1080p at 30 FPS or lower, while UHD

displays support a resolution of 8K and 120 FPS. Hence,

there is enormous scope in the task of translating content

to high space-time resolution video from the corresponding

lower resolution video. Its application is not only limited

to high-definition television but also has it in sports and se-

curity applications. It can also be used as a compression-

decompression framework.

Deep neural networks have shown promising results on

various video manipulation tasks like Video Super reso-

lution (VSR) [34, 13], Video Frame Interpolation (VFI)

[16, 2], and Video Deblurring [24] with better computing

power availability. In Video Super Resolution, we try to in-

crease the spatial resolution of an input video sequence. On

the other hand, we aim to increase temporal dimension of an

input video in Video Frame Interpolation by inserting new

frames between the existing frames. In Space-time Video

Super-Resolution (STSR), our goal is to increase both in-

put video data’s spatial and temporal dimension. One of the

ways could be sequentially combining VSR and VFI mod-

els in a two-stage network. However, time and space are

certainly related, and the sequential models could not ex-

ploit this property completely, leading to marginal results.

Also, predicting high-quality frames requires state-of-art,

heavy VSR and VFI models, leading to computationally ex-

pensive models.

In this paper, we have presented an efficient framework

for Joint Video Super Resolution and Frame Interpolation.

Unlike prior work, we have considered non-linear motion

between LR frames explicitly through quadratic modeling

to interpolate in LR frames. We have used a state-of-the-

art Recurrent Neural Network to super-resolve the input

LR frames. We have reused intermediate LR flowmaps

and blending masks in HR space by using bilinear inter-

polation rather than directly estimating them in HR space,

hence making the method computationally efficient. Esti-

mated HR frames, coarse HR flowmaps and mask produces

a coarse intermediate frame estimate. This coarse estimate

is further refined by a refinement module. In this work, we

have considered 4x upscaling in spatial domain and 2x up-

scaling in temporal domain. However, our algorithm can be

extended to upscaling by any factor in temporal domain.

2. Related Work

In this section, we briefly review the literature on related

topics i.e. Video Super-Resolution and Video Frame Inter-

polation, then we proceed to discuss state-of-the-art Spatio-

Temporal Video Super-Resolution algorithms.
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2.1. Video Super Resolution

Video super-resolution is the task of reconstructing a

High-resolution video frame from its corresponding Low-

resolution frames. Amidst the success of deep-learning-

based methods, specifically in the domain of computer vi-

sion, several single-image SR models have been developed.

Some of these methods improve the spatial resolution by

concentrating only on the corresponding LR image’s spatial

information [7, 40, 20].

However, it is observed that if single-image SR mod-

els are applied independently over each frame of the video,

then the generated HR video lack temporal consistency, in

turn generating flickering effects [30]. Therefore several

methods are proposed to exploit the temporal relationships

for better results and among them, two are very common.

First is the simple concatenation of few sequential LR in-

put frames, and second is the use of 3d convolution filters

[5, 15, 12, 19]. But, the method of concatenation of frames

fail when there large motion displacements or multiple lo-

calized motion [18]. Similarly, 3D convolution increases

the computational complexity to an extent which may lead

to reduction in accuracy when working in resource con-

strained environment.

Some VSR methods use optical flow for temporal align-

ment. In these methods first they approximate motion by

calculating optical flow between the corresponding frame

and every neighboring frames. After that they warp the

neighboring frames based on predicted motion map [33, 5].

Muhammad et al. [9] used iterative refinement framework,

which concatenate the input frames with supporting frames

multiple times. They computed a residual image for each

time step to reduce the error between the expected image

and the prediction using the idea of back-projection. Never-

theless, it is not easy to obtain accurate flow and flow warp-

ing also introduces artifacts into the aligned frames. This

type of effect was solved to an extent by Jo et al. [15] using

dynamic upsampling. They mainly used the learned resid-

ual image to enhance the sharpness and took advantage of

the network’s captured implicit motion.

Additionally, Tian et al. [34] proposed TDAN for tem-

poral alignment without estimation of motion using de-

formable alignment. Wang et al. [35] proposed EDVR

which further explores usage of multi-scale information in

TDAN. Later, aligned frames are fused using temporal and

spatial attention mechanism. While, in RSDN [13], the in-

put is divided into structure and detail components and later

fed into recurrent unit made up of structural-detail blocks.

This method is lightweight and effective in exploiting in-

formation from prior frames for super-resolution; therefore,

we have used this network for VSR in our proposed frame-

work.

2.2. Video Frame Interpolation

Early works in Video Frame Interpolation are often

based on Optical Flow estimation, and interpolation accu-

racy is used to compute the quality of optical flow [1, 4].

Herbst et al.[11] use bidirectional flow to estimate interme-

diate flow and perform occlusion reasoning. Using inter-

mediate flows and occlusion masks, they generate the final

frame by a blending algorithm.

Long et al. [23] uses a Deep encoder-decoder architec-

ture to directly synthesize interpolated frame from two con-

secutive video frames. Liu et al. [22] computes voxel flow

from two input frames by a fully convolutional network and

interpolated frame is generated by trilinear interpolation.

Super-SloMo[14] estimates bi-directional optical flows us-

ing a U-Net [29] and predicts intermediate optical flows and

soft visibility maps using another U-Net. Finally, they fuse

warped frames linearly to generate the intermediate frame.

Niklaus et al. [25] estimate per-pixel context maps from

pre-trained ResNet and use warped context maps for frame

synthesis. Liu et al. [21] introduce Cycle-consistency loss

and use edge maps to improve over Deep Voxel Flow [22].

Xue et al. [39] learned self-supervised task-specific opti-

cal flow for various Video enhancement problems, includ-

ing temporal interpolation.

Niklaus et al. [26] learns spatially adaptive kernels for

each pixel in the interpolated frame using a fully convolu-

tional neural network. The same authors estimated two sep-

arable 1D kernels per each pixel in [27] to reduce compu-

tational complexity and improve performance. MEMC-Net

[3] uses Adaptive Warping Layer that utilizes both optical

flow and interpolation kernels to synthesize the target frame.

Bao et al. [2] propose Depth-Aware Flow Projection layer

to estimate intermediate optical flows.

Recently, researchers leverage more than two input

frames to capture non-linear motion between frames. Xu

et al. [38] assume quadratic motion of the pixels and show

improvement upon linear models. Kalluri et al. [16] use a

3D UNet architecture to generate interpolated frames from

four input RGB frames without help of any extra informa-

tion like optical flow or depth.

2.3. Spatiotemporal Video Super Resolution

Kim et al. [18] propose a joint VFI-SR framework to

increase both spatial and temporal dimension by a factor

of 2. The framework incorporates novel temporal loss at

multiple scale working as temporal regularizer on the in-

put sequence. STARnet framework proposed by Haris et

al. [10] consists of three stages. In first stage, both LR

and HR feature maps are learnt for existing and intermedi-

ate frames along with a motion representation from input

LR frames and bidirectional optical flowmaps. The HR and

LR feature maps are further refined in Stage-2, while Stage-

3 reconstructs corresponding HR and LR frames from the



Figure 1. Overview of our Space-Time Super Resolution Framework.

Figure 2. LR Frame Interpolation Framework: Quadratic Frame Interpolation.

feature maps. Kang et al. [17] uses an encoder to get fea-

ture representation of each input frame. These encoded fea-

tures are fused using “Early Fusion with Spatio-Temporal

weights” (EFST) module for Spatial upsampling. The en-

coded features are interpolated using computed optical flow

for temporal upsampling. Finally, decoder block computes

residues for both spatial and temporal upsampling. Xiang

et al. [37] extracts feature from each input LR frames and

feeds the extracted feature maps to Frame Feature interpola-

tion module to synthesize intermediate feature maps in LR

space. Now consecutive LR feature maps are passed to a

Bidirectional Deformable ConvLSTM module for temporal

context aggregation. Finally, the output feature maps from

ConvLSTM module are passed to a Frame Reconstruction

module to generate the final output frames.

3. Proposed Method

Given input Low Resolution-Low Frame Rate (LR-LFR)

frames I lr
0

, I lr
2

, I lr
4

and I lr
6

, our goal is to predict High

Resolution-High Frame Rate (HR-HFR) frames Ihr
2

, Ihrt

and Ihr
4

, where t ∈ (2, 4). In this work, we have aimed to

synthesize only one intermediate frame i.e. t = 3, however

our method can be extended to produce multiple intermedi-

ate frames. Our model pipeline consists of three parts: (a)

LR Frame Interpolation, (b) HR Frame Reconstruction and

(c) HR Intermediate Frame Reconstruction. We describe

each of these stages in detail in the following. The model

diagram is shown in Fig. 1.

3.1. LR Frame Interpolation:

For Frame interpolation in LR space, we use Quadratic

Frame Interpolation (QFI) [38]. Unlike many state-of-the-

art Video Frame Interpolation methods [22, 25, 14, 2], QFI

uses four frames to model non-linear motion. First, a

flow estimation module is used to compute flowmaps be-

tween neighbor frames (F lr
2→0

, F lr
2→4

, F lr
4→2

, F lr
4→6

). PWC-

Net [32] is used as flow estimator in this work. Assuming

quadratic motion between frames, intermediate flow maps

F lr
2→t and F lr

4→t are given by1,

F
lr
2→t = 0.5× (F lr

2→4 + F
lr
2→0)× ( t−2

2
)2+

0.5× (F lr
2→4 − F

lr
2→0)× ( t−2

2
)

(1)

F
lr
4→t = 0.5× (F lr

4→2 + F
lr
4→6)× ( 4−t

2
)2+

0.5× (F lr
4→2 − F

lr
4→6)× ( 4−t

2
)

(2)

These intermediate flowmaps are passed to a flow re-

versal layer to generate F lr
t→2

and F lr
t→4

. These estimated

1We refer the reader to [38] for derivation.



Figure 3. VSR Framework: Recurrent Structure-Detail Network.

flowmaps often contain ringing artifacts which are refined

by the help of a flow refinement module. Unlike in QFI, we

use Gridnet [8, 25] as Flow Refinement module. Further, we

use a 3-layer network to generate blending mask M lr
t . The

blending mask M lr
t helps us in blending warped frames to

generate intermediate frame. Finally, the LR intermediate

frame I lrt is synthesized as,

I
lr
t =

4−t
2

×M lr
t ⊙ bw(Ilr2 , F lr

t→2)
4−t
2

×M lr
t + t−2

2
× (1−M lr

t )
+

t−2

2
× (1−M lr

t )⊙ bw(Ilr4 , F lr
t→4)

4−t
2

×M lr
t + t−2

2
× (1−M lr

t )

(3)

where bw(., .) is the backward warping function and ⊙ de-

notes hadamard product. The overall diagram of LR frame

interpolation is shown in Fig. 2.

3.2. HR Frame Reconstruction:

We use a state-of-the-art Video Super Resolution

method, Recurrent Structure Detail Network (RSDN) [13]

for generating {Ihr
0

, Ihr
2

, Ihr
4

, Ihr
6
} from corresponding LR

frames {I lr
0

, I lr
2

, I lr
4

, I lr
6
}. Please note that, we do not use

LR interpolated frame I lrt as input to RSDN, since the in-

accuracy in interpolation can affect super-resolution perfor-

mance. For the sake of completeness, we discuss RSDN in

the following. Model diagram of RSDN is shown in Fig. 3.

RSDN is a recurrent neural network, which works on

Structure and Detail components on input frames rather

than the whole frames. Structure component and Detail

components capture low-frequency and high-frequency in-

formation in the images respectively. Structure and Detail

components are processed by two similar parallel branches.

The Detail branch is explained below.

At a given time step T , Hidden State Adaptation (HSA)

module adapts previous hidden state hSD
T−2

according to cur-

rent frame I lrT to produce adapted hidden state ĥSD
T−2

. Detail

components of previous and current frames {Dlr
T−2

, Dlr
T }

are concatenated along with estimated detail map of previ-

ous frame D̂T−2 and adapted hidden state ĥSD
T−2

. The con-

catenated feature maps are further passed to a convolutional

layer and a number of Structure-Detail (SD) blocks to pro-

duce hD
T . SD blocks are modified residual blocks which can

fuse information from structure and detail branches effec-

tively. hD
T is fed to a convolutional layer and an upsampling

layer to produce Detail map at current time step, D̂T . Sim-

ilarly, hS
T and ŜT is generated in the Structure branch. hS

T

and hD
T are combined by convolutional layers to generate

IhrT and hidden state at current time step, hSD
T .

3.3. HR Intermediate Frame Reconstruction:

Solving VFI in HR space is computationally expen-

sive mostly because of Flow estimation module inside our

VFI framework. PWCNet takes 0.026 seconds to compute

flow between a pair of LR (180 × 320) frames, whereas

it takes 3.4x runtime (0.089 seconds) to process a pair of

HR (720 × 1280) frames. We should also note that QFI

computes flowmaps between four pairs of frames, hence

the overall runtime of the model increases by a large mar-

gin. In addition to that, in HR space motion will be large,

so flow estimation module will struggle to find pixel cor-

respondences accurately, therefore creating a performance

bottleneck. Instead, we reuse intermediate flowmaps and

mask from LR space in this work. We upscale LR inter-

mediate flowmap and blending mask with the help of bilin-

ear interpolation. The coarse HR intermediate flowmap and

mask estimates are given by,

Fhr
t→2

= 4× up(F lr
t→2

) (4)

Fhr
t→4

= 4× up(F lr
t→4

) (5)



Mhr
t = up(M lr

t ) (6)

where up(.) denotes bilinear upsampling by a factor of 4.

Similar to Equation-3, we can produce a coarse estimate

for intermediate HR frame using predicted HR frames and

upscaled flow and masks. Hence, the coarse estimate for

intermediate frame Îhr is given by,

Î
hr
t =

4−t
2

×Mhr
t ⊙ bw(Ihr2 , Fhr

t→2)
4−t
2

×Mhr
t + t−2

2
× (1−Mhr

t )
+

t−2

2
× (1−Mhr

t )⊙ bw(Ilr4 , Fhr
t→4)

4−t
2

×Mhr
t + t−2

2
× (1−Mhr

t )

(7)

Since the coarse estimate obtained by Equation-7 de-

pends on upscaled flow and masks, we can further refine

this coarse estimate with the help of a refinement mod-

ule. We have used Gridnet as the refinement network in

this work. Estimated HR frames, upscaled flowmaps and

blending mask, warped HR frames, coarse estimate of in-

termediate HR frame is fed to the refinement network. The

refinement network learns a residual image with respect to

the coarse estimate of intermediate HR frame. The final es-

timate of intermediate HR frame is given by,

Ihr = Îhrt + ref(Îhrt , Ihr
2
, Ihr

4
, Fhr

t→2
, Fhr

t→4
,Mhr

t ,

bw(Ihr
2
, Fhr

t→2
), bw(Ihr

4
, Fhr

t→4
))

(8)

where “ref” is the Frame Refinement module.

4. Experiments

4.1. Dataset Description

We have used REDS STSR dataset [31] for training our

models. REDS STSR dataset contains a variety of dynamic

scenes. The training split contains 30 video sequences,

where each sequence contains 100 frames each. Validation

and Test splits contains 30 sequences each. HR image reso-

lution of this dataset is 720×1280. LR frames are generated

by 4x Bicubic downsampling. Since the HR-HFR frames of

test split are not publicly available yet, we use the Valida-

tion split for evaluation purpose. We use even LR frames as

input and predict all the HR-HFR frames during evaluation

(starting index is 0).

4.2. Training Details

We have implemented our models in Python with Py-

torch [28] framework on a system with one NVIDIA 1080

Ti GPU. We have used Adam optimizer with β1 = 0.9 and

β2 = 0.99 with a batch size of 2. Initial learning rate is set

to 2× 10−4 and gradually reduced to 2× 10−6. Patches of

size 128×128 are cropped randomly during training. Frame

sequences are randomly flipped horizontally and vertically

along with random temporal order reversal during training.

We have used pretrained PWCNet and RSDN and only

finetune these modules with a low learning rate of 2× 10−6

at a later stage in training.

4.3. Loss Functions

Frame Reconstruction loss: We have used Charbon-

nier loss between predicted frames and ground truth frames.

Frame reconstruction loss is utilized for LR intermediate

frame alongside HR frames, since accurate reconstruction

of LR intermediate frame can help the network to recon-

struct HR intermediate frame well. Frame Reconstruction

loss Lfr is given by,

Lfr =
∑

i∈{0,2,t,4,6}

Lc(I
hr
i , I

hr,gt
i ) + 0.5× Lc(I

lr
t , I

lr,gt
t ) (9)

where Lc(x, y) =
√

||x− y||2 + ǫ2 denotes Charbonnier

loss [6]. We have used ǫ = 0.001 in our experiments.

Structure-Detail loss: Inspired by [13], we want to put

emphasis on both structure and detail components of the

reconstructed HR frames. We have used Charbonnier loss

on both structure and detail components for this purpose.

Structure-Detail loss is given by,

Lsd =
∑

i∈{0,2,t,4,6}

Lc(S
hr
i , S

hr,gt
i )+

∑

i∈{0,2,t,4,6}

Lc(D
hr
i , D

hr,gt
i )

(10)

where “S” and “D” denotes corresponding structure and de-

tail components respectively.

Our final loss function is given by,

L = αfrLfr + αsdLsd (11)

We have used αfr = αsd = 45 in our experiments.

4.4. Results

4.4.1 Evaluation Metrics

We have used Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index (SSIM) [36] as evaluation met-

rics in our experiments.

4.4.2 Comparison with state-of-the-art methods

We have compared our method against two state-of-the-art

methods STARnet [10] and Zooming Slomo [37]. We did

not compare with STVUN [17], since the authors used a dif-

ferent degradation model for downsampling frames, hence

comparison would not have been fair. We have not com-

pared with FISR [18], since FISR does spatial upsampling

by 2x instead of 4x. We have used pretrained models pro-

vided by authors for comparison. We have measured perfor-

mance on Even frames (VSR) and Odd Frames (VSR+VFI)

separately. Quantitative comparison is shown in Table 1.



Figure 4. Comparison with state-of-the-art on Even Frame generation. From Left: (a) Upsampled LR frames (b) STARnet (c) Zooming

Slomo (d) Ours (e) Ground Truth. Zoom in for details.

Figure 5. Comparison with state-of-the-art on Odd Frame generation. From Left: (a) Upsampled and overlayed LR frames (b) STARnet

(c) Zooming Slomo (d) Ours (e) Ground Truth. Zoom in for details.

Method
Even Frames Odd Frames Overall

PSNR SSIM PSNR SSIM PSNR SSIM

STARnet [10] 28.43 0.7978 21.55 0.5925 25.03 0.6961

Zooming Slomo [37] 28.95 0.8151 21.63 0.6010 25.33 0.7091

Ours 28.56 0.8018 22.41 0.6148 25.51 0.7093
Table 1. Quantitative comparison with other state-of-the-art models.



Figure 6. Importance of HR Frame Refinement. From left: (a) Upsampled and overlayed LR frames (b) Ours (w/o refinement) (c) Residual

map calculated by Frame Refinement module (d) Ours (w/ refinement) (e) Ground Truth. Zoom in for details.

Our model achieves significant improvement on PSNR and

SSIM scores for Odd frames compared to other two state-

of-the-art methods. We achieve improvement of 0.78 dB

and 0.0138 in PSNR and SSIM respectively compared to

the second best algorithm, Zooming Slomo for Odd frames.

Our overall PSNR and SSIM scores are also better than

other algorithms. Qualitative comparison for Even and Odd

frames are shown in Fig. 4 and 5 respectively. Our algo-

rithm produces better results than STARnet in case of Even

frames (refer Fig. 4). From Fig. 5, it is clear that our

method can handle large motion between frames quite well

and performs significantly better than STARnet and Zoom-

ing Slomo in Odd frame generation.

4.4.3 NTIRE 2021 Video Super-Resolution Challenge:

Track 2

We have participated in NTIRE 2021 Video Super-

Resolution Challenge: Track 2 (Spatio-temporal) [31]. A

total of 223 participants registered in this competition out

of which 26 teams participated in the validation phase and

14 teams entered the test phase. The challenge organizers

considered PSNR and SSIM scores on REDS STSR test

data jointly as primary criteria to release rankings. Our

team ranked 10th among the teams participating in the fi-

nal phase.

4.5. Efficiency

Our model has 20.09 M parameters. We have reported

model sizes of other state-of-the-art methods in Table 2.

We can see that total number of parameters in our model

is 18% of the same in STARnet [10] and our model is

more lightweight than STVUN [17]. We have compared our

model runtime against state-of-the-art STSR methods. Av-

erage runtime required to generate one HR-HFR frame of

resolution 720× 1280 in our system is reported in Table 2.

We can see that our model is significantly faster than STAR-

net and has similar runtime when compared to STVUN. Our

model consumes less GPU memory during inference than

state-of-the-art Zooming Slomo.

Method
Runtime

(s)

Parameters

(M)

GPU Memory

Usage (GB)

STARnet [10] 1.13 111.61 5.27

STVUN [17] 0.24 30.90 2.90

Zooming Slomo [37] 0.15 11.10 4.55

Ours 0.25 20.09 3.43

Table 2. Runtime, Parameter and Memory usage consumption

comparison with State-of-the-art methods.

4.6. Ablation Study

4.6.1 Importance of HR Frame Refinement

Our coarse estimate of HR intermediate frame, Îhrt is gener-

ated from coarse (upscaled) flow maps and blending masks.

Due to 4x upscaling using bilinear interpolation, it is ex-

pected that Fhr
t→2

, Fhr
t→4

and Mhr
t will have inaccuracies

along motion boundaries, producing ghosting artifacts in

Method PSNR SSIM

Ours (w/o refinement) 21.02 0.5580

Ours (w/ refinement) 22.41 0.6148

Table 3. Importance of Frame Refinement: Performance compari-

son on Odd Frames.



Figure 7. Effect of different architectures in refinement modules. From left: (a) Upsampled and overlayed LR Frames (b) UNet (c) UNet++

(d) Gridnet (e) Ground Truth. Zoom in for details.

Architecture used in

Refinement modules

Even Frames Odd Frames Overall
Runtime (s)

Total no. of

Parameters (M)PSNR SSIM PSNR SSIM PSNR SSIM

UNet 28.56 0.8015 22.38 0.6108 25.50 0.7071 0.26 55.22

UNet++ 28.56 0.8018 22.36 0.6121 25.49 0.7079 0.24 17.94

Gridnet 28.56 0.8018 22.41 0.6148 25.51 0.7093 0.25 20.09

Table 4. Quantitative comparison between different architectures in refinement modules.

Îhrt . To address this issue, we have used a refinement mod-

ule that aims to produce a better estimate of HR interme-

diate frame through residual learning. To analyze the im-

portance of HR Frame Refinement, we compare the outputs

Îhrt and Ihrt . We denote Îhrt as “Ours (w/o refinement)” and

Ihrt as “Ours (w/ refinement)”. Since even frame outputs

are independent of this change, we have compared evalua-

tion metrics on odd frames in Table-3. We can infer that we

achieve significant improvement on both metrics in gener-

ating HR intermediate frames. From Fig. 6, we can observe

that our Frame refinement module performs quite well in

removing artifacts from the coarse estimate of intermediate

HR frame.

4.6.2 Choice of architecture in refinement modules

In addition to Gridnet, we have used UNet [29] and UNet++

[41] in Flow refinement and Frame refinement modules.

Details of these architectures can be found in supplementary

material. Our model with Gridnet has 63.6% less parame-

ters than our model with UNet. Our model with UNet++

has 10.7% less parameters than our model with Gridnet.

All three models have similar runtimes and our model with

Gridnet produces best quantitative results as shown in Ta-

ble 4. Qualitative comparison in Fig 7 shows our model

with Gridnet performs better than other models in generat-

ing odd frames.

5. Conclusion

In this work, we propose an efficient approach for Space-

time Super Resolution. We have adopted a state-of-the-art

VSR method RSDN to super-resolve input LR frames. We

have used quadratic motion modelling to interpolate in LR

space. Flow maps and blending mask from LR space is

used to generate a coarse HR intermediate frame estimate.

This estimate is further refined by a Frame Refinement net-

work via residual learning. Our model has outperformed

existing state-of-the-art models on REDS STSR Validation

dataset. We have gained significant improvement on gen-

erating HR intermediate frames over other state-of-the-art

methods. Our model contains only 20 M parameters and

can generate HR-HFR frames in 0.25 seconds on average.

We have focused on refining the coarse estimate of HR in-

termediate frame in this work, however directly refining HR

flowmaps and blending masks to generate HR intermediate

frame can be tried out as future research direction. Addi-

tionally, LR flow maps can be exploited to warp neighbor-

ing frames, which can be used as input to VSR module.
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