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Figure 1: Our dehazing results on NH-HAZE2 testing set.

Abstract

Hazy images are often subject to color distortion, blur-

ring, and other visible quality degradation. Some exist-

ing CNN-based methods have great performance on re-

moving homogeneous haze, but they are not robust in non-

homogeneous case. The reasons are mainly in two folds.

Firstly, due to the complicated haze distribution, texture de-

tails are easy to be lost during the dehazing process. Sec-

ondly, since the training pairs are hard to be collected,

training on limited data can easily lead to over-fitting prob-

lem. To tackle these two issues, we introduce a novel dehaz-

ing network using 2D discrete wavelet transform, namely

DW-GAN. Specifically, we propose a two-branch network to

deal with the aforementioned problems. By utilizing wavelet

transform in DWT branch, our proposed method can re-

tain more high-frequency knowledge in feature maps. In or-

der to prevent over-fitting, ImageNet pre-trained Res2Net is

adopted in the knowledge adaptation branch. Owing to the

robust feature representations of ImageNet pre-training, the

generalization ability of our network is improved dramati-

cally. Finally, a patch-based discriminator is used to reduce

artifacts of the restored images. Extensive experimental

results demonstrate that the proposed method outperforms

the state-of-the-arts quantitatively and qualitatively. The

source code is available at https://github.com/

liuh127/DW-GAN-Dehazing.

1. Introduction

Hazy images are often prone to color distortion, blur-

ring and other visible quality degradation. The varied im-

age degradations often lower the perceptual quality of pic-

tures and devastate numerous intelligent systems, such as

tracking [42] , satellite remote sensing [30, 34] , and object

detection [41, 20] . Therefore, image dehazing has attained

much attention in the computer vision community. Many

previous dehazing methods are based on the classical atmo-

spheric scattering model [33]:

I(x) = J(x)t(x) +A(x)(1− t(x)) (1)

where I(x) denotes the hazy image, J(x) represents the

clear image, A(x) is the global atmospheric light, t(x) is

the medium transmission and x indicate the pixels. Besides,



t(x) = e−βd(x). Where β and d(x) are respectively the at-

mosphere scattering parameter and the scene depth.

Based on the atmospheric scattering formulation, some

prior-based methods have been proposed [18, 6, 48, 13].

These methods estimate atmospheric light A(x) and the

medium transmission map t(x) by hand-crafted priors, such

as dark channel prior [18] and non-local prior [6]. How-

ever, it is quite hard to accurately estimate A(x) and t(x).
Especially in the non-homogeneous dehazing task, the haze

distribution is much more complicated and the haze den-

sity is not strongly correlated to the image depth. There-

fore, using prior-based method can result in huge estima-

tion error. Such methods are no longer good choices for

non-homogeneous dehazing. Recent years, with the devel-

opment of deep learning techniques [22], many deep learn-

ing based dehazing methods [7, 25, 46, 8, 35] have also

been proposed. These methods use convolutional neural

networks (CNNs) to extract features and learn the mappings

directly between hazy and haze-free image pairs. However,

these methods usually require a large number of image pairs

during the training process. As the training data becomes

less, many deep learning based methods are harder to suc-

ceed. In addition, the high-frequency components in the

clear images, such as edges and fine textures, are often de-

graded significantly by non-homogeneous haze. Therefore,

restoring clear texture details and sharp edges from hazy

images are essential for achieving good perceptual quality.

In summary, difficulties mainly come from two folds in

non-homogeneous dehazing. Firstly, due to the complex

haze distribution, texture and color details are easy to be lost

during restoration. Secondly, the training image pairs are

hard to be collected. Using limited data to train for a robust

non-homogeneous dehazing model is quite challenging. To

address the above two problems, we propose a two-branch

generative adversarial network. In our first branch, we use

the designed wavelet down-sampling modules to replace

parts of the convolution layers. By doing this, the num-

ber of parameters can be reduced. The lightweight model

can have better performance on small training datasets and

avoids over-fitting problems caused by model redundancy.

In addition, the discrete wavelet transform [32] retains the

frequency domain information in the images and feature

maps. Such information is more conducive to the restora-

tion of texture details. In our second branch, we employ the

pre-trained Res2Net [14] as the backbone to extract multi-

level features. This pre-trained encoder can bring substan-

tial prior knowledge for small training datasets [17]. By

leveraging the prior knowledge, we can observe significant

improvements on small-scale datasets regarding testing ac-

curacy. Moreover, we further employ an attention mech-

anism in our pipeline. Pixel-wise attention module and

channel-wise attention module allow the network to focus

on the hazy zones and more critical channel information.

Finally, the discriminator is used to introduce an adversar-

ial loss in the training stage. By adopting the adversarial

loss, our network is pushed to learn for natural and photo-

realistic solutions.

Overall, we summarize our contributions as follows:

1. We propose a two-branch end-to-end trainable GAN

to address the non-homogeneous dehazing problem.

2. We introduce a novel way to embed 2D discrete

wavelet transform in our proposed network, aiming at pre-

serving sufficient high-frequency knowledge and restoring

clear texture details. In order to perform well in small-scale

datasets, we adopt the prior feature knowledge by using Im-

ageNet pre-trained weights as initialization.

3. We show extensive experimental results and compre-

hensive ablation analysis to illustrate the effectiveness of

our proposed method.

2. Related Works

Single Image Dehazing. Recently, the image dehaz-

ing task has attracted intensive attention in the computer

vision community. And researchers have proposed many

methods for single image dehazing. These methods can be

roughly divided into two categories: prior-based methods

and learning-based methods.

Prior-based methods utilize prior statistical knowledge,

and hand-crafted features for image dehazing. Dark chan-

nel prior (DCP) [18] is one of the outstanding representa-

tives among prior-based methods. DCP assumes that hazy

images may have extremely low intensities in at least one

color channel. Based on the difference between the bright-

ness and the saturation of hazy image, color attenuation

prior (CAP) [48] creates a linear model to estimate scene

depth as strong prior knowledge. [6] hypotheses that col-

ors of haze-free image can be well approximated by a few

hundred distinct colors. Although prior-based methods have

achieved good performance in single image dehazing, hand-

crafted features and prior knowledge impede these meth-

ods to achieve satisfying performance when they are imple-

mented in variable scenes. Recently, with the rapid progress

of the deep learning approach [22], deep learning shows its

remarkable ability in solving single image dehazing prob-

lem. Some of the deep learning based methods still rely

on the atmospheric scattering model. For example, [7] pro-

posed DehazeNet as the first end-to-end CNN to learn trans-

mission map. Specifically, it follows the traditional proce-

dure and atmospheric scattering formulation but uses CNN

to estimate the transmission map. Similarly, a novel multi-

scale neural network (MSCNN) [36] is then proposed to

estimate the transmission map from the hazy image. Dif-

ferent from [7, 36], AOD-Net jointly estimates the trans-

mittance and atmospheric light through a lightweight neural

network. Other than the above-listed methods that depend

on the atmospheric scattering model, most recent dehazing
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Figure 2: The network structure of the proposed method. The generator is a two-branch network, which consists of DWT

branch and knowledge adaptation branch. The same color used in the cubic denotes the same operation.

methods pay intensive attention to discover a good map-

ping from hazy image to clear counterpart. GFN [37] uses

white balance, contrast enhancement, and gamma correc-

tion methods to pre-process the hazy input. And the de-

hazed output is then generated by fusing the features of the

three derived inputs. GCANet [8] adopts the smoothed di-

lation technique into the pipeline for removing the grid arti-

facts caused by the dilated convolution. FD-GAN [12] pro-

posed an end-to-end GAN [15] with a fusion discriminator.

The fusion discriminator integrates the frequency informa-

tion as additional priors during the training stage. Unlike

the [12] that discriminates clear image and generated im-

age in the frequency domain, our method focus on directly

fusing the high-frequency domain features into the genera-

tor. These deep learning based methods have achieved great

performance in homogeneous dehazing task. However, the

success is inseparable from the support of large training

datasets. We shall empirically demonstrate that they tend

to fail drastically in non-homogeneous dehazing with ex-

tensive experiments.

Frequency Domain Learning. Frequency analysis has

always been a powerful tool in image processing. Effective

usage of image frequency domain information can greatly

improve the performance of the methods in image restora-

tion. Recently, some approaches embedded frequency in-

formation into the network structure and exploited the effec-

tiveness of frequency domain information. A wavelet resid-

ual network [5] is proposed with the discovery that neural

networks can benefit from learning on wavelet subbands.

DWSR [16] designed a deep wavelet network that can re-

cover missing details in subbands. MWCNN[29] consid-

ered multi-level wavelet transform to enlarge receptive field.

These methods take advantage of discrete wavelet transform

and use it in designing deep learning network architectures.

Generative Adversarial Network. Generative Adver-

sarial Networks (GANs) [15] consist of two parts: Gener-

ator and Discriminator. They contest with each other via

a game theoretic min-max optimization framework. GANs

have achieved great performance in synthesizing realistic

images. Many researchers utilize adversarial loss for vari-

ous low-level vision tasks, such as image to image transla-

tion [19, 28], super-resolution [23], single image dehazing

[10] and image deraining [47].

3. Proposed Method

In this section, we first describe the overall network ar-

chitecture (shown in Figure. 2) and explain the sense of two-

branch designing. Then, we introduce the concept of dis-

crete wavelet transform (DWT) and analyze the benefits of

using DWT in our pipeline. In the end, we further demon-

strate the loss functions adopted in the training stage.



Figure 3: Left:DWT down-sampling module. Right:DWT up-sampling module.

3.1. Network Architecture

The two-branch-designed network has been successfully

applied in various computer vision tasks [43, 24]. By using

this architecture, each network branch can have its own in-

formation processing procedures and extract different repre-

sentations from the same input. In observing that, if we can

use such distinct information wisely and make them com-

plement each other by proper fusion strategies, sufficient

and comprehensive information from two branches can

greatly boost the performance of image dehazing. Based

on this idea, we design a two-branch neural network.

DWT Branch. Our first branch, i.e., DWT branch

(shown in Figure. 2) , is designed to directly learn the color

mapping from hazy to haze-free images. To achieve this,

we follow the U-Net [38] to construct our DWT branch. It

has an encoder, a decoder, and massive skip connections at

each feature scale. To meet our requirements for preserving

more texture details during dehazing process, we propose to

use discrete wavelet transform (DWT) in the feature extrac-

tion stage. Since the input feature maps can be decomposed

into the low-frequency and high-frequency components by

DWT (detailed explanation can be seen in Section. 3.2), our

network can be forced to learn from both high-frequency

and low-frequency components. As shown in Figure. 3,

low-frequency components are concatenated with convolu-

tion output as down-sampling features and high-frequency

components are added to the DWT up-sampling module

by skip connection. By doing this, our network not only

learns abundant information from both spatial domain and

frequency domain but also retains favorable image details

by high-frequency skip connection.

However, due to the limited data in non-homogeneous

dehazing task, it is hard to achieve plausible performance

solely relying on DWT branch. Towards better performance

on small-scale datasets, we introduce our second branch to

utilize additional knowledge further.

Knowledge Adaptation Branch. Our second branch,

i.e., knowledge adaptation branch (shown in Figure. 2), fo-

cuses on adopting the prior knowledge gained from image

classification to the current dehazing task. It leverages the

power of transfer learning [11, 45] and brings extra informa-

tion to the small datasets. To achieve this, we use the Ima-

geNet [9] pre-trained Res2Net [14] as the backbone of our

encoder. In the decoder module, we use pixel-shuffle layers

for up-sampling, which reduces the computational overload

[39] and makes the size of feature maps gradually recovered

to the original resolution. Besides, inspired by [35], atten-

tion blocks are employed after each pixel-shuffle layer to

identify the dynamic hazy patterns. In the end, multiple skip

connections are added between the encoder and decoder as

shown in Figure. 2. In this way, our DW-GAN becomes

much more robust and has better generalization ability.

Finally, we add a simple 7 × 7 convolution layer as a

fusion operation to map the combined features from two

branches to clear images.

3.2. Discrete Wavelet Transform

In 2D discrete wavelet transform, there are four filters,

i.e., low-pass filter fLL, and high-pass filters fLH , fHL,

fHH . These filters have fixed parameters with stride 2

convolution operation during the transformation. Thus, by

convolving with each filter, images or feature maps can be

decomposed into four subbands i.e., xLL, xLH , xHL, and

xHH . We can express xLL as (fLL ⊛ x) ↓2, where ⊛ rep-

resents convolutional operation, x is the input signal and ↓2
indicates down-sampling by the scale factor of 2. We em-

bed Haar DWT [31] in our proposed method, where fLL =
(

1 1
1 1

)

, fLH =
(

−1 −1
1 1

)

, fHL =
(

−1 1
−1 1

)

, fHH =
(

1 −1
−1 1

)

.

The (i, j) -th value of xLL after 2D Haar wavelet transform

can be defined as:

xLL(i, j) =x(2i− 1, 2j − 1) + x(2i− 1, 2j)

+ x(2i, 2j − 1) + x(2i, 2j)
(2)

The expressions of xLH , xHL, and xHH are similar to that

of xLL. By using DWT, we can obtain the frequency do-

main knowledge that retains hazy image details, especially

from xLH , xHL and xHH . However, only using DWT to

do image dehazing is not enough. We thus combine these

frequency domain operations with convolution so that the

network can learn from both spatial and frequency infor-



mation. Experiment results show the great improvement of

using DWT method (see details in Section. 4.3).

3.3. Loss Functions

We denote our dehaze image as Î . Igt and Ihazy are

respectively the ground truth image and hazy image. The

two-branch dehazing network and discriminator represent

as G and D.

Smooth L1 Loss. Îc(i) and Igtc (i) denote the intensity

of the c-th channel of pixel i in the dehazed image and in

the ground truth image respectively, and N denotes the total

number of pixels. The smooth L1 Loss can be defined as:

Lsmooth-L1 =
1

3N

N
∑

i=1

3
∑

c=1

α
(

Îc(i)− Igtc (i)
)

(3)

where

α(e) =

{

0.5e2, if |e| < 1

|e| − 0.5, otherwise
(4)

Perceptual Loss. Besides the pixel-wise supervision,

we use the VGG16 [40] pre-trained on ImageNet [9] as

the loss network to measure perceptual similarity. The loss

function is defined as:

Lper =
3

∑

j=1

1

CjHjWj

∥

∥

∥
φj(I

gt)− φj(Î)
∥

∥

∥

2

2
(5)

where Hj , Wj , and Cj denote the height, width, and chan-

nel of the feature map in the j-th layer of the backbone net-

work, φj is the activation of the j-th layer. Igt and Î are

respectively the ground truth image and our dehazed result.

MS-SSIM Loss. Let O and G denote two windows of

common size centered at pixel i in the dehazed image and

the haze-free image, respectively. Use a Gaussian filter to

O and G, and compute the resulting means µO, µG, stan-

dard deviations σO, σG1
and covariance σOG. The SSIM

for pixel i is defined as:

SSIM(i) =
2µOµC + C1

µ2
O + µ2

G + C1
· 2σOG + C2

σ2
O + σ2

G + C2

= l(i) · cs(i)

where l(i) represents luminance and cs(i) represents con-

tract and structure measures, C1, C2 are two variables to sta-

bilize the division with weak denominator. The MS-SSIM

loss is computed using M levels of SSIM. Specifically, we

have

LMS-SSIM = 1− MS-SSIM

where

MS-SSIM = lαM (i) ·
M
∏

m=1

csβm

m (i)

with α and βm being default parameters.

Adversarial Loss. The adversarial loss ladv is de-

fined based on the probabilities of the discriminator

D(G(Ihazy)) over all training samples as:

Ladv =
N
∑

n=1

− logD(G(Ihazy))

Here, D(G(Ihazy)) is the probability of reconstructed im-

age G(Ihazy) to be a haze-free image.

Total Loss. We combine the smooth L1 Loss, perceptual

loss, MS-SSIM loss and adversarial loss together to super-

vise the training of our dehazing network.

Ltotal = Lsmooth-L1 + αLMS-SSIM + βLper + γLadv (6)

where α = 0.2, β = 0.001 and γ = 0.005 are the hyperpa-

rameters weighting for each loss functions.

4. Experiments

In this section, we firstly describe the datasets that

are used for evaluating the effectiveness of our proposed

method. Secondly, we introduce our experimental settings

i.e., implementation details, and evaluation metrics. Then,

we conduct ablation studies to illustrate the benefits of each

component in DW-GAN. After that, we compare the per-

formance of our proposed method with the state-of-the-art

qualitatively and quantitatively. Finally, we demonstrate

our data pre-processing method and dehazing results in

NTIRE2021 NonHomogeneous Dehazing Challenge.

4.1. Datasets

RESIDE Benchmark. The Indoor Training Set (ITS) of

RESIDE[26] contains 1399 clean images and 13990 hazy

images, generated by corresponding clean images with the

medium extinction coefficient β chosen uniformly from

[0.6, 1.8] and the global atmospheric light A chosen uni-

formly from [0.7, 1.0]. We use ITS to train our network.

For testing, the Synthetic Objective Testing Set (SOTS) is

adopted, which contains 500 indoor image pairs.

Real-world Dataset. We further evaluate our perfor-

mance on three small-scale real-word datasets: DENSE-

HAZE [1], NH-HAZE [3, 2] and NH-HAZE2 [4]. DENSE-

HAZE is characterized by dense and homogeneous hazy

scenes. It contains 45 training data, 5 validation data and

5 testing data. In our work, we use the official testing data

for evaluation and combine the official training set and eval-

uation set for training our model. NH-HAZE contains 45

training data, 5 validation data and 5 testing data. The haze

pattern in this dataset is un-uniformly distributed. We use

50 training pairs and 5 validation pairs as training set, and

use 5 test pairs as testing set. NH-HAZE2 is introduced in

NTIRE2021 dehazing challenge. It only contains 25 train-

ing data, 5 validation data and 5 testing data. Because the



Methods l1 lp LSSIM ladv PSNR SSIM

(1)vanilla DWT branch
√

✕ ✕ ✕ 18.15 0.7483

(2)knowledge adaptation branch
√

✕ ✕ ✕ 20.15 0.8156

(3)Two-branch
√

✕ ✕ ✕ 21.35 0.8273

(4)Two-branch+DWT
√

✕ ✕ ✕ 21.52 0.8403

(5)Two-branch+DWT
√ √

✕ ✕ 21.67 0.852

(6)Two-branch+DWT
√ √ √

✕ 21.86 0.8555

(7)Two-branch+DWT
√ √ √ √

21.99 0.856

Table 1: Ablation Studies for architectures and loss functions. It can be observed that the model with all components and

supervised by all loss functions performs the best in terms of PSNR and SSIM.

validation and testing set is not public by far, we use image

1-20 as training set and 21-25 as testing set.

4.2. Experimental Settings

Despite the varied characteristics of each dataset, we

adopt the same training strategy for all datasets. Specifi-

cally, we randomly crop patches with a size of 256 × 256.

To augment training data, we implement random rotation

(90, 180 or 270 degrees) and random horizontal flip. We

train DW-NET with the batch size of 16 and utilize Adam

optimizer [21] (β1=0.9, β2=0.999). In the training process,

a specific decay strategy is used, where the initial learning

rate is set to 1e-4 and decays 0.5 times at 3000, 5000, 6000

epoch for total 8000 epochs. The discriminator uses the

same optimizer and training strategies. All the experiments

are conducted on two NVIDIA 1080Ti GPUs.

Quality Measures. To quantitatively evaluate the per-

formance of our method, we adopt two common metrics:

the Peak Signal to Noise Ratio (PSNR) and the Structural

Similarity index (SSIM) [44].

4.3. Ablation Study

Firstly, we conduct comprehensive ablation studies to

demonstrate the necessity of each component in our pro-

posed method. According to the ablation principle, we con-

struct four different networks to illustrate the importance of

each module. (1) vanilla DWT branch: only use the vanilla

DWT branch without DWT down-sampling modules and

high-frequency skip connections. (2) knowledge adaptation

branch: only use the knowledge adaptation branch to restore

hazy images. (3) Two-branch: use two-branch structure,

which consists of vanilla DWT branch and knowledge adap-

tation branch. (4) Two-branch+DWT: use two-branch struc-

ture, where DWT down-sampling and up-sampling modules

are embedded into the DWT branch.

From the top of Table. 1, we can observe that using

two-branch structure can significantly improve our perfor-

mance in terms of PSNR and SSIM ( by comparing (1), (2)

and (3) ). The reason is that two-branch network can not

only learn the mapping directly between hazy and haze-

free image pairs via vanilla DWT branch but also adapt

the pre-learned knowledge to the current task by knowl-

edge adaptation branch. To demonstrate the effectiveness

of discrete wavelet transform, we compare the cases that

the two-branch network adopts DWT or not. By observing

the performance of (3) and (4), we can conclude that DWT

plays an important role in improving PSNR and SSIM. The

increased SSIM also indicates that the frequency domain

information is essential for restoring texture details.

Besides, we further illustrate the importance of the loss

functions adopted in this work. In observing the fourth

to seventh rows of Table. 1, each loss is effective and vi-

tal to raising PSNR and SSIM. Smooth L1 loss provides

pixel-wise supervision, perceptual loss let the outputs tend

to be consistent with ground truth in deep feature space,

MS-SSIM loss is employed for minimizing the structural

similarity error and GAN loss further improve the output

results. By integrating all the losses on the training stage,

our model acquired the best performance (see the last row

in Table. 1).

4.4. Comparisons with State­of­the­art Methods

We compare the proposed method with state-of-the-art

methods on synthetic dataset and real-world datasets. These

SOTA methods include DCP [18], AOD-Net [25], GCANet

[8], FFA [35] and TDN [27]. TDN is the winner method in

NTIRE 2020 NonHomogeneous Dehazing Challenge.

Quantitative Results Comparison. The experiment re-

sults are shown in Table. 2. For three real-world datasets,

our method has outstanding performance and achieves the

best in terms of PSNR and SSIM.

It is worth noticing that our model has first-class per-

formance on non-homogeneous dehazing and surpassed the

second-ranked model by a large margin (1.07dB and 1.54dB

higher on NH-HAZE and NH-HAZE2, respectively). For

the synthetic dataset, the performance of our model is

slightly lower than that of FFA. The success on large-scale

benchmarks often requires heavy network designing. In

contrast, we aim to build a suitable model to balance be-

tween good mapping capability and over-fitting. But sur-



ITS NTIRE19 NTIRE20 NTIRE21

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP 19.63 0.8823 11.06 0.4368 13.28 0.4954 11.68 0.7090

AOD-Net 19.06 0.8524 13.21 0.4694 13.44 0.4136 13.30 0.4693

GCANet 30.23 0.9814 12.46 0.4712 17.49 0.5918 18.79 0.7729

FFA 36.39 0.9886 16.31 0.5362 18.60 0.6374 20.45 0.8043

TDN 34.59 0.9754 15.50 0.5081 20.44 0.6683 20.23 0.7622

Ours 35.94 0.9860 16.49 0.5911 21.51 0.7111 21.99 0.8560

Table 2: Quantitative comparisons of SOTA methods over SOTS, DENSE-HAZE, NH-HAZE, NH-HAZE2. The best results

are in bold, and the second best are with underline.

Methods DCP AOD-Net GCANet FFA TDN Ours

Inference Time(s) 0.41 0.15 0.65 2.62 0.63 0.48

Table 3: Inference time comparisons of SOTA methods on processing one 1600 × 1200 image.

Figure 4: Left: qualitative evaluation examples of RESIDE SOTS indoor testing data. Right: qualitative comparisons of our

method with others on DENSE-HAZE dataset.

Figure 5: Left: qualitative comparisons of our method with others on NH-HAZE dataset. Right: qualitative comparisons of

our method with others on NH-HAZE2 dataset.

prisingly, we still perform second best and approach to FFA.

Qualitative Visual Effect Comparison. We show the

qualitative results in Figure. 4 and Figure. 5. DCP gets

much brighter results on ITS test set and bluer results on

real-world datasets. The output results of AOD-Net of-

ten suffer from severe color distortion and incomplete haze

removal on real-world datasets. Although GCANet and

FFA perform better than the above two methods, they still

fail to handle the hazy zones. GCANet tends to generate

blurry and color distorted images, and it is unable to re-

move DENSE-HAZE. Despite the success of FFA on ITS,

it performs comparably bad in the non-homogeneous de-

hazing task. For example, in NH-HAZE and NH-HAZE2,

FFA cannot remove haze effectively and produce unpleas-

ant artifacts. Surprisingly, TDN shows unsatisfied results in

DENSE-HAZE and NH-HAZE2. For example, a consid-



Figure 6: Left:comparison of data distribution without gamma correction. Middle: comparison of data distribution with

gamma correction. Right: illustration of gamma corrected clear images in NH-HAZE.

erable color deviation between dehazed images and ground

truths can be observed in the DENSE-HAZE dataset. The

brightness of dehazed images is much darker, and image de-

tails are not restored well on NH-HAZE2. It is worth point-

ing out that our proposed method performs well on all the

datasets, which further reveals the robustness of our model.

It can be seen that our dehazed images are visually pleasing

and closest to the ground truths.

Inference Time Comparison. We compare the infer-

ence time with these SOTA methods for processing one

1600 × 1200 image by an NVIDIA 1080Ti GPU. As shown

in Table. 3, AOD-Net and DCP take less time to complete

dehazing processing. However, these two methods cannot

remove haze effectively (details have been discussed in Sec-

tion. 4.4). It is a decisive fact that our proposed method

takes less running time than GCANet, FFA, and TDN.

Meanwhile, our approach has better performance both qual-

itatively and quantitatively.

4.5. NTIRE2021 Dehazing Challenge

Discussion of Data Pre-processing. NTIRE2021 Non-

Homogeneous Dehazing Challenge provides only 25 train-

ing pairs. To augment training data, we mix image pairs

from NH-HAZE, which consist of 55 non-homogeneous

hazy images and clear counterparts. However, images in

NH-HAZE and NH-HAZE2 have huge differences in terms

of brightness. The visual effect of images in NH-HAZE is

much darker, while that of NH-HAZE2 is brighter. To fur-

ther verify our observation, we quantitatively analyzed the

gray-scale distribution of the two datasets (see in Figure. 6

(left)). The average gray value of all haze-free images in

NH-HAZE is 102.30 and the variance is 62.42, while in

NH-HAZE2, the statistics is 131.45 and 57.45 separately.

Due to the difference in brightness, if we simply adopt the

model trained with NH-HAZE as extra data to restore hazy

images in NH-HAZE2, the average brightness of these de-

hazed images should lower than 131.45 and higher than

102.3. The inaccurate brightness estimation may result in

unsatisfied performance. In order to reduce the brightness

discrepancy between two datasets, we use gamma correc-

tion on NH-HAZE. When gamma value is set to 0.65, the

average gray value of NH-HAZE is shifted to 133.30 and

the variance is changed to 57.78. With the pre-processing,

the gray scale distribution of NH-HAZE is much more simi-

lar to that of NH-HAZE2 (shown in Figure. 6 (middle)) and

tonal styles of the two datasets are closer.

Perform ance on NTIRE2021 Dehazing Challenge.

From the reported results [4], our DW-GAN is among the

top performed methods in terms of PSNR and SSIM. To

be specific, our dehazed results achieves plausible PSNR

(21.08dB) and SSIM (0.8393). To visually demonstrate our

performance, we show the testing results of our DW-GAN

in Figure. 1. It can be observed that our DW-GAN can re-

move the most of haze and generate visually pleasing re-

sults. However, we still can find a failure case in Figure. 1

(the third image). Our future work will consider to further

exploit a method for addressing those severe hazy areas.

4.6. Conclusion

In this paper, we propose a novel generative adversar-

ial network for single image dehazing, namely DW-GAN.

DWT-branch directly learns the image mapping from hazy

to haze-free images, and leverages the power of discrete

wavelet transform in helping the network acquire more fre-

quency domain information. The knowledge adaptation

branch exploits the prior knowledge by using pre-trained

Res2Net as an encoder. Extra information from the het-

erogeneous task, i.e., image classification, is introduced to

complement the small-scale datasets, which allows our DW-

GAN to be much more robust in dealing with limited real-

world data. Extensive experimental results illustrate that

DW-GAN has great performance in synthetic datasets, real-

world scenes with dense haze and non-homogeneous haze.
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