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Abstract

This paper reports on the NTIRE 2021 challenge on per-

ceptual image quality assessment (IQA), held in conjunc-

tion with the New Trends in Image Restoration and En-

hancement workshop (NTIRE) workshop at CVPR 2021. As

a new type of image processing technology, perceptual im-

age processing algorithms based on Generative Adversar-

ial Networks (GAN) have produced images with more re-

alistic textures. These output images have completely dif-

ferent characteristics from traditional distortions, thus pose

a new challenge for IQA methods to evaluate their visual

quality. In comparison with previous IQA challenges, the

training and testing datasets in this challenge include the

outputs of perceptual image processing algorithms and the

corresponding subjective scores. Thus they can be used to

develop and evaluate IQA methods on GAN-based distor-

tions. The challenge has 270 registered participants in to-

tal. In the final testing stage, 13 participating teams sub-

mitted their models and fact sheets. Almost all of them have

achieved much better results than existing IQA methods,

while the winning method can demonstrate state-of-the-art

performance.

∗Jinjin Gu (jinjin.gu@sydney.edu.au), Haoming Cai, Chao

Dong, Jimmy Ren, Yu Qiao, Shuhang Gu and Radu Timofte are the NTIRE

2021 challenge organizers. The other authors participated in the challenge.

Appendix.A contains the authors’ team names and affiliations.

The NTIRE website: https://data.vision.ee.ethz.ch/cvl/

ntire21/

Figure 1. Quantitative comparison of IQA methods in the chal-

lenge. The right figure is the zoom-in view. SRCC represents

Spearman rank order correlation coefficient and PLCC represents

Pearson linear correlation coefficient. Higher coefficient matches

perceptual score better. The top methods demonstrate the state-of-

the-art performance.

1. Introduction

Image quality assessment (IQA) aims at using compu-

tational models to measure the perceptual quality of im-

ages, which are degraded during acquisition, compression,

reproduction and post-processing operations. As the “eval-

uation mechanism”, IQA plays a critical role in most image

processing tasks, such as image super-resolution, denois-

ing, compression and enhancement. Although it is easy for

human beings to distinguish perceptually better images, it

has been proved to be difficult for algorithms [38, 20]. Es-

pecially, on the basis of Generative Adversarial Networks

(GANs) [18], perceptual image processing algorithms (or

perceptual-oriented algorithms) [25, 30, 53, 62] have posed

a great challenge for IQA methods, as they bring completely

new characteristics to the output images [20]. It has been

noticed that the contradiction between the quantitative eval-

uation results and the real perceptual quality is increasing

[6, 7, 20]. This will also affect the development of image
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processing algorithms, if the IQA methods cannot objec-

tively compare their perceptual quality [7, 20]. Therefore,

new IQA methods need to be proposed accordingly, to adapt

new image processing algorithms.

The NTIRE 2021 challenge takes a step forward in

benchmarking perceptual IQA – the task of predicting the

perceptual quality of an image obtained by perceptual-

oriented algorithms. We employ a new dataset called PIPAL

[20] as our training set, which contains 200 reference im-

ages, 29k distorted images and 1.13M human judgements.

Especially, this dataset includes the results of perceptual-

oriented algorithms, which are missing in previous datasets.

We also collect an extended dataset of PIPAL for validation

and testing. This dataset contains 3,300 distorted images

for 50 reference images, and all of them are the outputs

of perceptual-oriented algorithms. We collect 753k human

judgements to assign subjective scores for the extended im-

ages, ensuring the objectivity of the testing data.

The challenge has 270 registered participants in total.

Among them, 13 participating teams have submitted their

final solutions and fact sheets. They introduce new tech-

nologies in network architectures, loss functions, ensemble

methods, data augmentation methods, and etc. The perfor-

mance overview of these solutions is shown in Figure 1.

This challenge is one of the NTIRE 2021 associated

challenges: nonhomogeneous dehazing [3], defocus de-

blurring using dual-pixel [1], depth guided image relight-

ing [15], image deblurring [36], multi-modal aerial view

imagery classification [31], learning the super-resolution

space [32], quality enhancement of heavily compressed

videos [56], video super-resolution [49], perceptual image

quality assessment [21], burst super-resolution [5], high dy-

namic range [37].

2. Related Work

Image quality assessment (IQA). According to differ-

ent usage scenarios, IQA methods can be divided in to

full-reference methods (FR-IQA) and no-reference methods

(NR-IQA). FR-IQA methods measure the perceptual simi-

larity between two images, and have been widely used in

the evaluation of image/video coding, restoration and com-

munication quality. Beyond the most widely-used PSNR,

FR-IQA methods follow a long line of works that can trace

back to SSIM [54], which first introduces structural in-

formation in measuring image similarity. SSIM opened a

precedent for the evaluation of image structure or features.

After that, various FR-IQA methods have been proposed to

bridge the gap between results of IQA methods and human

judgements [55, 57, 59, 44, 58]. Similar to other computer

vision problems, advanced data-driven methods have also

motivated the investigation of applications of IQA. Zhang

et al. [61] propose to use pre-trained deep networks to cal-

culate the perceptual similarity and achieve good results. A

Gaussian Noise Gaussian Blur JPEG 2000

HIFIC CompressionESRGAN x2SPSR

Reference Image

Figure 2. The difference between the traditional distortions (the

first row) and the outputs of perceptual-oriented algorithms (the

second row).

contemporaneous work [39] also propose to train deep IQA

network using a pairwise-learning framework to predict the

preference of one distorted image over the other. In addition

to the above FR-IQA methods, NR-IQA methods are pro-

posed to assess image quality without a reference image.

Some popular NR-IQA methods include NIQE [35], [33],

BRISQUE [34], and PI [7].

Perceptual-oriented and GAN-based distortion. In the

past years, photo-realistic image generation has been evolv-

ing rapidly [30, 53, 52, 62], benefiting from the invention of

perceptual-oriented loss function [25, 53] and GANs [18].

On the one hand, this kind of perceptual image restoration

algorithm greatly improves the perceptual effect of the out-

put image. On the other hand, it brings completely new

characteristics to the output images. In general, these meth-

ods often fabricate seemingly realistic yet fake details and

textures. They do not quite match the quality of detail loss,

as they usually contain texture-like noise, or the quality of

noise, the noise is similar to the ground truth in appearance

but is not accurate. An example of perceptual distortions

is shown in Figure 2. The quality evaluation of such im-

ages has been proved challenging for IQA methods [20].

In order to evaluate and improve the performance of the

IQA method against such perceptual distortions, Gu et al.

[20] contribute a new IQA dataset called Perceptual Image

Processing ALgorithms dataset (PIPAL), including the re-

sults of Perceptual-oriented image processing algorithms,

which are missing in previous datasets. Recently, Gu et al.

[19] propose to improve the IQA performance on these per-
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Table 1. Quantitative results for the NTIRE 2021 Perceptual IQA challenge.

Rank Team Name Author/Method Main Score
PIPAL TID2013 LIVE

SRCC PLCC SRCC PLCC SRCC PLCC

1 LIPT mrc 1.5885 0.7990 0.7896 0.8040 0.8440 0.9170 0.8970

2 MT-GTD binyi 1.5811 0.8009 0.7803 0.7815 0.8265 0.9191 0.9132

3 The Amaurotia gjy19 1.5625 0.7918 0.7707 0.7293 0.7931 0.9084 0.9074

4 THUIIGROUP1919 bqy2020 1.5480 0.7770 0.7709 0.7465 0.7960 0.9051 0.8777

5 Yahaha! sherlocky 1.5317 0.7703 0.7615 — — — —

6 Huawei Noah’s Ark wth 1.5212 0.7744 0.7468 — — — —

7 debut kele debut kele 1.5121 0.7641 0.7480 — — — —

8 zhangtaotao zhangtaotao 1.4936 0.7571 0.7366 — — — —

9 MACS alir 1.4717 0.7522 0.7194 0.7300 0.7800 0.9200 0.9400

10 orboai orboai 1.4549 0.7397 0.7153 — — — —

11 LION Team sfezza 1.3774 0.7003 0.6771 — — — —

12 SI analytics Ahn 1.3280 0.6744 0.6535 0.5371 0.6264 0.9263 0.9211

13 tsubota tsubota 1.2053 0.5955 0.6098 — — — —

Baselines

LPIPS-VGG 1.2277 0.5947 0.6330 0.6695 0.7490 0.9433 0.9431

LPIPS-Alex 1.1368 0.5658 0.5711 0.7444 0.7634 0.9211 0.9172

PieAPP 1.2048 0.6074 0.5974 0.8478 0.8064 0.9182 0.9102

DISTS 1.3422 0.6548 0.6873 0.8184 0.8463 0.9468 0.9440

SWD 1.2585 0.6243 0.6342 0.7895 0.8219 0.8832 0.8731

FSIM 1.0748 0.5038 0.5709 0.8015 0.8560 0.9634 0.9491

SSIM 0.7549 0.3614 0.3936 0.7414 0.7894 0.9479 0.9397

PSNR 0.5263 0.2493 0.2769 0.6395 0.6541 0.8756 0.8686

ceptual distortions by explicitly considering the spatial mis-

alignment using anti-aliasing pooling layers and spatially

robust comparison operations in the IQA network.

3. The NTIRE Challenge on Perceptual IQA

We host the NTIRE 2021 Perceptual Image Quality As-

sessment Challenge and the objective are three-fold: (1) to

push developing state-of-the-art perceptual image quality

assessment algorithms to deal with the novel GAN-based

distortion types; (2) to compare different solutions and gain

new insights; and (3) to promote a novel large perceptual

IQA dataset (PIPAL [20, 19]). Details about the challenge

are as follows:

Task. The task of this challenge is to obtain an image

quality assessment method capable to produce high-quality

perceptual similarity results between the given distorted im-

ages and the corresponding reference images with the best

correlation to the reference ground truth MOS score. Note

that we do not restrict the participants to develop the full-

reference IQA methods, and the blind IQA methods are also

welcomed.

Dataset. We employ a subset of the PIPAL dataset as the

training set and an extended version of the PIPAL dataset

as the validation and the testing set. The PIPAL dataset in-

cludes both traditional distortion types, image restoration

results, compression results, and novel GAN-based image

processing outputs. More than 1.13 million human judge-

ments are collected to assign mean opinion scores (MOS)

for PIPAL images using the Elo rating system [16]. The

original PIPAL dataset includes 250 high-quality diverse

reference images, each has 116 different distorted images.

We use 200 of the 250 reference images and their distorted

images as the training set (in total 200 × 116 distorted im-

ages). All training images and the MOS scores are publicly

available.

We collect an extended version of the PIPAL dataset as

the validation and testing set. We use the rest 50 reference

images and collect 66 additional distorted images for each

of them. The newly collected distortion types are all outputs

of GAN-based image restoration algorithms or GAN-based

compression algorithms, in total 3300 additional images are

collected. Thanks to the expandability of the Elo rating sys-

tem used by the PIPAL dataset, we can assign MOS scores

to new images with additional pairwise judgements with-

out collecting from scratch. At last, 753k human judge-

ments are involved in preparing the validation and testing

set. The validation set contains 25 reference images and 40

distorted images for each of them. The testing set contains

the rest 25 reference images and all the 66 distorted images
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Figure 3. Scatter plots of the objective scores vs. the MOS scores.

for each reference image. Note that for the participants, the

training set and the validation/testing set contain completely

different reference and distorted images, which ensures the

objectivity of the final results.

Evaluation protocol. Our evaluation indicator, namely

main score, consists of both Spearman rank-order correla-

tion coefficient (SRCC) [45] and Person linear correlation

coefficient (PLCC) [4]:

Main Score = SRCC+ PLCC. (1)

The SRCC evaluates the monotonicity of methods that

whether the scores of high-quality images are higher (or

lower) than low-quality images. The PLCC is often used

to evaluate the accuracy of methods [45, 19]. Before calcu-

lating PLCC index, we perform the third-order polynomial

nonlinear regression as suggested in the previous works

[38, 20]. By combining SRCC and PLCC, our indicator

can measure the performance of participating models in an

all-round way.

Challenge Phases. The whole challenge consists of three

phases: the developing phase, the validation phase, and the

testing phase. In the developing phase, the participants can

access to the reference and distorted images of the training

set and also the MOS labels. This period is for the par-

ticipants to familiarize themselves with the structure of the

data and develop algorithms. In the validation phase, the

participants can access the reference and distorted images

of the training set and no labels are provided. The partici-

pants had the opportunity to test their solutions on the val-

idation images and to receive immediate feedback by up-

loading their results to the server. A validation leaderboard

is available. In the testing phase, the participants can access

to the reference and distorted images of the training set. A

final predicted perceptual similarity result is required before

the challenge deadline. The participants also need to submit

the executable file and a detailed description file of the pro-

posed method. The final results were then made available

to the participants.

4. Challenge Results

There are 13 teams participated in the testing phase of the

challenge. Table 1 reports the main results and important

information of these teams. We also select some existing

representative IQA methods as our baseline. Specifically,

We choose PSNR, SSIM [54] and FSIM [59] as represen-

tative traditional IQA methods, PI [7] and NIQE [35] as

representative blind IQA methods, and LPIPS [61], DISTS

[12], PieAPP [39] and SWD [19] as representative deep-

learning based methods. Table 1 reports the final test re-
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Figure 4. Analysis of IQA methods in evaluating IR methods. Each point represents an algorithm. Higher correlations indicates better

performance in evaluating perceptual image algorithms.

Figure 5. The overview of LIPT team’s Image Quality Transformer (IQT) method.

sults and rankings of the challenge. The methods are briefly

described in Section 5 and the team members are listed in

Appendix A.

As shown in Table 1, 11 of 13 participating teams

achieve an SRCC score higher than 0.75 on PIPAL, which

significantly surpasses the highest performance of existing

algorithms (0.65). The champion team achieves an SRCC

score of 0.799 and a PLCC score of 0.790, refreshing the

state-of-the-art performance on PIPAL. In order to evaluate

their performance on traditional distortion types, we also re-

port their results on TID2013 [38] and LIVE [46] dataset in

Table 1. The top three teams in the challenge all achieve

competitive results with existing methods on TID2013 and

LIVE, showing their good generalization ability on tradi-

tional distortion types.

Figure 3 shows the scatter distributions of subjective

MOS scores vs. the predicted scores by the top solutions

and the other 5 IQA metrics on PIPAL test set. The curves

shown in Figure 3 were obtained by a third-order polyno-

mial nonlinear fitting. One can observe that the objective

scores predicted by the top solutions have higher correla-

tions with the subjective evaluations than existing meth-

ods. We then present the analysis of IQA methods as per-

formance measures for perceptual image processing algo-

rithms. Recall that an important goal of this challenge is

to promote more promising IQA metrics for perceptual-

oriented algorithms. In Figure 4, we show the scatter

plots of subjective scores vs. the top solutions and some

commonly-used IQA metrics for some perceptual-oriented

algorithms. As can be seen, the top solutions perform well

in evaluating the images in the testing set. Among them, the

correlation between the evaluation of the champion solution

(1st) and the subjective score reaches 0.95.

5. Challenge Methods

We describe the submitted solution details in this section.
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Figure 6. The overview of MT-GTD team’s bilateral-branch multi-scale image quality estimation (IQMA) network.

(a) The overall framework.

(b) The proposed deep similarity module.
Figure 7. The Amaurotia team: Learning to Learn a perceptual

image path similarity metric.

5.1. LIPT

LIPT team is the winner of this challenge. They develop

an image quality transformer (IQT), introduced in [10], that

applies a transformer architecture to the perceptual IQA

task. Recently, the transformer-based models achieve im-

pressive results in many vision tasks [14, 27]. However,

this is the first time that the transformer technique [51] has

been applied to the full-reference IQA task. The overview

framework of their IQT method is illustrated in Figure 5.

The IQT method consists of three parts, the feature extrac-

tion network, the transformer encoder and decoder, and the

prediction head. Firstly, an Inception-ResNet-V2 network

[50] pre-trained on ImageNet [42] is used to extract per-

ceptual representations from both reference and distorted

images. The extracted feature maps are then projected to

vectors and a trainable extra quality embedding and posi-

tion embedding are also added. Secondly, the transformer

encoder takes the embedding of the feature map difference

calculated between the reference feature map and the dis-

torted feature map as input, and the output of the encoder

is sent to the transformer decoder together with the embed-

ded feature map of the reference image. The transformer

encoder and decoder are based on the standard architecture

of the transformer, which consists of multi-head attention

modules, multi-layer perceptions and layer normalization.

At last, the prediction head takes the output of the trans-

former decoder as the input and predicts the perceptual sim-

ilarity score.

In the training phase of the IQT, M overlapping image

patches of size 256 × 256 are cropped from both the refer-

ence image and the distorted image. The final quality score

is obtained by averaging the quality scores of these patches.

Horizontal flip and random rotation are applied as data aug-

mentation during the training And the loss is calculated us-

ing a mean squared error between the predicted scores and

the ground truth scores.

5.2. MT­GTD

MT-GTD team wins the second place in our challenge.

They contribute a new bilateral-branch multi-scale image
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Figure 8. The overview of THUIIGROUP1919 team’s Region Adaptive Deformable Network (RADN).

(a) Framework for feature extraction.

(b) Framework for transformer.
Figure 9. The Yahaha team: A Transformer-based perceptual im-

age quality assessment framework leveraging multi level features.

quality estimation (IQMA) network, which is detailed in

[22]. At first, ResNet [24] pre-trained on ImageNet [29]

is used as the feature extraction backbone. The IQMA

network has two branches with Feature Pyramid Network

(FPN)-like architecture to extract multi-scale features from

patches of the reference image and corresponding patches

of the distorted image separately. The feature maps of the

same scale from both branches are then sent into several

scale-specific feature fusion modules. Each module per-

forms both a feature fusion operation and a pooling op-

eration for corresponding features. Then several score re-

gression modules are used to learn a quality score for each

scale. Finally, image scores for different scales are fused

as the quality score of the image. The overall framework is

illustrated in Figure 6. It is worth noting that the parallel

integration method is used for ensemble models in the chal-

lenge. The MT-GTD team ensembles 9 models which are

depicted in the testing description with an average score of

all these models as the final score.

In the training phase of the IQMA network, a data aug-

mentation operation is specifically designed to address the

imbalance issue in the PIPAL training set. They observe

that only a few images in the PIPAL training set have a sub-

jective score of less than 1300. They re-sample these im-

ages using random horizontal flipping, vertical flipping and

random rotations as data augmentation. The augmentation

operation successfully increases the percentage of the im-

ages that have very small subjective scores. The training is

driven using smooth L1 loss as it is more robust to outliers.

5.3. The Amaurotia

The Amaurotia team extends the LPIPS metric [61] and

proposed Learning to Learn a Perceptual Image Patch Sim-

ilarity (L2PIPS) method employed a new deep similarity

(DS) module. Figure 7 (a) shows the overall framework

of the proposed method. A ResNet-50 [24] network pre-

trained on ImageNet [29] is used as the feature extraction

backbone and multi-scale deep representations are extracted

for comparison. Their main novelty lies in the DS module,

which is designed to predict the similarities between fea-

ture pairs. In each DS module, a channel shuffle operation

and group convolution are performed to compare the fea-

ture channels pair-wisely, as shown in Figure 7 (b). More-

over, frequency channel attention (FCA) [40] technique is

also employed to perform attention mechanism. In the chal-

lenge, an additional cosine similarity is also used as an aux-

iliary output if each DS module.

The training phase of the proposed L2PIPS has two

stages. In the first 100 epochs, the ResNet-50 feature extrac-

tion network is frozen and the loss function is the L1 loss. In

the second phase, another 100 epochs training is performed.

The weights of the feature extraction network are also train-

able in this stage and the loss function is changed to mean

7



Figure 10. The Huawei Noah’s Ark team: Image agnostic pairwise

comparisons and differentiable correlation loss functions for full-

reference image quality assessment.

square error loss.

5.4. THUIIGROUP1919

THUIIGROUP1919 proposes a new IQA network,

namely Region Adaptive Deformable Network (RADN)

[47], which is illustrated in Figure 8. Firstly, they modified

the original residual block by removing batch normalization

and adopting 3×3 convolution instead of 7×7. These mod-

ified residual blocks are trained from scratch to extract fea-

tures for comparison. Note that no pre-trained model is used

in the proposed RADN, which is different from most of the

rest solutions. Considering that the human visual system’s

low sensitivity to the error and misalignment of the edges in

perceptual distortions [19], reference-oriented deformable

convolution modules are adopted to make better use of the

reference information. The offset parameters are calculated

using the reference image and the deformable convolutions

use this offset to process the distorted image. Before being

sent to quality score prediction, a novel patch-level atten-

tion module is designed to explore the correlations between

local patches.

In the training phase of the RADN network, a contrastive

pre-training strategy is proposed to make the model learn

how to distinguish the image quality rather than directly

guess the quality score. Similar to LPIPS [61] and SWD

[19], a two-layer fully-connected network is employed to

predict pairwise probabilities from the quality scores. The

cross entropy loss function is used to calculate loss between

the predicted probabilities and the ground truth probabilities

obtained using Elo system in PIPAL dataset.

5.5. Yahaha

Yahaha team also adopts the transformer technique [51]

to build their IQA method. A ResNet-18 [24] backbone net-

work is first employed for feature extraction. As shown in

Figure 9 (a), both reference image and distortion image are

fed to the backbone network to obtain the feature maps of

each layer. The feature maps and the difference of quality

maps are concatenated together as ci = ri ⊕ di ⊕ (ri − di),
where ci is the concatenated feature from layer i, ri and di

(a) Siamese-Difference architecture.

(b) Siamese-Difference with attention architecture.

(c) Siamese-Difference with ConvLSTM layer.

(c) Ranking model architecture.
Figure 11. The MACS team: Siamese-Difference Network for

IQA.

are the reference and distorted image feature maps of layer

i. Then, feature maps from different layers are downsam-

pled to the same spatial resolution by average pooling be-

fore being sent to the transformer. Structure of transformer

stage is shown in Figure 9 (b), features of each position are

added with a learnable position embedding before fed to

a standard transformer encoder. The transformer encoder

is connected with two multi-layer fully-connected network

heads for the prediction of distortion type and opinion score,

respectively. The loss from these two parts are weighted

summed during training.

In the training phase, the Yahaha team employs both L1

loss and a relative-distance loss In relative-distance loss, the

difference between prediction scores and the ground truth

subjective scores are compared for each image pair. It can

be formulated by:

Loss =
N∑

i=1

N∑

j=i+1

|(yi − yj)− (xi − xj)|,

where yi and xi represent the ith ground truth score and

prediction score, respectively.
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Figure 12. The LION team: Image Quality Estimation based on Ensemble of Gradient Boosting.

Figure 13. SI Analytics team: Deep Learning-based Distortion

Sensitivity Prediction for Full-Reference Image Quality Assess-

ment.

5.6. Huawei Noah’s Ark

The innovative point of the method proposed by Huawei

Noah’s Ark team is the use of two special loss functions.

The model is trained with a loss function that incorpo-

rates (a) pairwise comparisons, and (b) listwise compar-

isons. Having many and diverse comparisons with distorted

images coming from different reference images provides a

better signal during training, and better mimics how IQA is

evaluated.

For the pairwise comparison loss, the Bradley-Terry

(BT) sigmoid [8] is used to obtain a probability of which

image in the pair has the best quality. The pair of distorted

images can originate from different reference images, mak-

ing the pairwise comparison agnostic to their reference im-

age. Hence, the model is forced to compare pairs of images

with different scene content, as is the case in IQA evalua-

tion. For training, the MSE loss between the predicted prob-

ability from the BT model and its ground truth probability

computed with the Elo logistic curve is used.

In addition to the pairwise comparison, novel differen-

tiable regularizers derived from the PLCC and SRCC are

also used as losses. The regularizers act as listwise com-

parisons where all samples in a mini-batch form an ordered

list. Having listwise comparisons complement the pairwise

comparisons, as every sample is now also compared to the

rest of the mini-batch. Hence, the model is forced to learn

subtle differences (i.e., pairwise comparisons) as well as

relative differences (i.e., listwise comparisons). These two

losses have the same weights in the training phase.

5.7. debut kele

Debut kele team employs ensemble technology to build

their method. They mainly employs the complementary in-

formation provided by traditional IQA and deep learning-

based IQA algorithms. The contributed solution can be

divided into two main parts: feature extraction using

different perceptual image quality assessment, which in-

clude SSIM, MS-SSIM, CW-SSIM, GMSD, LPIPS-VGG,

DISTS, NLPD, FSIM, VSI, VIFs, VIF, and MAD. Then,

a regression model is built using XGBoost [9] based on

the pre-calculated IQA. The ’max depth’ parameter of the

model is set to 3 and learning rate was set at 0.01. In ad-

dition, feature subsample and the sample subsample values

were set at 0.7 to prevent from overfitting. The maximum it-

eration round is set as 10000 while the early-stopping round

is set 500. In the challenge, 5 fold bagging-based ensemble

strategy is used.

5.8. MACS

MACS team proposes three different networks that all

based on a Siamese-Difference architecture, which is de-

tailed in [43]. The basic Siamese-Difference network are

illustrated in Figure 11 (a). In the decoding part, the ab-

solute values of the outputs are concatenated from the en-

coding part. Instead of using concatenation of the encoded

images directly for the skip connections, the absolute dif-

ference of the encoded feature maps have been used. The

9



decoding part is not symmetric, which is different from the

traditional Siamese networks The authors argue that this ar-

chitecture has more capability in representing useful fea-

tures to estimate the quality score rather than the tradi-

tional Siamese network architecture. In the second network,

channel-wise attention and spatial attention are used to im-

prove the Siamese-Difference architecture, as shown in Fig-

ure 11 (b). To mitigate the issue of high computational cost

of the proposed network on big images, the third network

first tiled each input into patches with size 72 × 72 and stack

them as an image bag. These patches are sent to a ConvL-

STM Layer, as shown in Figure 11 (c). In the challenge,

each network is trained separately, and the averaged score

of them are used as the final score.

In the training phase, multiple loss functions are com-

bined to achieve better results. Firstly, MSE loss is used

as the most common loss function for a regression task. A

new differenitable pearson loss is also employed to increase

the PLCC performance. At last, a novel rank loss is pro-

posed in order to improve the SRCC rank correlation per-

formance. Inspired by SoDeep [17], a ranker network is

trained to learn how to sort M inputs. The network archi-

tecture is shown in Figure 11 (d). To train this network,

M dimensional random vectors are generated and the net-

work is trained to learn how to sort the inputs by minimiz-

ing mean absolute error between the sorted input and the

output of the network. After training this network, this net-

work can be used as a differentiable sorting function. Sup-

pose R(S) and R(S′) are the estimated ranked vectors of S

and S′, respectively. The squared difference between these

two vectors is used in order to increase SRCC measure as

LRank = 1
M ‖R(S)−R(S′)‖2.

5.9. LION

LION team also employs boosting strategy to build their

solution, which is introduced in [23]. Firstly, the VGG-16

network [48] pre-trained on the ImageNet [29] is used as the

feature extraction module. First, an analysis is performed

on features extracted from different layers to determine if

a particular layer of the model provides more relevant fea-

ture maps for image quality assessment task. For each layer

of the VGG-16 model, a distance between reference and

distorted images is computed using extracted feature maps.

The correlation between the calculated distances and the

subjective scores is computed using SRCC. Three interme-

diate layers (block4 conv2, block4 conv3 and block5 conv1)

are highlighted by analyzing these SRCC values and are

considered to be the best candidates for the evaluation of the

perceptually image quality. When performing image quality

estimation, the reference and distorted images are fed to the

VGG-16 network to derive the feature vector from the three

selected intermediate convolution layers. Then, global av-

erage pooling is performed to reduce the feature maps into

a manageable size. Finally, to provide the feature vector

to the regression part of the framework, the absolute dif-

ference between the extracted features of the reference and

distorted images is calculated. The feature vector is then fed

into the three Gradient Boosting regression models, which

are XGBoost [9], LightGBM [26] and CatBoost [13], to be

regressed to predict three image quality scores. The three

models are ensemble models using decision trees. The idea

behind using three Gradient Boosting regression models, is

to combine the predictions of these models to form an en-

semble that outperforms a single trained model.

5.10. SI Analytics

SI Analytics team proposes a method motivated by the

visual sensitivity map, which is detailed in [2]. The vi-

sual sensitivity map refers to a weighting map describing

the degree of visual importance of each pixel to the hu-

man visual system (HVS). As shown in Figure 13, their

method firstly predicts visual sensitivity map allocating lo-

cal weights to the pixels according to their local spatial char-

acteristics based on the reference image, the distorted im-

age, and the spatial error map. The spatial error map is

defined by
log(1/((Xref−Xdis)

2+ε/2552))
log(2552/ε) , where Xref and

Xdis are gray-scale reference image and distorted image

normalized to [0, 1], and ε = 1. With the spatial error map

and predicted visual sensitivity map, the Hadamard product

and global average pooling are applied in series to obtain the

final subjective score. Different from DeepQA [28], they

use UNet [41] structure to conserve the spatial information

of input images instead of using down-sampling operations

for predicting distortion sensitivity maps. Moreover, there

are more convolution layers in the encoding network to en-

large the receptive fields.

In the training phase, they normalize the ground-truth

score into [0, 1] and oversample those images outside the

range of [0.4, 0.8] to relieve score imbalance problems. The

loss function adopts the combination of mean-square error

and L2 loss between predicted quality score and subjective

scores.

5.11. tsubota

Tsubota team builds their method by modifying PieAPP

[39] on feature extraction network and pooling layers.

Specifically, they replace the VGG [48] network in PieAPP

with AlexNet [29] pre-trained on ImageNet [11] image and

adopt Blurpool [60] to avoid aliasing, not commonly used

Maxpool.

In the training phase, they firstly train their model on

the PieAPP dataset to obtain a pre-trained model. Then,

they finetune the pre-trained model on the PIPAL dataset.

For those trainings, the input image was randomly cropped

into 36 patches with a resolution of 64 × 64 pixels. In the

testing phase, they use a 64 × 64 sliding window with the

10



stride size set to 6 pixels. The rest of settings are same with

PieAPP.
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