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Abstract

Image Quality Assessment (IQA), which aims to provide

computational models for automatically predicting percep-

tual image quality, is an important computer vision task

with many applications. In recent years, a variety of IQA

methods have been proposed based on different metric de-

signs, which measure the quality of images affected by vari-

ous types of distortion. However, with the rapid develop-

ment of Generative Adversarial Networks (GAN), a new

challenge has been brought to the IQA community. Espe-

cially, the GAN-based Image Reconstruction (IR) methods

overfit the traditional PSNR-based IQA methods by gener-

ating images with sharper edges and texture-like noises,

leading the outputs to be similar to the reference image

in appearance but with loss of details. In this paper, we

propose a bilateral-branch multi-scale image quality esti-

mation network, named IQMA network. The two branches

are designed with Feature Pyramid Network (FPN)-like ar-

chitecture, extracting multi-scale features for patches of the

reference image and corresponding patches of the distorted

image separately. Then features of the same scale from both

branches are sent into several scale-specific feature fusion

modules. Each module performs feature fusion and a nov-

elly designed pooling operation for corresponding features.

Then several score regression modules are used to learn a

quality score for each scale. Finally, image scores for differ-

ent scales are fused as the quality score of the image. IQMA

network has achieved 1st place on the NTIRE 21 IQA pub-

lic leaderboard and 2nd place on the NTIRE 21 IQA private

leaderboard, and consistently outperforms existing state-of-

the-art (SOTA) methods on LIVE and TID2013.

1. Introduction

Image quality assessment methods are developed to mea-

sure the perceptual quality of images after distortion or post-

processing operations [15]. It is vital for many visual tasks,

such as benchmarking image processing algorithms, i.e. im-

age restoration [4]. With the rapidly growing need for visual

analysis, the IQA task has received lots of attention. Current

IQA methods can be categorized as Full-Reference meth-

ods (FR-IQA) and No-Reference ones (NR-IQA). FR-IQA

methods measure the quality difference by comparing the

target (distorted) image with the reference (ground truth)

image. In this paper, we focus on the FR-IQA, which is the

same as the setting of NTIRE 21 IQA challenge.

The most widely-used traditional metrics for FR-IQA are

Peak Signal-to-Noise Ratio (PSNR) [2] and Structural SIM-

ilarity (SSIM) [25]. These two metrics are of simple mathe-

matical formulations and have achieved remarkable perfor-

mances on different benchmarks. Existing works have re-

vealed the theoretical connection between PSNR and SSIM,

and their advantages for different kinds of traditional noises,

such as PSNR for additive Gaussian noise and SSIM for

JPEG-based compression noise [13].

During recent years, many deep learning-based IQA

methods have been proposed [5, 8, 10, 20, 30]. Although

deep learning methods have achieved SOTA performance,

most of them aim to optimize the PSNR or SSIM metric.

On the other hand, with the rapid development of GAN, new

types of distortion are brought to the IQA field. The GAN-

generated images usually have seemingly realistic yet fake

details and textures, bringing in texture-like noises [15].

The GAN-based distortion can be easily perceived by hu-

man eyes but is challenging for the widely used PSNR or

SSIM metrics. Thus it is necessary to design new methods

to narrow the gap.

The NTIRE 21 IQA challenge provides dataset (PIPAL)

contains 4 categories of distortions: Traditional, Super-

Resolution (where GAN-based distortion is included), De-

noizing and Mixture Restoration [15]. This setting is sim-

ilar to real-world scenarios where different types of distor-

tion coexist, and distortion at different scales coexist. For

traditional distortions, methods which extract structural in-

formation and evaluate image at the global scale usually

perform the best. However, to capture the GAN-generated

texture-like noises, it is necessary to evaluate the image at

a fine-grained texture level. In other words, small-scale im-

age analysis is vital for GAN-based distortion. Thus we de-
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sign a multi-scale image evaluation architecture to measure

distortions at different scales. Inspired by the two-stream

approach [5], our network is designed as a bilateral-branch

architecture. One branch is used to extract multi-scale fea-

tures of the distorted image, the other for extracting features

of the corresponding reference image. The two branches

share the same architecture and parameters. FPN [16] is

used as the backbone for each branch, which can extract

and fuse multi-scale features efficiently. To further capture

the features at the fine-grained level, images are divides into

small patches for analysis.

Features of the same patch position at the same scale

from two branches are sent in pairs to a feature fusion mod-

ule for quality prediction. The module performs early fea-

ture fusion, max pooling, and mean pooling, and then out-

puts the fused feature. Then all the fused features for the

same scale are sent to a score regression module to predict

the image quality score for that scale. At last, a final image

score is calculated by averaging quality scores for differ-

ent scales. Besides the network design, we also perform

data augmentation to alleviate the imbalanced distribution

of image scores.

To summarize, our major contributions are as follows:

1. Image quality is evaluated on different scale levels

to capture different kinds of distortion. An FPN-

based bilateral-branch multi-scale quality assessment

network is designed to estimate image quality.

2. Features of the same scale are sent to corresponding

feature fusion and score regression modules. Early fu-

sion, a novel pooling operation, and a novel attention-

based score prediction network are utilized to learn the

image score of a specific scale.

3. Data augmentation is used to make quality score dis-

tribution be more balanced.

4. Our method has achieved the 1st place on the NTIRE

21 IQA public leaderboard (the 1st on both SRCC and

PLCC) and the 2nd place on the private leaderboard

(the 1st on SRCC and the 2nd on PLCC) and signif-

icantly outperforms existing methods on benchmark

datasets LIVE [21] and TID2013 [19].

The remaining part of this paper is organized as follows.

Section 2 introduces the related work. Section 3 introduces

the proposed IQMA network in detail. Section 4 provides

our remarkable performance on the training set, validation

set , and testing set, as well as extensive ablation study re-

sults. The conclusion is given in Section 5.

2. Related Work

Our method is motivated by the fact that traditional FR-

IQA metrics may fail when evaluating GAN-based distor-

tion. To capture the GAN-based distortion as well as tradi-

tional distortion, we need to design a multi-scale network

for feature extraction. And the bilateral-branch network is a

natural fit for FR-IQA since pair of distorted image and ref-

erence can be processed simultaneously. And pair of fea-

tures should be combined to predict the image quality. In

this section, we will briefly introduce the related works.

2.1. Metrics for Image Quality Assessment

Quality assessment for an image can be performed sub-

jectively or objectively. The most accurate way to judge im-

age quality is by judging through human eyes subjectively,

which inspired the notion of Mean Opinion Score (MOS), a

numerical measure of human judgement. However, getting

the MOS can be inconvenient or slow in some cases [25],

leading the research field to find more automatic and objec-

tive methods for IQA.

Various objective methods have been proposed for FR-

IQA [4,18,20,22,23,26,27]. Some early works simply use

Lp norm to measure the similarity between target and refer-

ence, at the cost of accuracy [26]. Another line of research

utilizes knowledge from Human Visual System (HVS) to

guide the design of the similarity metrics. However, all the

HVS-inspired models have failed on real-world tasks ow-

ing to the difficulty of accurately modeling the complexity

of the HVS [20].

2.2. Multi­scale Feature Extraction

Multi-scale feature extraction is vital for IQA since the

perceptual quality of an image depends on the distance

from the image plane to the observer and the perceptual

capability of the observer’s visual system. Early works have

proposed Multi-Scale SSIM (MS-SSIM) as an enhanced

metric for single-scale SSIM [27]. However, MS-SSIM

depends on handcrafted features and needs parameter

tuning. With the development of deep learning, FPN [16]

is proposed which can generate multi-scale feature maps

end-to-end. FPN extends the featurized image pyramid [1]

design with upsampling operations to extract semantically

stronger features. It combines low-resolution, semantically

strong features with high-resolution, semantically weak

features via a top-down pathway and lateral connections.

FPN has achieved remarkable performance on SOTA

benchmarks, and similar network designs have been

applied for different fields [14, 24].

2.3. Bilateral­branch Feature Fusion

Bilateral-branch networks, especially Siamese networks

[3], have been used to learn similarity between two inputs.

The inputs are processed in parallel by two networks shar-

ing their synaptic connection weights. The architecture is

naturally fit for feature extraction of FR-IQA tasks, and [5]
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Figure 1: The overall framework of IQMA network. Random sampled pairs of patches are sent to the network. Features

corresponding to four scales are extracted by the Feature Extraction Module. Then four Feature Fusion Modules fuse corre-

sponding features of the same scale from two branches and output four fused features. Four Score Regression Block predict

four scores. And the four scores are averaged as the final IQA score.

has proposed a bilateral-branch for both FR-IQA and NR-

IQA. In their work, feature extraction is followed by a fea-

ture fusion step, where features from both branches and

their difference are all considered. They are concatenated

before pooling. Besides concatenation, adding, stacking

and outer product [9] are also frequently used for feature

fusion.

Features can be fused at different stages. Early fusion

combines features before classification (regression), and

late fusion combines the outputs after classification (regres-

sion). Early fusion is performed on feature-level, where the

feature vectors from different sources are concatenated into

a new feature vector which will then be used for classifi-

cation. For IQMA network, early fusion is utilized in the

Feature Fusion Modules.

For the pooling of the fused feature, bilinear pooling is

widely used when features coming from different modal-

ities [9]. However, for our network, we adopted a much

simpler solution proposed by [31] to concatenate the output

of max pooling and mean pooling.

2.4. Class­Imbalanced Learning

Real-world data usually has class-imbalanced distribu-

tion. Several learning strategies are developed to cope

with this kind of task, such as re-sampling, class-based re-

weighted loss, and data augmentation. Re-sampling tries to

reshape the original imbalanced dataset into a class-based

uniform one by down-sampling or up-sampling [11]. Re-

weighting assigns different weights to samples of different

classes, i.e., multiplying large (small) weights for training

samples of minority (majority) classes in loss function [17].

Data augmentation shares the same spirit of Re-sampling by

generating synthetic samples for minority classes to make

the distribution of the dataset more balanced [6,7]. The syn-

thetic samples can be generated based on original samples

by various operations, such as image shift, flips, rotation,

brightness adjustment, random cropping, zooming, and so

on. For the PIPAL dataset, we can observe a severe imbal-

anced distribution of image score and utilize the simple data

augmentation technique to balance their distribution.

3. Image Quality Multi-scale Assessment net-

work (IQMA network)

In this section, we introduce the proposed IQMA net-

work. As shown in Fig. 1, the IQMA network takes pairs

of image patches as input. It mainly consists of 3 parts:

an FPN-based Feature Extraction Module which extracts

features at four different scales for each pair of patches (ref-

erence, distortion); Four Feature Fusion Modules, each

takes a pair of features with the corresponding scale and

outputs fused features; Score Regression Module consists

of four Score Regression Blocks, each of which takes fused

features as input and predicts a quality score for that scale.

Then the four scores for different scales are averaged as the

predicted score.

3.1. A Scale­wise Patch­based Framework

Compared with the whole image, a patch can better rep-

resent fine-grained information. Thus IQMA network takes

pairs of patches as input using bilateral-branch. Each ref-

erence image is randomly cropped into K different patches
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Algorithm 1: IQMA network

input : A pair of images ref and dist
output: A predicted IQA score IQA Score

Denote RandomCropping as RC();

Denote FeatureExtraction as FE();

Denote FeatureFusion as FF();

Denote ScoreRegression as SR();

# Random Cropping into K patches;

{Pref1 , Pref2 , · · · , PrefK}← RC (ref );

{Pdist1 , Pdist2 , · · · , PdistK}← RC (dist);
for i← 1 to K do

for j ← 1 to 4 do

# Feature Extraction;

F j
refi
← FE(Prefi , scale = j);

F j
disti
← FE(Pdisti , scale = j);

# Feature Fusion;

F j
fusei

← FF (F j
refi

, F j
disti

)

end

end

# Score Regression for each scale;

for j ← 1 to 4 do

Sj← SR({F j
fuse1

, F j
fuse2

, · · · , F j
fuseK

});

end

# Get final IQA score;

IQA Score←
∑

4

j=1
Sj
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with the size of 32∗32 or 64∗64, while its distortion image

is cropped in the same way.

For each patch, features corresponding to 4 different

scales are extracted by the ResNet [12] or ResNeXt [28]-

based Feature Extraction Module, where feature map sizes

are C ∗ 8 ∗ 8, C ∗ 4 ∗ 4, C ∗ 2 ∗ 2 and C ∗ 1 ∗ 1, where C

represents the number of channel.

To learn different types of distortion, the IQMA network

calculates 4 image quality scores for each distortion im-

age. Each quality score corresponds to the image quality

evaluated at different resolutions. We define the scale level

j as j ∈ {level1, level2, level3, level4} where {level1 :
C∗8∗8, level2 : C∗4∗4, level3 : C∗2∗2, level4 : C∗1∗1}.
For example, the image quality score for j = level3 means

that the score is calculated based on features with the size of

C∗2∗2 for all the patches. The predicted score is calculated

as the average of the 4 image quality scores.

We summarize the proposed method in Algorithm 1.

3.2. Feature Extraction Module

Existing methods have achieved good performance on

images with traditional noises but often fail on images with

GAN-generated noise. These methods usually put more

emphasis on global structure analysis but ignore the texture-

Figure 2: Structure of Feature Extraction Module. Different

color represents feature maps with different scales.

like noises, making them have low tolerance toward spatial

misalignment [15]. To cope with this kind of distortion, it

is vital to consider feature vectors for both large scale and

small scale. This point of view motivates us to design a

feature pyramid-based multi-scale feature extractor.

ResNet or ResNeXt are utilized as the backbone, where

output feature maps of different blocks correspond to dif-

ferent resolutions. To improve the alignment of features of

different scale, we adopt the design of FPN [16], as shown

in Fig. 2. Different color represents feature maps with dif-

ferent scales.

Denote patch i of one reference image and its corre-

sponding patch of the distortion image as Prefi and Pdisti .

The feature extraction module will extract 4 features of dif-

ferent scales for each of them, denotes as F j
refi

and F j
disti

,

where j denotes scale as stated above.

3.3. Feature Fusion Modules

Each Feature Fusion Module contains 2 blocks, namely,

Feature Smoothing Block and Feature Pooling Block, as

shown in Fig. 3.

3.3.1 Feature Smoothing Block

Taking a pair of feature vectors of scale level j as input:

(F j
refi

, F j
disi

), the Feature Smoothing Block concatenates

them as concat(F j
refi

, F j
disti

, F j
refi
− F j

disti
), the last part

of which models the difference between the patches [5].

The concatenated features go through 2 convolution lay-

ers for further fusion, with kernel size 3 × 3 and 2 × 2, re-

spectively. The module outputs a concatenated feature map

Fconcati .

3.3.2 Feature Pooling Block

Different from existing work which improves the perfor-

mance of IQA networks on GAN-based distortions by intro-

ducing anti-aliased pooling layers [15], the Feature Pooling

Block pools the feature maps with combined pooling opera-

tions. It first performs mean pooling and max pooling, then
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Figure 3: Structure of a Feature Fusion Module.

concatenates the results as output F j
fusei

, as shown below:

F j
meani

= mean(F j
concati

, axis = [3, 4]),

shape = (N ∗K,C, 1, 1);

F j
maxi

= max(F j
concati

, axis = [3, 4]),

shape = (N ∗K,C, 1, 1);

F j
fusei

= concat(F j
meani

, F j
maxi

),

shape = (N ∗K, 2 ∗ C, 1, 1),

where N denotes the batch size, K represents the num-

ber of patch. Comparing with the more complicated pooling

operation conducted by [5], we discard the min pooling part

since we observe that min pooling has a negative impact on

learning fine-grained distortions.

3.4. Score Regression Module

The Score Regression Module consists of 4 Score Re-

gression Blocks followed by an averaging operation. The

Score Regression Block j predicts the quality score for

scale j, outputs Sj . And the averaging operation gets the

predicted score by

∑

4

j=1
Sj

4

Spatial pooling does not consider the effect of spatially

varying perceptual relevance of local quality. Inspired by

the weighted average patch aggregation design [5], each

Score Regression Block is designed with two branches, as

shown in Fig. 4. A direct score prediction branch is used to

directly predict the quality of a specific patch, and a patch-

wise quality regression branch takes all patches of the same

scale for consideration, outputs an attention vector. Then

the two outputs are combined to obtain the quality score Sj

for level j.

The 2 branches share the structure of 2 fully connected

layers. The direct score prediction takes F j
fusei

as input

and outputs a quality score Sdir. For the patch-wise quality

regression branch, it further maps all the direct features to

positive ones by: F j
posi

= ReLU(Sj
diri

) + const, where

const = 1e-8. Then the attention feature is calculated as:

Figure 4: Structure of a Score Regression Block.

F j
atti

=
F j
posi

∑K

t=1 F
j
post

where the division operation is a bitwise division.

And we got the image quality score for level j as Sj =
∑K

i

〈

F
j
atti

,S
j

diri

〉

K
, and the predicted IQA score =

∑

4

j=1
Sj

4 .

4. Experiments

4.1. Datasets

Our experiments are conducted on three datasets. The

first two are widely used benchmark datasets LIVE [21]

and TID2013 [19]. LIVE includes 29 reference images

and 779 distorted images corrupted by 5 types of distor-

tions, i.e., JPEG compression (JPEG), JPEG2000 compres-

sion (JP2K), white noise (WN), Gaussian blur (GB), and

simulated fast fading Rayleigh channel (FF). Each distor-

tion type contains 5 or 4 distortion levels. TID2013 includes

25 reference images and 3,000 distorted images corrupted

by 24 types of distortions, with 5 levels for each distor-

tion type. The third one is the PIPAL dataset [15], which

is provided by the NTIRE 21 IQA Challenge. The PIPAL

training set contains 200 reference images, 23,200 distor-

tion images, 40 distortion types, and 23,200 Elo scores for

all distortion image. Especially, compared with other IQA

datasets, it contains many GAN-based distortion types pro-

duced by GAN-based algorithms. PIPAL validation set con-

tains 25 reference images and 1,000 distortion images. PI-

PAL testing set contains 25 reference images and 1,650 dis-

tortion images.

In this paper we mainly report IQMA’s performance and

ablation studies on PIPAL. Cross-Dataset evaluation are

provided in Section 4.5 and supplymentary material.

4.2. Evaluation Metrics

Model performance is evaluated by two common mea-

surements: Pearson linear correlation coefficient (PLCC)

and Spearman rank order correlation coefficient (SRCC).
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Figure 5: Image distribution of PIPAL training set on qual-

ity score before and after data augmentation. Blue: original

distribution. Red: images we augmented.

PLCC is used to evaluate the linearity and con-

sistency of the prediction, its definition is: PLCC =
∑N

i=1
(pi−p̄)(si−s̄)√

∑

N
i=1

(pi−p̄)2(si−s̄)2
. Here si and pi indicate the i-th im-

age’s subjective score and converted objective rating after

nonlinear mapping, s̄ and p̄ are the mean of all si and pi,
N is the number of testing images. SRCC is used to eval-

uate the monotonicity of the performance, its definition is:

SRCC = 1 − 6
∑N

i=1
d2

i

N(N2
−1) , where di represents the difference

between the i-th images’ ranks in subjective and objective

evaluations [29]. In the NTIRE 21 IQA Challenge, the sum

of PLCC and SRCC is the final score.

4.3. Data Augmentation

We analyzed the data distribution of the PIPAL training

set and observed a severe imbalanced distribution on image

score, as is shown in Fig.5. The blue histogram demon-

strates the distribution of image numbers according to their

image scores. Especially, only 3.78% images with Elo score

< 1300. To alleviate the severe imbalance distribution, we

performed data augmentation for images with Elo Score

<1300. We up-sampled these images and used random hor-

izontal flipping, vertical flipping, and 90◦/180◦/270◦ ro-

tations to augment. After data augmentation, images with

Elo score < 1300 were increased to 15.12%, as shown in the

red part. We used 20,880 distortion-reference image pairs

in PIPAL for training and the rest 2,320 image pairs for val-

idation. ResNet pre-trained on ImageNet dataset was used

as our backbone neural network to extract features.

The other two datasets have balanced distributions, and

we divided their training set/validation set/testing set as

19/5/5 for LIVE and 17/4/4 for TID2013.

Figure 6: IQMA predicted scores vs. Elo scores on PIPAL

validation set.

4.4. Implementation Details

During the training phase, we used the Adam optimizer

with weight-decay α=1e-4, β1 = 0.9 and β2 = 0.999. We

used smooth L1 as loss function since compared with MSE

loss it is more robust to outliers. The initial learning rate

was set to 1e-4 and the cosine annealing learning rate sched-

uler was adopted with about 100K steps. The minimum

learning rate was 4e-6. The mini-batch size was set to 16.

We used PyTorch 1.4, NVIDIA V100 GPU with CUDA

10.0, and Multi-GPUs parallel training to accelerate train-

ing.

4.5. Comparison with SOTA Methods

We compare IQMA network with several SOTA meth-

ods on all three datasets. The methods include shallow

methods PSNR [2] and SSIM [26], and deep learning-based

methods such as LPIPS [30], PieAPP [20], DISTS [8],

and SWD [10]. As shown in Tab. 1, the IQMA network

achieves remarkable performance advantages over other

methods on PIPAL validation set, PIPAL testing set, LIVE,

and TID2013. On PIPAL, for the SRCC metric, the IQMA

network outperforms the 2nd best method by a margin of

0.16 on the validation set and 0.14 on the testing set. For

the PLCC metric, the IQMA network outperforms the 2nd

best method by a margin of 0.17 on the validation set and

0.09 on the testing set. The IQMA network consistently out-

perform all the other methods on LIVE, and beats the 2nd

best method with a large margin on TID2013. The scatter

plot of the IQMA predicted scores vs. Elo scores on the

PIPAL evaluation set is illustrated in Fig. 6. Some visual

samples from PIPAL training set and scatter plots for LIVE

and TID2013 are provided in supplementary material.
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PIPAL Validation Set PIPAL Testing Set LIVE TID2013

Model PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

IQMA 0.87200 0.87590 0.78030 0.80090 0.97184 0.96881 0.94951 0.95030

PSNR [2] 0.29165 0.25475 0.27693 0.24934 0.86500 0.87300 0.67700 0.68700

SSIM [26] 0.39842 0.33996 0.39356 0.36137 0.93700 0.94800 0.77700 0.72700

LPIPS-Alex [30] 0.64629 0.62758 0.57106 0.56580 0.93400 0.93200 0.74900 0.67000

LPIPS-VGG [30] 0.64712 0.59146 0.63306 0.59472 0.93400 0.93200 0.74900 0.67000

PieAPP [20] 0.69721 0.70627 0.59741 0.60741 0.90800 0.91900 0.85900 0.87600

DISTS [8] 0.68580 0.67428 0.68732 0.65483 0.95400 0.95400 0.85500 0.83000

SWD [10] 0.66802 0.66114 0.63419 0.62429 - - - -

Table 1: Performance comparisons on the PIPAL, LIVE, and TID2013.

Train patch detail Test patch detail

Backbone (patch size) ∗ number of patches (patch size) ∗ number of patches PLCC SRCC

Resnet50 (32∗32)∗512 (32∗32)∗1024 0.860 0.855

Resnet50 (64∗64)∗128 (64∗64)∗1024 0.857 0.845

Resnet101 (32∗32)∗512 (32∗32)∗1024 0.852 0.845

Resnet101 (64∗64)∗128 (64∗64)∗1024 0.852 0.844

Resnet152 (32∗32)∗512 (32∗32)∗1024 0.855 0.854

Resnet152 (64∗64)∗128 (64∗64)∗1024 0.856 0.848

Wide Resnet50 (32∗32)∗512 (32∗32)∗1024 0.852 0.854

Wide Resnet50 (64∗64)∗128 (64∗64)∗1024 0.848 0.841

Table 2: Comparison of different backbones.

FPN Mean Pooling Max Pooling Min Pooling PLCC SRCC

X 0.762 0.760

X X 0.821 0.823

X X X 0.857 0.845

X X X X 0.837 0.834

Table 3: Ablation study of FPN and Feature Pooling Block on PIPAL validation set.

Train patch detail Test patch detail

Backbone (patch size) ∗ number of patches (patch size) ∗ number of patches PLCC SRCC

Resnet50 (16∗16)∗2048 (16∗16)∗2048 0.832 0.823

Resnet50 (32∗32)∗512 (32∗32)∗512 0.860 0.855

Resnet50 (64∗64)∗128 (64∗64)∗128 0.857 0.845

Table 4: Ablation study of patch size on PIPAL validation set.

4.6. Ablation Study

In this section, we discuss the ablation studies of the

effectiveness of the FPN and the Feature Pooling Block,

patch size, and network backbones on PIPAL. Note that

except for the ablation study on the backbone, other

experiments are conducted using the ResNet50 backbone.

FPN. The IQMA with FPN builds the top-down pathway

for feature activations output at each stage’s last residual

block. And a model without FPN is used to verify the

effect of the FPN. As shown in row 1 and row 2 in Tab.

3, FPN improves the PLCC metric from 0.762 to 0.821,

improves SRCC metric from 0.760 to 0.823, which validate

the effectiveness of FPN.
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Figure 7: Convergence performance

Feature Pooling Block. In Feature Pooling Block, we

design feature pooling fusion operation instead of only use

mean pooling after feature extraction. We mainly compare

the following 3 feature pooling methods:

Method 1 : Fmean,

Method 2 : concat(Fmean, Fmax),

Method 3 : concat(Fmean, Fmax, Fmin),

where Fmean, Fmax, Fmin denote mean pooling, max pool-

ing and min pooling respectively.

As is shown in Tab. 3, feature pooling fusion demon-

strates a significant performance improvement. Meanwhile,

comparing method 2 with method 3, we can see that min

pooling deteriorates performances but still performs better

than method 1, further proving the importance of the feature

pooling fusion operation. Furthermore, as shown in Fig. 7,

we find that feature pooling fusion accelerates the conver-

gence of training loss by around 20%.

Patch. We conduct ablation studies on different crop-

ping patch sizes. Especially, we keep the number of total

pixels the same on each patch size level (29). As shown in

Tab. 4, patch size of 16× 16 performs poorly in all 3 patch

sizes setting. The reason may be that a tiny patch size will

lose too much global information. Meanwhile, performance

of 32×32 patch size is better than 64×64 , achieving 0.860

in PLCC and 0.855 in SRCC.

Backbone. Table 2 provides the comparison results on

different ResNet backbones. It is clear that there is no sig-

nificant performance difference among different backbones

with the same setting of patch. In other words, it is not nec-

essary to make network architecture deeper or wider for the

IQMA network.

4.7. NTIRE 21 IQA Challenge Report

In both validation and testing phases, we use ensemble

learning with multi-models trained by different backbones

and different patch sizes to prevent the occurrence of over-

fitting and under-fitting. The IQMA network has achieved

Method PLCC SRCC SCORE

1st 0.7896 0.7990 1.5885

IQMA 0.7803 0.8009 1.5811

3rd 0.7707 0.7918 1.5625

4th 0.7709 0.7770 1.5480

5th 0.7615 0.7703 1.5317

Table 5: Result of NTIRE 21 IQA Challenge

the 1st place (1st on both SRCC and PLCC) in the validation

phase, and the 2nd place (1st on SRCC and 2nd on PLCC) in

the final testing phase. The final ranking of the competition

in the testing phase is shown in Tab. 5.

5. Conclusion

In this paper, we propose a bilateral-branch Image Qual-

ity Multi-scale Assessment network (IQMA network) for

image quality assessment. IQMA network takes pairs of

images as input, and the pair of images is processed by two

branches in parallel. The model learns image scores at 4

scales, and averages the 4 scores as the final output. The

IQMA network adopts a bilateral-branch architecture, with

3 components: Feature Extraction Module, 4 Feature Fu-

sion Modules, and 4 Score Regression Modules. A com-

bination of ResNet and FPN is used for feature extraction,

which outputs multi-scale features. Feature Fusion Modules

read pair of features for corresponding patches of a certain

scale and output a compactly fused feature vector for the

pair of patches. Each Score Regression Module learns to

predict an image score based on all the features of the cor-

responding scale. 4 image scores are averaged to provide a

robust prediction of the predicted IQA score. With data aug-

mentation, IQMA network has been validated on NTIRE 21

IQA Challenge dataset, LIVE, and TID2013. It achieves

outstanding results on all the benchmarks.
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