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Abstract

Multimedia services are constantly trying to deliver bet-

ter image quality to users. To meet this need, they must

have an effective and reliable tool to assess the perceptual

image quality. This is particularly true for image restora-

tion (IR) algorithms, where the image quality assessment

(IQA) metric plays a key role in the development of these

latter. For instance, the recent advances in IR algorithms,

which are mainly due to the adoption of generative adver-

sarial network (GAN)-based methods, have clearly shown

the need for a reliable IQA metric highly correlated with

human judgment. In this paper, we propose an ensemble of

gradient boosting (EGB) metric based on selected features

similarity and ensemble learning. First, we analyzed the

capability of features extracted by different layers of deep

convolutional neural network (CNN) to characterize the

perceptual quality distance between the reference and dis-

torted/processed images. We observed that a subset of these

layers is more relevant to the IQA task. Accordingly, we

exploited these selected layers to compute the features simi-

larity, which are then used as input to a regression network

to predict the image quality score. The regression network

consists of three gradient boosting regression models that

are combined to derive the final quality score. Experiments

were performed on the perceptual image processing algo-

rithms (PIPAL) dataset, which has been used in the NTIRE

2021 perceptual image quality assessment challenge. The

results show that the proposed metric significantly outper-

forms the state-of-the-art methods for IQA task. The source

code is available at: https://github.com/Dounia18/EGB.

1. Introduction

In the last few years, driven by the continuous techno-

logical advances in computer and internet, multimedia

technologies have evolved considerably at a faster rate than

ever. Multimedia data has become integral parts of our daily

life, this is particularly true with the explosion in the num-

ber of smartphones and similar devices. These allow users

to take pictures anytime, anywhere and share them on so-

cial networks. However, digital images before they reach

the end user go through a series of processing steps that can

introduce different distortions, reducing the perceptual qua-

lity. Therefore, it is important to have an effective tool to

reliably assess, control and ensure high quality.

Image quality assessment (IQA) can be carried-out in

two ways, either subjectively or objectively. Subjective

image quality assessment consists in asking a group of pe-

ople to give their opinion about the quality of each image in

a given dataset. The evaluation can take several forms, the

observers may be asked to rate the quality on either a cate-

gory scale containing one of the five categories (excellent,

good, fair, poor, or bad) or on a continuous scale to avoid

quantization artifacts. They can also be asked to compare

two or more images. Subjective IQA is the most accurate

and reliable way for assessing image quality, since human

observers are in most cases the ultimate end users. Sub-

jective experiments are controlled and influenced by many

factors which make them time consuming, expensive and

impractical in real world applications. To avoid such limi-

tations, objective quality assessment metrics aim to define

quality measures that predict quality scores highly correla-

ted with those given by a set of observers.

Until recently, the task of assessing image quality was

addressed in two separate steps: 1) designing methods for

extracting relevant visual features, then 2) designing regres-

sion algorithms that derives a quality score from a set of

visual features. The first step consists in using mathema-

tical formulas to extract visual characteristics such as con-

trast, edge, texture, etc. The second step consists in learning

the relationship between the features and the quality score.

Even if the extracted features are fed into the learning algo-

rithm, the above two steps are still independent and require

some hand-engineering. They are then called hand-crafted

metrics in the literature [45], [29], [26].

In recent years, convolutional neural networks (CNNs)

[35] have shown to outperform traditional approaches and

have been extremely useful and successful in many compu-

ter vision tasks. Motivated by the great success of CNNs



on numerous applications, recent IQA works have adopted

the use of CNNs on the image quality prediction problem

which have proven to be more efficient than hand-crafted

metrics [23], [4], [20].

Despite these valuable works, the existing metrics show

high performance on IQA datasets including classical dis-

tortions, such as blur, noise, compression, etc. While

until now, there is no commonly accepted metric that ensu-

res reliable evaluation of image restoration (IR) algorithms

[10, 16]. This is even more remarkable for images resulting

from the generative adversarial network (GAN)-based IR

methods [15, 37], where there is a large inconsistency bet-

ween the subjective and objective quality assessments.

Consequently, in this paper, we propose an IQA me-

tric for perceptual IR algorithms based on the similarities

between the deep features and ensemble learning, called

ensemble of gradient boosting (EGB) metric. Using a pre-

trained CNN model for the object classification task, we

performed an analysis on features extracted from different

layers of deep CNN to determine which ones are the most

relevant for IQA task. On the basis of this study, the fea-

tures of the layers providing a high correlation with human

assessment of image quality are considered. Specifically,

we measure the distance between the selected features ex-

tracted from both the reference and distorted images, and

use this distance as an input to the regression network to

provide the image quality score. The regression network

consists of three gradient boosting regression models that

are combined to derive the final quality score.

The rest of this paper is organized as follows. Section 2

first presents a review of IQA metrics. Section 3 describes

our EGB-based IQA metric. The performance of the propo-

sed metric is assessed in terms of correlation with subjective

scores in Section 4. Finally, Section 5 concludes this paper.

2. Related Works

In this section, we will give a brief overview on image

quality metrics (IQMs). For more exhaustive description

of the cited metrics and other non-cited metrics, the reader

may also refer to the following overview papers [40], [28],

[21].

The most widely used traditional IQMs are mean squa-

red error (MSE) and peak signal to noise ratio (PSNR).

MSE is a signal based metric that represents the cumulative

squared error between the distorted and the reference image.

PSNR is the most popular pixel based metric which repre-

sents a measure of the peak error. These mathematical ba-

sed metrics exhibit weak performance and have been widely

criticized for not involving any perceptual information [39].

Other metrics were then developed to include human visual

system (HVS) properties to IQA such as structural simila-

rity index (SSIM) [41]. It was then extended to multi-scale

structural similarity index (MS-SSIM) [42], which is ba-

sed on modeling of image luminance, contrast and struc-

ture at multiple scales. Image fidelity criterion (IFC) [34]

and visual information fidelity (VIF) [33] are natural scene

statistics (NSS) based metrics that model natural images in

the wavelet domain using Gaussian scale mixtures (GSMs).

Natural image quality elevator (NIQE) [27] is based on con-

structing a collection of quality aware features and fitting

them to a multivariate Gaussian (MVG) model. The qua-

lity aware features are derived from NSS model, then qua-

lity is expressed as the distance between MVG fit of the

NSS features extracted from the test image and those ex-

tracted from the corpus of natural images. Most of the

above described image quality prediction models work by

performing regression on the extracted visual feature vector

to obtain quality scores. These models usually rely on ma-

chine learning algorithms such as support vector regressi-

ons (SVRs), random forests (RFs), general regression neu-

ral networks (GRNNs), etc.

The first application of a CNN model to the problem of

IQA was investigated by the authors in [18]. They app-

lied a CNN to the no reference image quality assessment

(NR-IQA) framework by regressing images on the target

subjective scores without hand-crafted features. The CNN

directly learns discriminant features from normalized raw

image pixels to achieve much better performance than hand-

crafted metrics. Zhang et al. [48], showed that networks

trained to solve challenging visual prediction and modeling

tasks end up learning a representation of the world that ma-

tches perceptual judgments well, meaning that features ex-

tracted from deep architectures are as good as hand-crafted

features.

CNN-based IQA models can be divided into two catego-

ries : 1) CNNs used for features extraction and regression.

2) CNNs used to only extract features. CNN-based models

of the first category are trained in an end-to-end manner to

predict quality scores. Like in [36], where authors explo-

red few different classifier architectures for IQA task. The

weights of the baseline CNN are initialized by training on

the ImageNet dataset [8], and then an end-to-end training on

quality assessment is performed. CNN-based models of the

second category are followed by a SVR to perform regres-

sion on the features. Authors in [2], proposed a deep blind

image quality (DeepBIQ) model that consists of a CNN ori-

ginally trained to discriminate visual categories, which is

then fine-tuned for category-based IQA. The CNN is used

to extract features that are then fed to a SVR model to pre-

dict image quality scores.

3. Proposed Approach

The use of convolutional layers of deep neural network

(DNN) for features extraction has demonstrated its effecti-

veness in various applications. For instance, it has been

shown that CNN features can be utilized in the applicati-
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Figure 1. VGG16 network architecture [35].

ons related to human perception, such as IQA [1, 12, 43]

and visual similarity [17, 48]. However, most of the works

mainly rely on the transfer learning technique, which focu-

ses on transferring the knowledge across domains, i.e., from

the source to the target domains [49]. This is usually done

using the last deep layers of CNN, without looking which

layer is most relevant for the new task.

Unlike using systematically deep features extracted from

fully-connected (FC) layers of DNN, the intuition behind

our approach is that intermediate convolutional layers may

be better candidates for quantifying perceptual image qua-

lity. In particular, the layers related to the attributes of hu-

man perception. In order to evaluate that, we firstly con-

ducted a study on the applicability of deep CNN features

extracted from different layers of CNN model to quantify

the image quality. Then, based on this study, we selected

the most relevant features, which are subsequently used as

input into the regression network that maps them to the sub-

jective image quality scores.

3.1. Deep Feature Space Analysis

A deep CNN consists of multiple layers of neurons,

each layer provides different types of features. For in-

stance, the early layers provide low-level features (edges,

gradients), while the latest deeper layers provide high-level

features (semantic information, texture). Thus, we inves-

tigated the best discriminating features of these layers for

IQA task. For this purpose, we observed the differences be-

tween the reference and distorted/processed images as they

flow through the CNN model.

In this work, we adopted the well-known VGG16 net-

work [35] pre-trained on the ImageNet classification data-

set [8]. This network architecture contains five blocks, as

shown in Figure 1. Each block consists of two to three con-

volution layers with a different number of filters.

As illustrated in Figure 2, for each layer l of the

VGG16 model, a distance between the reference and distor-

ted/processed images is computed using extracted feature

maps (also called activation maps) as follows:

d(l) =
1

ClHlWl

∑

c,h,w

∣

∣

∣
f
(ref)
l (c, h, w)− f

(dist)
l (c, h, w)

∣

∣

∣
,

(1)

where f
(ref)
l and f

(dist)
l are the feature maps of refe-

rence and distorted/processed images, respectively, extrac-

ted from the layer l. Hl, Wl and Cl are the height, width,

and number of channels of the feature map of the layer l,
respectively. The reference images and their processed ver-

sions are taken from the public training set of perceptual

image processing algorithms (PIPAL) database [16] descri-

bed in Section 4.1.

Finally, for each layer l, the correlation between the

calculated distances and the subjective scores is computed

using SROCC, as shown in Figure 3. This allows us to ob-

serve if a particular layer of the model provides more rele-

vant feature maps for IQA task. As seen in Figure 2, some

feature maps are more altered by blur distortion than others,

which confirms our intuition.

By using a specific threshold, we found that the best cor-

relations are achieved with three intermediate layers, which

are the block 4 convolution layer 2, block 4 convolution

layer 3 and block 5 convolution layer 1. These latter are

the most altered by distortions and processing operations,

and therefore we considered them to be the best candidates

for the evaluation of the perceptual image restoration.

3.2. Proposed EGB Metric

The proposed EGB metric is composed of two blocks,

namely feature extraction and quality estimation, as illus-

trated in Figure 4 and explained in the following sections.

3.2.1 Feature Extraction

First, the reference Iref and distorted Idist images are fed to

the VGG16 network to derive the feature vector v. We ex-

tract the features from the three selected intermediate con-

volution layers, namely block 4 convolution layer 2, block

4 convolution layer 3 and block 5 convolution layer 1, de-

noted as l1, l2 and l3, respectively. Then, global average-

pooling (GAP) is performed to reduce the feature maps into

manageable size. The obtained three feature vectors f
(k)
l1

,

f
(k)
l2

and f
(k)
l3

with k ∈ {ref, dist}, are fused using conca-

tenation f (k) = concat(f
(k)
l1

, f
(k)
l2

, f
(k)
l3

).

Finally, to provide the feature vector v to the quality es-

timation part of the framework, we calculate the absolute

difference between the extracted features of the reference

Iref and distorted Idist images as follows:

v =| f (ref) − f (dist) | . (2)
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Figure 3. The SROCC correlation between the distance scores and

the subjective scores for each layer l of the VGG16 network.

3.2.2 Quality Estimation

The feature vector v is then fed into the three K = 3 regres-

sion models, which form an ensemble of diverse predictors,

to be regressed to predict an image quality score. The goal

of using an ensemble methods is to combine their predicti-

ons in order to improve generalizability and robustness over

a single predictor.

Thus, the quality estimation part of the framework is

composed of three K = 3 regression models (base models)

build independently. Based on the feature vector v, each of

the regression model predicts an image quality score q̂i of

an image index i as follows:

q̂i,k = hθk(v), (3)

where hθk(v) is the parametric function of the regression

model k with training parameters θk.

As regression models, we considered three gradient

boosting regression models, which are XGBoost (eXtreme

Gradient Boosting) [6], LightGBM (Light Gradient Boos-

ting Machine) [19] and CatBoost (categorical boosting)

[11]. The three models are ensemble models using decision

trees.
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Figure 4. The framework of our proposed EGB IQA metric.

Finally, the predictions of the three trained regression

models are averaged to obtain the final prediction quality

score

q̂i =

K
∑

k=1

ωk q̂i,k, (4)

where ωk is the weight assigned to each regression model

hθk . Thus, by averaging the predictions of the three sub-

optimal models, we obtain a more effective model which

offers a high correlation with human image quality judg-

ment.

4. Experiments

4.1. Datasets

PIPAL dataset1 [16] contains 250 reference images of

size 288×288 that were distorted using 40 distortion types,

resulting in 23k distorted images that was assessed by more

than one million human ratings. The set of distortions that

was considered can be divided into four sub-types. The first

sub-type of distortion includes some traditional distortions

(e.g., blur, noise, and compression), which are commune

to other datasets. The second sub-type includes the result of

super-resolution (SR) methods, including interpolation met-

hod, traditional methods, SR with kernel mismatch, PSNR-

oriented methods, GAN-based methods. The third sub-type

contains the results of several denoising algorithms, inclu-

ding both hand-crafted and deep learning-based methods.

Finally, the four sub-type contains the restoration results of

images with multi-distortion.

Actually this dataset is unique because it contains a lot

of new distortion types, for instance, the results of diverse

IR algorithms, especially the GAN-base methods.

During the NTIRE 2021 challenge [14], the dataset was

divided into: 1) training data with 200 reference images and

23,200 distorted images, where mean opinion score (MOS)

for each distorted image was provided, 2) validation data

1This dateset has been used in the NTIRE 2021 Perceptual Image Qua-

lity Assessment Challenge [14].

including 25 reference images with 1000 distorted images,

3) test data containing 25 reference images and 1650 distor-

ted images. For the validation and test sets, the ground truth

label, i.e., MOS score, is not provided.

4.2. Hyperparameters

Each gradient boosting regression model was trained

using the following specific parameters:

• The XGBoost regressor was optimized using a 0.09 le-

arning rate. The regression model has a max depth of

5 and min child weight of 4, a 0.7 subsample and 0.01

colsample bytree. To avoid overfitting, a λ and α fac-

tors were used with values of 0.02 and 0.01, respecti-

vely.

• The LightGBM regressor was optimized using a 0.1

learning rate. The regression model has a 0.7 factor

for feature fraction and 140 trees, each tree with 32

leaves and the minimum data in each leaf was 15. To

avoid overfitting, λL1 and λL2 factors were used with

values of 0.02 and 0.08, respectively.

• The CatBoost regressor was optimized using a 0.1 le-

arning rate. The regression model has 256 estimators,

each estimator with a depth factor of 6 and a subsam-

ple of 1. To avoid overfitting, L2 regularization was

used with a factor of 10.

4.3. Experimental Setup

We compared our EGB metric with state-of-the-art IQA

methods, including hand-crafted- and deep learning-based

metrics: peak signal to noise ratio (PSNR), noise quality

measure (NQM) [7], universal quality index (UQI) [38],

structural similarity index measure (SSIM) [41], multiscale

structural similarity index measure (MS-SSIM) [42], infor-

mation fidelity criterion (IFC) [34], visual information fi-

delity (VIF) [33], visible signal-to-noise ratio (vsnr) [5],

Riesz-transform based Feature SIMilarity metric (RFSIM)

[46], gradient similarity (GSM) [24], spectral residual based

similarity (SRSIM) [44], feature similarity index (FSIM)



Table 1. Evaluation of the three gradient boosting regression mo-

dels and their combination on the validation set of PIPAL dataset.
Model Main Score ↑ SROCC ↑ PLCC ↑
XGBoost 1.5119 0.7572 0.7546

LIGHTGBM 1.5252 0.7626 0.7626

CatBoost 1.5402 0.7713 0.7689

Average 1.5511 0.7758 0.7752

[47] and its color version, visual saliency-based index (VSI)

[45], most apparent distortion (MAD) [22], natural image

auality evaluator (NIQE) [27], MA [25], PI [3], learned per-

ceptual image patch similarity (LPIPS)-Alex [48], LPIPS-

VGG [48], perceptual image-error assessment through pai-

rwise preference (PieAPP) [31], weighted average deep

image quality measure (WaDIQaM) [4], deep image struc-

ture and texture similarity (DISTS) [9] and space warping

difference (SWD) [13].

Two indices are used as performance criteria, namely

the Spearman rank order correlation coefficient (SROCC),

to evaluate the prediction monotonicity, and the Pearson li-

near correlation coefficient (PLCC) after non-linear regres-

sion, to quantify the deviation between the predicted and

subjective scores. For the two correlations, values that are

close to 1 indicate good performance in terms of correlation

with human judgment. The main score is simply the addi-

tion between the results of the two correlations, as was done

during the challenge.

4.4. Results

First, the three gradient boosting regression models are

evaluated separately on the validation set of PIPAL dataset,

in addition to their combination using the average, as re-

ported in Table 1. For the average, as preliminary results,

we only considered the case of uniformly weighted models,

i.e., ∀i ∈ {1, · · · ,K}, ωi = 1/K.

From this table, we can see that the CatBoost model

obtained the best results compared to the remaining two mo-

dels. However, the combination of the three models using

the average provides a performance improvement over a

single model, thus illustrating the add value of the propo-

sed ensemble gradient boosting. The behavior of the pro-

posed metric is illustrated via the scatter distributions pro-

vided in Figure 5, in which each data point represents an

image from the validation set of PIPAL dataset. This figure

shows the scatter distributions of MOS scores versus the

predicted ones obtained by the EGB metric, in addition to

the non-linear fitted curve obtained by interpolating the ob-

jective scores. This figure shows a good agreement between

subjective and objective scores and the scatter distributions

are consistent, which demonstrates a good prediction of the

human judgment.

The results on validation and test sets of PIPAL dataset

are reported in Tables 2 and 3, respectively. From both ta-
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Figure 5. Scatter plot of predicted quality scores against subjective

scores (MOS) on the validation set of PIPAL dataset. The black

line is a curve fitted with logistic function.

Table 2. Performance comparison on validation set of PIPAL data-

set. The last part of the table includes deep learning-based metrics.

The 2 best results are highlighted in bold.

Metric Main Score ↑ SROCC ↑ PLCC ↑
PSNR 0.5464 0.2547 0.2916

NQM [7] 0.7621 0.3457 0.4163

UQI [38] 1.0334 0.4858 0.5475

SSIM [41] 0.7383 0.3399 0.3984

MS-SSIM [42] 1.0496 0.4863 0.5632

IFC [34] 1.2703 0.5936 0.6766

VIF [33] 0.9570 0.4334 0.5235

VSNR [5] 0.6962 0.3212 0.3750

RFSIM [46] 0.5700 0.2655 0.3044

GSM [24] 0.8869 0.4181 0.4688

SRSIM [44] 1.2199 0.5658 0.6541

FSIM [47] 1.0277 0.4671 0.5605

FSIMc [47] 1.0265 0.4678 0.5586

VSI [45] 0.9662 0.4500 0.5161

MAD [22] 1.2340 0.6077 0.6262

NIQE [27] 0.1661 0.0643 0.1017

MA [25] 0.4039 0.2005 0.2034

PI [3] 0.3352 0.1690 0.1662

LPIPS-Alex [48] 1.2738 0.6275 0.6462

LPIPS-VGG [48] 1.2385 0.5914 0.6471

PieAPP [31] 1.4034 0.7062 0.6972

WaDIQaM [4] 1.3322 0.6779 0.6543

DISTS [9] 1.3600 0.6742 0.6858

SWD [13] 1.3291 0.6611 0.6680

EGB (Our) 1.5511 0.7758 0.7752



Table 3. Performance comparison on test set of PIPAL dataset.

The last part of the table includes deep learning-based metrics.

The 2 best results are highlighted in bold.

Metric Main Score ↑ SROCC ↑ PLCC ↑
PSNR 0.5262 0.2493 0.2769

NQM [7] 0.7598 0.3644 0.3953

UQI [38] 0.8695 0.4195 0.4500

SSIM [41] 0.7549 0.3613 0.3935

MS-SSIM [42] 0.9624 0.4617 0.5006

IFC [34] 1.0400 0.4851 0.5548

VIF [33] 0.8765 0.3970 0.4794

VSNR [5] 0.7789 0.3682 0.4107

RFSIM [46] 0.6321 0.3037 0.3284

GSM [24] 0.8740 0.4093 0.4646

SRSIM [44] 1.2087 0.5728 0.6359

FSIM [47] 1.0747 0.5038 0.5709

FSIMc [47] 1.0783 0.5057 0.5726

VSI [45] 0.9752 0.4583 0.5168

MAD [22] 1.1237 0.5433 0.5804

NIQE [27] 0.1658 0.0340 0.1317

MA [25] 0.2873 0.1404 0.1468

PI [3] 0.2490 0.1036 0.1454

LPIPS-Alex [48] 1.1368 0.5658 0.5710

LPIPS-VGG [48] 1.2277 0.5947 0.6330

PieAPP [31] 1.2048 0.6074 0.5974

WaDIQaM [4] 1.1012 0.5532 0.5480

DISTS [9] 1.3421 0.6548 0.6873

SWD [13] 1.2584 0.6242 0.6341

EGB (Our) 1.3774 0.7003 0.6771

bles, we can observe that hand-crafted-based methods pro-

vide very low performance, thus demonstrating their inade-

quacy for assessing IR algorithms. This may be mainly due

to the integration of distortions resulting from GAN-based

methods for which these methods are not designed.

On the other hand, metrics based on deep learning show

a fairly high correlation compared to the first category of

methods analyzed. For instance, PieAPP [31] metric provi-

des a high correlation on the validation set, while DISTS [9]

metric achieves one the highest performance on the test set.

These latter are well designed for the evaluation of IR algo-

rithms. However, all the methods considered are surpassed

by the three proposed models on the validation set. More-

over, when combined, we obtain the highest correlation on

the validation and test sets, thus outperforming the consi-

dered IQA metrics. Finally, the obtained results show the

efficiency of the proposed EGB metric for the evaluation of

IR algorithms, including classical and GAN-based methods.

4.5. Cross Database Evaluations

In order to evaluate the generalization ability of EGB

metric, a cross-database evaluation was carried out using

the PIPAL as a training datatest and testing the proposed

Table 4. Cross database evaluations of the proposed metric when

training on PIPAL dataset and tested on TID2013 and LIVE data-

sets. The best result is highlighted in bold.

TID2013 LIVE

SROCC ↑ PLCC ↑ SROCC ↑ PLCC ↑
PSNR 0.6684 0.6679 0.7379 0.7295

SSIM 0.6273 0.6211 0.6917 0.5639

MS-SSIM 0.5637 0.5907 0.7467 0.6296

VIF 0.6757 0.7325 0.9525 0.9570

GSM 0.8083 0.8771 0.8954 0.8669

FSIM 0.8078 0.8765 0.9099 0.8450

FSIMc 0.8535 0.8869 0.9056 0.8322

MAD 0.7921 0.8241 0.9073 0.8812

NIQE 0.2955 0.3475 0.7939 0.5959

EGB 0.9034 0.9155 0.8561 0.8543

Table 5. Evaluation of the three gradient boosting regression mo-

dels and their combination when we consider different number of

convolution layers.

#Layers Model SROCC ↑ PLCC ↑

3

XGBoost 0.7572 0.7546

LIGHTGBM 0.7626 0.7626

CatBoost 0.7713 0.7689

Average 0.7758 0.7752

5

XGBoost 0.7391 0.7385

LIGHTGBM 0.7549 0.7530

CatBoost 0.7596 0.7633

Average 0.7632 0.7612

All

XGBoost 0.7167 0.6865

LIGHTGBM 0.7104 0.7056

CatBoost 0.7393 0.7219

Average 0.7356 0.7251

metric on TID2013 [30] and LIVE [32] datasets. As shown

in Table 4, the proposed method outperforms all considered

metrics on TID2013 dataset and also achieves comparable

results on LIVE dataset. This demonstrates that the propo-

sed EGB metric is not limited by the database on which it

was trained and shows a strong capacity for generalization.

4.6. Ablation Study

To evaluate the efficiency of our proposed metric, we

conduct an ablation study. We therefore evaluate the three

gradient boosting regression models and their combination

when we consider different number of convolution layers.

Based on the Figure 3, three cases are analyzed. First, when

three intermediate layers are used, which are the block 4

convolution layer 2, block 4 convolution layer 3 and block 5

convolution layer 1. Second, when five intermediate layers

are used, the previous three layers in addition to the block

4 convolution layer 1 and block 5 convolution layer 2. Fi-

nally, when we consider all the layers of VGG16 architec-

ture. The results are shown in Table 5, where the best per-



formance are achieved with the three layers, which proofs

that our selection strategy provides the best result.

5. Conclusion

In this paper, we have proposed EGB metric for accu-

rate prediction of perceptual image quality, in particular

to address the evaluation of IR algorithms. Our contribu-

tion mainly focuses in finding perceptual quality distance

in VGG16 feature space that correlates well with subjective

quality scores, in addition to the adoption of ensemble gra-

dient boosting approach. The proposed metric was compa-

red with different state-of-the-art methods. The obtained re-

sults demonstrate clearly the relevance of the selected deep

features for this specific task and the efficiency of our pro-

posed metric.

Two possible extensions are foreseen: the conside-
ration of weighting voting strategy in the combination
of the three models, as well as taking into account se-
veral/other regression models in the quality estimation part.
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