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Abstract

Unsupervised image-to-image translation tasks aim to

find a mapping between a source domain X and a target

domain Y from unpaired training data. Contrastive learn-

ing for Unpaired image-to-image Translation (CUT) yields

state-of-the-art results in modeling unsupervised image-to-

image translation by maximizing mutual information be-

tween input and output patches using only one encoder for

both domains. In this paper, we propose a novel method

based on contrastive learning and a dual learning setting

(exploiting two encoders) to infer an efficient mapping be-

tween unpaired data. Additionally, while CUT suffers from

mode collapse, a variant of our method efficiently addresses

this issue. We further demonstrate the advantage of our

approach through extensive ablation studies demonstrating

superior performance comparing to recent approaches in

multiple challenging image translation tasks. Lastly, we

demonstrate that the gap between unsupervised methods

and supervised methods can be efficiently closed.

1. Introduction

The image-to-image translation task aims to convert im-

ages from one domain to another domain, e.g., horse to

zebra, low-resolution images to high-resolution images,

image to label, photography to painting, and vice versa.

Image-to-image translation has drawn considerable atten-

tion due to its wide range of applications including style-

transfer [46, 19, 24, 34, 1], image in-painting [36], colouri-

sation [44], super-resolution [21, 43], dehazing [27], under-

water image restoration [13], and denoising [2].

In unsupervised image-to-image translation without

paired data, the main problem is that the adversarial

loss [11] is significantly under-constrained, that is, there

exist multiple possible mappings between the two domains

which make the training unstable and, hence, the transla-

tion unsuccessful. To restrict the mapping, the contempo-

rary approaches CycleGAN [46], DiscoGAN [22], and Du-

alGAN [42] use a similar idea, the assumption of cycle-

consistency [46] which learns the reverse mapping from

the target domain back to the source domain and measures

whether the reconstruction image is identical to the input

image. The cycle-consistency [46] assumption ensures that

the translated images have similar texture information to the

target domain, failing to perform geometry changes. Also,

the cycle-consistency [46] assumption forces the relation-

ship between the two domains to be a bijection [26]. This

is usually not ideal. For example, in the horse to zebra im-

age translation task, the reconstruction is constrained via a

fidelity loss, compromising image diversity.

To address this constraint, recently contrastive learning

between multiple views of the data has achieved state-of-

the-art performance [15, 5, 17, 33] in the field of self-

supervised representation learning. This was followed by

CUT [34] introducing contrastive learning for unpaired

image-to-image translation with a patch-based, multi-layer

PatchNCE loss to maximize the mutual information be-

tween corresponding patches of input and output images.

While CUT [34] demonstrated the efficiency of con-

trastive learning, we believe certain design choices are lim-

iting its performance. For example, one embedding was

used for two distinct domains which may not efficiently

capture the domain gap. To further leverage contrastive

learning and avoid the drawbacks of cycle-consistency [46],

we propose our dual contrastive learning approach which is

referred to as DCLGAN.

DCLGAN aims to maximize mutual information by

learning the correspondence between input and output im-

age patches using separate embeddings. By employing

different encoders and projection heads for different do-

mains, we learn suitable embeddings to maximize agree-

ment. The dual learning setting [42] also helps to stabilize

training. Besides, we revisit some design choices and find

that removing RGB pixels representing small patches, in

the PatchNCE loss, can be beneficial. We show that cycle-

consistency [46] is unnecessary and in fact counter-intuitive

when there is no strict constraint on geometrical structure.

Lastly, a variant of DCLGAN, referred to as SimDCL, sig-

nificantly avoids mode collapse.

This paper presents a novel framework and its’ variant

that can break the limitations of CycleGAN [46] (limited



Figure 1. Overall architecture of DCLGAN: By dually learning two mappings G : X → Y and F : Y → X , we successfully enable

unpaired image-to-image translation without cycle-consistency. We define the encode half of G and F to be Genc, Fenc. We use Genc

and HX as embedding X and Fenc and HY as embedding Y . We depict here the GAN loss (green line), the patch-based multiplayer

PatchNCE loss (purple line). We omit the identical loss here. For variant SimDCL, we add the similarity loss between real images and

fake images belonging to the same domain (dashed orange line). PatchNCE loss helps the generated fake image red patch to be similar to

its real input image yellow patch while dissimilar to other blue patches.

performance in geometry changes) and CUT [34] (suffering

mode collapse and a few inferior results). Through exten-

sive experiments, we demonstrate the quantitative and qual-

itative superiority of our method compared to several state-

of-the-art methods on various popular tasks. Additionally,

we show that our method successfully closes the gap be-

tween unsupervised and supervised methods, as contrastive

learning has done in the field of self-supervised learning.

A comprehensive ablation study demonstrates the effective-

ness of DCLGAN. Our code is available at GitHub.

2. Related Work

Image-to-image Translation. GANs [11] have been ap-

plied to a multitude of image applications, especially in

image-to-image translation. The key to the success of

GANs is the idea of adversarial loss [11], which forces

the generated image to be indistinguishable in principle

from the real image. Generally, image-to-image transla-

tion can be categorized into two groups: a paired setting

(supervised) [41, 20, 35] and an unpaired setting (unsuper-

vised) [46, 22, 42]. Paired setting means the training set is

paired, every image from domain X has a corresponding

image from domain Y .

Supervised methods. In this line, Pix2Pix [20] first

achieved task-agnostic image translation supporting multi-

ple image-to-image translation tasks using only a general

method. It has then been extended to Pix2PixHD [41] en-

abling synthesizing high-resolution photo-realistic images.

SPADE [35] introduces the spatially-adaptive normalization

layer to further improve the quality of generated images.

These supervised approaches require paired data for train-

ing, which imposes a limitation on their usage.

Unsupervised methods. In unsupervised settings, the

current methods [46, 19, 34, 24, 7, 42, 1, 22, 10, 29, 25, 42,

4, 45] are mainly developed based on two assumptions: a

shared latent space [29] and a cycle-consistency assump-

tion [46]. UNIT [29] proposes a shared latent space as-

sumption which assumes a pair of corresponding images in

different domains can be mapped to the same latent repre-

sentation in a shared-latent space. Recent works [19, 24, 7,

25, 6] further enable multi-modal and multi-domain synthe-

sis to bring diversity in the translated outputs. MUNIT [19]

disentangles domain-specific features by splitting the latent

space into style code and content code. DRIT [24, 25] em-

beds images onto two spaces including a domain-specific

attribute space and a content space capturing shared infor-

mation. StarGAN [6, 7] employs a unified model architec-

ture to translate images across multiple domains.

Break the cycle. CycleGAN [46] learns two mappings

simultaneously via translating an image to the target do-

main and back preserving the fidelity of the input and the

reconstructed image. This leads it to be too restrictive. Re-

cently, a few methods [34, 32, 1, 10] have tried to break

https://github.com/JunlinHan/DCLGAN


the cycle to alleviate the problem of cycle-consistency [46].

CouncilGAN [32] uses more than two generators and dis-

criminators along with the council loss. DistanceGAN [1]

and GCGAN [10] enable one-way translation. They employ

different constraints from different aspects. We take the ad-

vantages of both CycleGAN [46] and CUT [34], employing

the idea of mutual information maximization to enable two-

sided unsupervised image-to-image translation based on the

architectures of CycleGAN [46].

Contrastive learning. In the field of unsupervised

representation learning [5, 15, 17, 33], contrastive learn-

ing aims to learn an embedding where associated signals

are pulled together while other samples in the dataset are

pushed away. Signals may vary depending on specific tasks.

In general, the objective is to discriminate its transformed

version against other samples. To get the transformed ver-

sion, data augmentation shows the most successful results

[5, 15]. However, natural transformations can draw com-

parable results [17, 14] if ideal natural sources such as

those arising audio and optical flow in videos are avail-

able. For image-to-image translations, patches are ideal

natural sources for instance discrimination since they are

easy to track and use [17, 33, 34]. CUT [34] first ap-

plies noise contrastive estimation to image-to-image trans-

lation tasks by learning the correspondence between in-

put image patches and the corresponding generated image

patches, achieving a performance superior to those based on

cycle-consistency [46]. We further rethink several design

choices of leveraging contrastive learning, making it more

beneficial to employ contrastive learning for unsupervised

image-to-image translation. We extend one-sided mapping

to two-sided, performing better in learning embeddings and

thus achieving new state-of-the-art results. We additionally

address the mode collapse problem that previous methods

based on mutual information maximization can not handle.

3. Method

Given two domains X ⊂ R
H×W×C and Y ⊂ R

H×W×3

and a dataset of unpaired instances X containing some im-

ages x and Y containing some images y. We denote them

X = {x ∈ X} and Y = {y ∈ Y}. We aim to learn two

mappings G : X → Y and F : Y → X .

DCLGAN has two generators G,F as well as two dis-

criminators DX , DY . G enables the mapping from domain

X to domain Y and F enables the reverse mapping. DX

and DY ensure that the translated images belong to the cor-

rect image domain. The first half of the generators are de-

fined as encoder while the second half are decoders and pre-

sented as Genc and Fenc followed by Gdec and Fdec respec-

tively.

For each mapping, we extract features of images from

four layers of the encoder and send them to a two-layer

MLP projection head (HX and HY ). Such a projection head

learns to project the extracted features from the encoder to a

stack of features. Note that we use Genc and HX as the em-

bedding for domain X and use Fenc and HY as the embed-

ding for domain Y . If two domains share common semantic

information such as horse and zebra, using one encoder can

provide reasonable results. However, this may fail to cap-

ture the variability in two distinctive domains with a large

gap. Additionally, we introduce four light networks to cap-

ture the common information within one domain and form

a similarity loss.

Figure 1 shows the overall architecture of DCLGAN and

SimDCL. DCLGAN combines three losses including ad-

versarial loss [11], PatchNCE loss, and identity loss [46]

whereas SimDCL has one additional similarity loss to ad-

dress mode collapse. The details of our objective are de-

scribed below.

3.1. Adversarial loss

An adversarial loss [11] is employed to encourage the

generator to generate visually similar images to images

from the target domain, for the mapping G : X → Y with

discriminator DY , the GAN loss is calculated by:

LGAN (G,DY , X, Y ) = Ey∼Y [logDY (y)]

+ Ex∼X [log (1−DY (G(x))] ,
(1)

where G tries to generate images G(x) that look similar

to images from domain Y , while DY aims to distinguish

between translated samples G(x) and real samples y. A

similar adversarial loss for the mapping F : Y → X and its

discriminator DX is introduced as:

LGAN (F,DX , X, Y ) = Ex∼X [logDX(x)]

+ Ey∼Y [log (1−DX(G(y))] .
(2)

3.2. Patch­based multi­layer contrastive learning

Mutual information maximization. Our goal is to

maximize the mutual information between corresponding

patches of the input and the output. For instance, for a patch

showing the eye of a generated dog (top-right of Figure 1),

we should be able to more strongly associate it with the eye

of the input real cat other than the rest of the patches of the

cat.

Following the setting of CUT [34], we employ a noisy

contrastive estimation framework [33] to maximize the mu-

tual information between inputs and outputs. The idea be-

hind contrastive learning is to correlate two signals, i.e., the

“query” and its’ “positive” example, in contrast to other ex-

amples in the dataset (referred to as “negatives”).

We map query, positive, and N negatives to K-

dimensional vectors and denote them v, v+ ∈ RK and

v− ∈ RN×K respectively. Note that v−n ∈ RK denotes the



n-th negative. We normalize vectors with L2-normalization

then set up an (N+1)-way classification problem and com-

pute the probability that a “positive” is selected over “neg-

atives”. Mathematically, this can be expressed as a cross-

entropy loss [12] which is computed by:

ℓ
(

v,v+,v−
)

= − log(

exp (sim(v,v+)/τ)

exp (sim(v,v+)/τ) +
∑N

n=1 exp
(

sim(v,v−
n )/τ

)
),

(3)

where sim(u,v) = u
⊤
v/‖u‖‖v‖ denotes the cosine simi-

larity between u and v. τ denotes a temperature parameter

to scale the distance between the query and other examples,

we use 0.07 as default.

PatchNCE loss. We use Genc and HX to extract fea-

tures from domain X and use Fenc and HY to extract fea-

tures from domain Y . We do not share weights in order

to learn better embeddings and capture variability in two

distinct domains. We select L layers from Genc(X) and

send it to HX , embedding one image to a stack of features

{zl}L =
{

H l
X

(

Gl
enc(x)

)}

L
, where Gl

enc represents the

output of l-th selected layers.

Now we consider the patches. After having a stack of

features, each feature actually represents one patch from the

image. We take advantage of that and denote the spatial lo-

cations in each selected layer as s ∈ {1, ..., Sl}, where Sl

is the number of spatial locations in each layer. We select

a query each time, refer the corresponding feature (“posi-

tive”) as z
s
l ∈ R

Cl and all other features “negatives”) as

z
S\s
l ∈ R

(Sl−1)×Cl , where Cl is the number of channels in

each layer. For the generated fake image G(x) belonging to

domain Y , we exploit the advantages of dual learning and

use a different embedding of domain Y . Similarly, we get

another stack of features {ẑl}L =
{

H l
Y

(

F l
enc(G(x))

)}

L
.

We aim to match the corresponding patches of input

and output images. The patch-based, multi-layer PatchNCE

loss [34] for mapping G : X → Y can be expressed as:

LPatchNCEX
(G,HX , HY , X) =

Ex∼X

L
∑

l=1

Sl
∑

s=1

ℓ
(

ẑsl , z
s
l , z

S\s
l

)

.
(4)

Consider the reverse mapping F : Y → X , we introduce a

similar loss as well,

LPatchNCEY
(F,HX , HY , Y ) =

Ey∼Y

L
∑

l=1

Sl
∑

s=1

ℓ
(

ẑsl , z
s
l , z

S\s
l

)

,
(5)

where {zl}L =
{

H l
Y

(

F l
enc(y)

)}

L
and {ẑl}L =

{

H l
X

(

Gl
enc(F (y))

)}

L
are different from G : X → Y .

3.3. Similarity loss

Intuitively, images from the same domain should have

some similarities. Their semantics are different but they

share a common style. In the dual learning setting, we

have one real and one fake image belonging to the same do-

main in each iteration. After getting four stacks of features,

we use four light networks (Hxr, Hxf , Hyr, Hyf ) to project

them to 64-dim vectors, where x, y, r, f refers to images

within domain X, images within domain Y, real, fake cor-

respondingly. These 64-dim vectors belonging to the same

domain can be measured by a similarity loss, such a loss

can be formalised as:

Lsim(G,F,HX , HY , Hxr, Hxf , Hyr, Hyf )

= [‖Hxr(HX(Genc(x)))−Hxf (HX(Genc(F (y))))‖sum1 ]

+ [‖Hyr(HY (Fenc(y)))−Hyf (HY (Fenc(G(x))))‖sum1 ] ,
(6)

where sum means we sum them up together. Implementing

a similarity loss on the deep features forces the generated

images to be realistic, as opposed to mode collapsed out-

puts, by encouraging the deep features of the generated and

real images to be similar.

3.4. Identity loss

In order to prevent generators from unnecessary changes,

we add an identity loss [46]. Unlike CUT [34], We do

not employ PatchNCE loss as identity loss due to training

speed.

Lidentity(G,F ) = Ex∼X [‖F (x)− x‖1]

+ Ey∼Y [‖G(y)− y‖1] .
(7)

Such an identity loss can encourage the mappings to pre-

serve color composition between the input and output.

3.5. General objective

DCLGAN. The generated image should be realistic and

patches in the input and output images should share same

correspondence. We employ identity loss [46] in the default

setting. The full objective is estimated by:

L(G,F,DX , DY , HX , HY )

= λGAN (LGAN (G,DY , X, Y ) + LGAN (F,DX , X, Y ))

+ λNCELPatchNCEX
(G,HX , HY , X)

+ λNCELPatchNCEY
(F,HX , HY , Y )

+ λidtLidentity(G,F ).
(8)

We set λGAN = 1, λNCE = 2 and λidt = 1. DCLGAN

achieves superior performance to existing methods.

SimDCL. We introduce SimDCL since methods based

on mutual information maximization suffer from mode col-

lapse in some specific tasks. We add similarity loss to the



full objective of DCLGAN, and name it SimDCL, where

sim is short for similarity and DCL stands for dual con-

trastive learning. The full objective of this variant is:

L(G,F,DX , DY , HX , HY )

= λGAN (LGAN (G,DY , X, Y ) + LGAN (F,DX , X, Y ))

+ λNCELPatchNCEX
(G,HX , HY , X)

+ λNCELPatchNCEY
(F,HX , HY , Y )

+ λsimLsim(G,F,HX , HY , H1, H2, H3, H4)

+ λidtLidentity(G,F ).
(9)

We set λGAN = 1, λNCE = 2, λSIM = 10 and λidt = 1. This

variant runs slower than DCLGAN, we recommend using it

for Photo → Label, semantic segmentation and similar tasks

to avoid mode collapse. SimDCL achieves equal or slightly

worse performance compared to DCLGAN.

4. Experiments

The training details, datasets, and our evaluation proto-

col along with all baselines are described as follows.

4.1. Training details

We mostly follow the setting of CUT [34] to train our

proposed model. We use Hinge GAN loss [28] instead of

LSGAN loss [31]. More specifically, we use the Adam op-

timiser [23] with β1 = 0.5 and β2 = 0.999. DCLGAN is

trained for 400 epochs with a learning rate of 0.0001 while

SimDCL is trained for 200 epochs with a learning rate of

0.0002 unless specified. The learning rate starts to decay

linearly after half of the total epochs. We use a ResNet-

based [16] generator with PatchGAN [20] as discriminator.

We use a batch size of 1 and instance normalization [39].

All training images are loaded in 286 × 286 then cropped

to 256 × 256 patches. More details on the training and the

architecture are provided in the supplementary material.

4.2. Datasets

We evaluated our proposed method and baselines on six

different datasets with nine tasks.

Horse ↔ Zebra was introduced in CycleGAN, it con-

tains 1067 horse images, 1344 zebra images as the training

set and 260 test images all collected from ImageNet [9].

Cat ↔ Dog contains 5000 training images and 500

test images for each domain. It was introduced in Star-

GAN2 [7]. DCLGAN is trained for 200 epochs only for

this dataset.

CityScapes [8] contains 2975 training and 500 valida-

tion images for each domain. One domain is city scenes

from German cities and the other is semantic segmentation

labels. We focus on Label → City. We also leverage labels

to measure how well methods discover correspondences.

Van Gogh → Photo contains 400 Van Gogh paintings

and 6287 photographs from Flickr. It was collected in Cy-

cleGAN [46]. DCLGAN is trained for 200 epochs only for

this task. We reuse the training set of Van Gogh paintings

as the test set.

Label ↔ Facade is similar to CityScapes, it contains

400 paired training images and 106 paired test images from

the CMP Facade Database [38].

Orange → Apple is also from ImageNet [9]. It contains

1019 orange images and 995 apple images in the training

set. For testing, we use 248 orange images.

4.3. Evaluation

Metrics We mainly use Fréchet Inception Distance

(FID) [18] to measure the quality of generated images.

FID [18] shows high correspondence with human percep-

tion, it is based on the Inception Score (IS) [37]. Lower

FID [18] means lower Fréchet distance between real and

generated images. That is to say, lower FID [18] means gen-

erated images are more realistic. For cityscapes, following

Pix2Pix [20], we use the pre-trained semantic segmentation

network FCN-8 [30] and compute three metrics. They are

mean class Intersection over Union (IoU), pixel-wise accu-

racy (pixAcc), and average class accuracy (classAcc).

Baselines. We perform qualitative and quantitative com-

parison between our proposed method and recent state-of-

the-art unsupervised methods including CUT [34], Fast-

CUT [34], CycleGAN [46], MUNIT [19], DRIT [24], Dis-

tanceGAN [1], SelfDistance [1] and GCGAN [10]. MU-

NIT [19] and DRIT [24] are able to generate diverse results

for only one input image and the others only produce one

result. Among them, CUT, FastCUT [34], DistanceGAN,

SelfDistance [1] and GcGAN [10] are one-sided methods.

The rest are two-sided methods.

5. Results

Here, we compare our algorithms (DCLGAN and

SimDCL) with all baselines on different datasets. Fur-

ther, we compare DCLGAN to supervised methods on the

CityScapes dataset using the FCN [30] score, showing that

the performance of our method is on par with supervised

methods. Lastly, we show that SimDCL avoids mode col-

lapse.

5.1. Comparison of different methods

Table 1 shows a comparison of the quantitative results

of DCLGAN and SimDCL with several baselines on three

challenging tasks, including CityScapes, Cat → Dog, and

Horse → Zebra. We only use the FID [18] score as our

quantitative metric. It is evident that our algorithms perform

stronger than all the baseline. Figure 2 presents the corre-

sponding randomly selected qualitative results. DCLGAN



Input DCLGAN SimDCL CUT FastCUT CycleGAN MUNIT DRIT SelfDis Distance GCGAN

Figure 2. Comparison to all baselines on the Horse→Zebra, Cat→Dog, and CityScapes tasks. DCLGAN and SimDCL show visual

satisfactory results. The last row is a failure case, our methods are unable to identify unusual pose and rare background. They fail to

distinguish foreground and background, adding zebra textures to the cloud.

CityScapes Cat→ Dog Horse → Zebra Overall

Method FID↓ FID↓ FID↓ sec/iter↓ Ranking

CycleGAN [46] 68.6 85.9 66.8 0.40 4
MUNIT [19] 91.4 104.4 133.8 0.39 9
DRIT [22] 155.3 123.4 140.0 0.70 10

Distance [1] 85.8 155.3 72.0 0.15 6
SelfDistance [1] 78.8 144.4 80.8 0.16 6

GCGAN [10] 105.2 96.6 86.7 0.62 8
CUT [34] 56.4 76.2 45.5 0.24 3

FastCUT [34] 68.8 94.0 73.4 0.15 5

DCLGAN (ours) 49.4 60.7 43.2 0.41 1
SimDCL (ours) 51.3 65.5 47.1 0.47 2

Table 1. Comparison to all baselines on the Horse→Zebra,

Cat→Dog, and CityScapes tasks. DCLGAN denotes our model

without Similarity loss and SimDCL denotes our model with Sim-

ilarity loss. We show FID [18] score for all tasks. The overall

ranking is based on the FID score among all tasks. DCLGAN

generates better images with acceptable speed, runs a bit slower

than CycleGAN [46]. Our variant SimDCL also shows competi-

tive results.

performs both geometry changes and texture changes with

negligible artifacts, this is especially successful in Cat →
Dog while other methods can not generate realistic images.

It is worth mentioning that models generating multiple out-

puts perform the worst.

We select the top four methods from Table 1 and set a

second comparison among them by testing them in 5 more

tasks: Zebra → Horse, Van Gogh → Photo, Dog → Cat,

Label → Facade and Orange → Dog. We show quantita-

tive results in Table 2 and randomly picked qualitative re-

sults in Figure 3. The results suggest that DCLGAN keeps

superior performance comparing to other methods among

various tasks. Methods under the cycle-consistency as-

sumption [46] usually fail to perform geometric changes

while methods based on mutual information maximization

successfully enable both geometric changes and texture

changes. This is explicitly shown in Dog → Cat tasks.

5.2. Comparison to supervised methods

Here we compare our DCLGAN method with three

popular supervised methods, Pix2Pix [20], photo-realistic

image synthesis system CRN [3] and discriminative re-

gion proposal adversarial network DRPAN [40] on the

CityScapes dataset. We follow the setting in Pix2Pix [20]

and use a pre-trained semantic segmentation network FCN-

8 [30] to compute the FCN score. Quantitative results are

shown in Table 3. DCLGAN performs best in pixACC and

significantly closes the gap between unsupervised methods

and supervised methods. On average, our method performs

on par with supervised methods.



Input DCLGAN SimDCL CUT CycleGAN Input DCLGAN SimDCL CUT CycleGAN

Figure 3. Comparison between the best four methods on five more tasks including Zebra → Horse, Van Gogh → Photo, Dog → Cat, Label

→ Facade, and Orange → Apple. We randomly pick two samples for each task. Our DCLGAN performs both geometry changes and

texture changes. The last row show two typical failure cases, the first one fails to translate the image since input is only a small part of

zebra, the last one fails to keep the structure of humans, translating them to Yosemite.

Zebra→ Horse Van Gogh → Photo Dog → Cat Label → Facade Orange → Apple Model

Method FID↓ FID↓ Overall Runtime↓ FID↓ FID↓ FID↓ Parameters

CycleGAN [46] 154.3 103.0 106hr 107.7 127.5 117.7 28.286M
CUT [34] 170.5 96.9 125hr 26.8 119.7 127.0 14.406M

DCLGAN (ours) 139.5 93.7 108hr 22.2 119.2 124.9 28.812M
SimDCL (ours) 152.5 93.5 124hr 22.8 132.3 134.4 28.852M

Table 2. Comparison between the best four methods on Zebra → Horse, Van Gogh → Photo, Dog → Cat, and Label → Facade tasks.

DCLGAN still outperforms other methods in most tasks. The overall runtimes are provided for Dog → Cat task, in hours. Note CUT

is trained for 400 epochs while the rest for 200 epochs only. The overall ranking circumstances among methods compared in here are

identical to the first comparison (Table 1) except for a tie with CycleGAN [46] and CUT [34].

CityScapes

Method pixAcc↑ classAcc↑ IoU↑

DCLGAN(ours) 0.74 0.22 0.17

Pix2Pix [20] 0.66 0.23 0.17
CRN [3] 0.69 0.21 0.20

DRPAN [40] 0.73 0.24 0.19

Ground Truth 0.80 0.26 0.21

Table 3. Comparison between unsupervised DCLGAN and super-

vised Pix2Pix [20], CRN [3], DRPAN [40] on CityScapes dataset.

We follow the setting of Pix2Pix [20] to compute the FCN [30]

score. DCLGAN outperforms supervised methods in pixAcc, sug-

gesting the gap between unsupervised methods and supervised

methods is closing.

5.3. Addressing mode collapse via similarity loss.

Our final comparison is a stress test on mode collapse.

Mode collapse in generation tasks means the outputs lack

diversity, and usually, the outputs are not realistic. We

find that methods based on mutual information maximiza-

tion (CUT and DCLGAN) can not prevent mode collapse

in Photo → Label and similar tasks. To address this issue,

we design SimDCL. We test the best four methods on the

Facade → Label task and show the randomly picked vi-

sual results in Figure 4. No matter what the input is, the

outputs of both CUT and DCLGAN are almost identical

while SimDCL generates reasonable outputs for different

inputs. SimDCL is more robust to the mode collapse issue

compared with other methods based on mutual information



Input DCLGAN SimDCL CUT CycleGAN Label

Figure 4. Comparison between the best four methods on Facade →
Label task. Methods based on mutual information maximization

suffer from mode collapse in this task. We address this by in-

troducing SimDCL to prevent mode collapse. SimDCL also cap-

ture more correspondence between facade and label than Cycle-

GAN [46].

maximization.

6. Ablation study

DCLGAN shows superior performance compared to all

baselines. We explore what is making contrastive learn-

ing effective. We analyze DCLGAN by studying each of

our contributions in isolation via conducting several experi-

ments, summarized in Table 4. We use three tasks including

Horse → Zebra, Zebra → Horse, and CityScapes in our ab-

lation study.

We show the results of: (I) Adding the first RGB pix-

els back. (II) Drawing external negatives. (III) Using the

same encoder and MLP for one mapping instead of two.

(IV) Adding cycle-consistency loss. (V) Removing the dual

setting.

Horse → Zebra Zebra → Horse CityScapes

Ablation FID↓ FID↓ FID↓

I 49.7 156.7 50.3

II 41.7 149.2 49.6

III 44.0 153.4 52.2

IV 44.6 140.6 55.4

V 47.0 151.3 91.5

DCLGAN 43.2 139.5 49.4

Table 4. Quantitative results for ablations.

(I) CUT [34] uses features from five layers in total in-

cluding the first RGB pixels in PatchNCE loss (l = 5 in

Equations 4 and 5). Layers and spatial locations within the

feature stack represent patches of the input image. Deeper

layers correspond to bigger patches. However, RGB pixels

represents the smallest possible patch size (1 × 1), provid-

ing misleading information. We find that not including the

RGB layer encourages convergence. In fact, if we adopt the

strategy in CUT [34] (l = 5), the results deteriorate in all

three tasks as demonstrated in Table 4.

(II) Effect of drawing external negatives. CUT [34]

states that internal negatives (patches from an input image

only) are more effective than external negatives (patches

from other images). CUT [34] adds negatives using a mo-

mentum encoder [15]. We explore this in a different ap-

proach, by taking the advantage of the dual setting. DCL-

GAN produces four different stacks of features at each iter-

ation. Concatenating two stacks of features belonging to the

same domain provides more negatives (255 internal and 256

external) for one query while the default DCLGAN uses

255 internal negatives. We obverse better quantitative re-

sults in Horse → Zebra and very close results in CityScapes

for this variant. Although the gap of FID score between the

default DCLGAN and this variant is small, the visual qual-

ity is not as good as that of the default DCLGAN, that is,

objects in the generated image tend to be merged together.

(III) Effect of using separate embeddings for each do-

main. While CUT [34] uses the same embedding for both

domains, we use two separate embeddings, one for each do-

main. Adopting the CUT [34] strategy in our network we

find that the results will deteriorate, as demonstrated in Ta-

ble 4. One embedding fails to capture the variability in two

distinct domains, for instance, Photo → Label.

(IV) Effect of Cycle-consistency loss. To test if the

cycle-consistency loss can improve the results, we add

cycle-consistency [46] loss to our objective. We did not

observe any improvements (Table 4). Although cycle-

consistency and mutual information maximization share

some commonalities, DCLGAN is much less restrictive.

DCLGAN focuses on both texture and geometry changes

while CycleGAN [46] mostly focuses on texture only. We

tested this variant in two tasks requiring geometry changes,

Cat → Dog and Dog → Cat, the FID scores are 71.1 and

35.5 respectively, all worse than the original DCLGAN. We

conclude that when strict limitations on geometry are not

crucial, cycle-consistency [46] loss is better to be avoided.

(V) Dual settings stabilize the training. We remove

the dual setting to demonstrate its’ effect. We keep other

settings the same as DCLGAN. The results are worse than

DCLGAN, which shows the dual setting can learn better

embeddings for different domains and stabilize the training.

7. Conclusion

We show that a dual setting can better leverage con-

trastive learning in unsupervised unpaired image-to-image

translation. We also revise some significant designs to ren-

der contrastive learning more effective. In addition, a vari-

ant of DCLGAN, SimDCL mitigates mode collapse. Fi-

nally, we show that our method can hugely close the gap

between unsupervised and supervised methods in challeng-

ing datasets such as CityScape, just as contrastive learning

in the field of self-supervised representation learning.
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