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Abstract

As the particles in hazy medium cause the absorption

and scattering of light, the images captured under such en-

vironment suffer from quality degradation such as low con-

trast and color distortion. While numerous single image

dehazing methods have been proposed to reconstruct clean

images from hazy images, non-homogeneous dehazing has

been rarely studied. In this paper, we design an end-to-

end network to remove non-homogeneous dense haze. We

employ the selective residual blocks to adaptively improve

the visibility of resulting images, where the input feature

and the residual feature are combined with fully trainable

weights. Experimental results including the ablation study

demonstrate that the proposed method is a promising tool

for non-homogeneous dehazing that enhances the contrast

of hazy images effectively while restoring colorful appear-

ance faithfully.

1. Introduction

Digital images captured with particles in the air, such as

aerosols, smoke, and mist, often suffer from quality degra-

dation due to the scattering and absorption of light as shown

in Figure 1. The quality degradation in such hazy images in-

clude low contrast, reduced sharpness, and distorted colors.

Single image dehazing (SID) methods have been proposed

to generate a clean image with improved visibility from a

single hazy image. Recently, the performance of SID meth-

ods has been improved rapidly through many challenges

and competitions [4, 5, 2, 3, 1, 6, 7, 8].

To restore a clean image from a hazy image, SID meth-

ods usually employ the image formation model (IFM) given

by

I(x) = J(x)e−βd(x) +A(1− e−βd(x)), (1)

where I(x) and J(x) denote the observed and original in-

tensity at the pixel location x, respectively. A is the atmo-

spheric light, d(x) is the scene distance at x, and β is the

Figure 1: Light scattering in the air with particles.

light attenuation coefficient. The transmission of e−βd(x)

represents the light conservation rate along the line-of-sight

at x. Most of the conventional SID methods attempt to es-

timate the unknown parameters of A and e−βd(x) to derive

J from I . In typical SID methods targetting homogeneous

haze, it is usually assumed that A and β are constant in

an entire image and the amount of haze depends on the

scene distance d(x) only. However, these assumptions do

not hold in real situations where a hazy image often exhibits

locally different haze densities associated with different val-

ues of A and β. More recently, attempt has been made to

address this problem via non-homogeneous dehazing chal-

lenges [3, 7, 8].

In this paper, we propose an end-to-end multi-scale de-

hazing network for non-homogeneous dense haze, which

employs selective residual blocks where the input feature

and the residual feature are combined with different lean-

able weights. By selecting optimal weighting parameters

via network training, we can effectively balance the con-

tributions of the input feature and the residual feature to

dehazing. Experimental results show that the proposed net-

work effectively removes dense and non-homogeneous haze

from a single image and generates a clear image with im-

proved visibility.



2. Related Work

2.1. Prior Knowledge based Methods

There have been many SID methods using prior knowl-

edges. For example, Tan [25] maximized the contrast of

hazy images with a prior that a clean image tend to show

high contrast in general. He et al. [11] estimated the un-

known parameters in Eq. 1 based on a statistical prior, called

dark channel prior (DCP), assuming that at least one of the

pixels in a patch has the intensity value of 0 among the three

color channels. Zhu et al. [30] estimated the scene depth

for dehazing using a color attenuation prior which shows

the correlation between the brightness and the saturation.

Berman et al. [9] proposed a non-local prior based on the

observation that the pixels in a same cluster are distributed

along a haze-line. These methods provide good results for

homogeneous haze, but have limited performance on non-

homogeneous haze due to the gap between the image for-

mation model and real situations.

2.2. Deep Learning based Methods

Deep learning based SID methods have been pro-

posed [19, 10, 15, 27, 21, 20, 18, 26]. Cai et al. [10] pro-

posed a dehazing model which estimates the transmission

maps of IFM. Zhang et al. [27] used a densely connected

pyramid network to estimate the transmission map with ad-

versarial learning. Li et al. [15] reformulated IFM to train

deep networks.

On the other hand, end-to-end network architectures and

their training models were designed in a data-driven way

without prior knowledge [21, 19, 20, 18, 26]. Liu et al. [18]

proposed an end-to-end dehazing network composed of

three sub-networks. The first sub-network refines the de-

tail of an input hazy image. The second sub-network es-

timates the hazy density map in an unsupervised way. The

last sub-network reconstructs coarse level features of the in-

put image. Wu et al. [26] employed knowledge transfer to

construct a model composed of two networks: the teacher

network that auto-encodes the clean images and the student

network designed to perform dehazing. The feature level

knowledge transfer loss also helps the teacher network to

guide the student network to learn the information needed

to reconstruct clean images. Attention-based models were

also proposed to flexibly learn the weights of their models.

Ren et al. [21] fused gated features from three enhanced

versions of the input, and used adversarial learning to ren-

der the dehazed outputs. Liu et al. [19] used channel-wise

feature attention to fuse different features together. Qin et

al. [20] exploited a feature attention module that fuses the

features with pixel attention and channel attention.

3. Proposed Method

We propose a non-homogeneous dehazing network

based on the selective residual block. The overall network

architecture of the proposed method is shown in Figure 2.

3.1. Network Architecture

Multi-Scale Input and Output In order to effectively ex-

ploit the local and global characteristics of hazy images, an

input hazy image I0 is first down-sampled to three smaller

images of I1, I2, and I3 with 1/2, 1/4, and 1/8 sizes, re-

spectively, which are then fed to the network as shown in

Figure 2. The deep intermediate features from the multi-

scaled input are fused in the bottleneck. The bottleneck fea-

ture is then fed to the decoding blocks with deep interme-

diate features processed from multi-scaled input. Finally,

the model generates multi-scale output images of O0, O1,

O2, and O3 to compute the losses at multi-scale images,

respectively, which are then combined together to compute

the final loss.

Selective Residual Block Inspired by [17], we devise the

selective residual block (SRB) as a core functional mod-

ule of the proposed network. As illustrated in Figure 2,

SRB has two 3 × 3 convolutional layers where each con-

volutional layer is followed by the normalization layer. We

adopt the concept of the residual block [12] that efficiently

extracts the features without causing the gradient vanishing

problem. Let the input feature map of SRB be F (x) and

the estimated residual feature be R(x). The output of SRB,

O(x), is the activation result of the weighted sum of the

input feature and the residual feature given by

O(x) = σ(αF (x) + βR(x)), (2)

where σ(·) is the activation function. Note that α and β
are trainable parameters in the proposed method. Whereas

the conventional residual blocks use scaled values of cer-

tain constants as the weights [24, 16, 18], SRB selectively

takes the balance between the input and residual features by

employing fully trainable weights. The effect of using SRB

is illustrated in Figure 3. We see that F (x) yields grid ar-

tifacts that can be accumulated by the skip connection and

degrades the quality of resulting images. However, by tak-

ing the weighted sum of F (x) and R(x) with trained α and

β, the activated output feature O(x) shows a smoothed and

visually pleasing result.

Encoding Block The encoding block has a series of two

SRBs and the 3 × 3 convolutional layer with stride of 2,

which downsamples the feature map into the 1
2 resolution

map, follwed by ReLU activation layer.



Figure 2: Network architecture of the proposed method.

Figure 3: Behavior of selective residual block (SRB). The

unwanted artifacts shown in the input feature map F (x) are

alleviated in the final output feature map O(x).

Decoding Block The main purpose of the decoding block

is up-sampling of the intermediate features. We employ the

pixel shuffle layer [22] with the scale factor of 2 to avoid

the checkerboard artifacts during up-sampling. The up-

sampled feature is concatenated with the feature tranferred

via the shortcut from the encoding part which is then for-

warded to two different SRBs. In addition, SRB takes the

skip connection of F (x) selectively to alleviate the uneven

artifacts that can be derived from the feature relocation in

the pixel shuffle layer.

3.2. Loss Function

We define a total loss function composed of three losses:

reconstruction loss, perceptual loss [13], and structural sim-

ilarity loss. Note that our network returns the multi-scaled

outputs, and we compute the loss functions at each im-

age scale, respectively. Finally, the loss functions at multi-

scales are combined together with different weights to com-

pute the total loss.

Reconstruction Loss We minimize the reconstruction

loss Lrecon(X,Y ), that is the L1 loss or mean absolute error

between the reconstructed output image X and the ground

truth Y for an input hazy image, given by

Lrecon(X,Y ) =
1

3N

∑

x

∑

c

‖Xc(x)− Yc(x)‖1, (3)

where N is the number of pixels in an image and Xc(x) and

Yc(x) denote the intensity values of X and Y at the pixel x

in c channel.



(a) I-HAZE [4] (b) O-HAZE [5] (c) DENSE-HAZE [2] (d) NH-HAZE [3] (e) NTIRE 2021

Figure 4: Example images in the datasets used in training. The images in the first and third rows show hazy images, and the

second and fourth rows show the corresponding ground truth images.

Perceptual Loss The perceptual loss [13] has been

widely used to minimize the perceptual differences between

two image in style transfer applications. In practice, the in-

termediate features of the pre-trained VGG network [23] are

used to measure the perceptual difference between two im-

ages. Let the activated intermediate feature tensor of the

pre-trained VGG network in the k-th layer extracted from

X be φk(X). The perceptual difference Lperc(X,Y ) be-

tween X and Y is defined as

Lperc(X,Y ) =
∑

k

1

CkHkWk

‖φk(X)− φk(Y )‖1, (4)

where Ck is the number of channels and Hk and Wk are

the height and width of the feature tensor in the k-th layer,

respectively. We set k ∈ {1, 3, 5, 9, 13}.

Structural Similarity Loss We also employ the struc-

tural similarity loss Ls(X,Y ) between X and Y by com-

puting SSIM[29] as

Ls(X,Y ) = 1− SSIM(X,Y ). (5)

Total Loss Function We define the total loss function Ln

at the n-th image scale with 1/2n size by combining the

three loss functions together, given by

Ln = Lrecon(On, Jn)+λ1Lperc(On, Jn)+λ2Ls(On, Jn),
(6)

where λ1 and λ2 are the weighting parameters. We empir-

ically set 0.5 for both λ1 and λ2. The final loss function

Ltotal is computed as

Ltotal =

3∑

n=0

1

2n
Ln (7)

by combining the four multi-scale loss functions.

4. Experimental Results

4.1. Datasets

During the 2021 NTIRE Non-Homogeneous dehazing

challenge [8], a dataset of 35 different scenes were given.

The pairs of a hazy image and its ground truth clear im-

age for 25 scenes were used as training data and only the

hazy images for the remaining 10 scenes were used as val-

idation data (5 scenes) and test data (5 scenes). In order

to alleviate the effect of overfitting, we internally divided

the given training set into a tentative training set (20 pairs)

and a tentative validation set (5 pairs), respectively. In ad-

dition, we used all the previous NTIRE dehazing challenge

datasets of I-HAZE [4], O-HAZE [5], DENSE-HAZE [2],

NH-HAZE [3] as training data. Table 1 summarizes the

numbers of scenes used in our experiments. Figure 4 also

shows some example images of the used datasets.



Datasets Scenes
Usage

Training Validation

I-HAZE [4] 35 X

O-HAZE [5] 45 X

DENSE-HAZE [2] 55 X

NH-HAZE [3] 55 X

NTIRE 2021 20 X

NTIRE 2021 5 X

Table 1: The datasets used in the experiments.

4.1.1 Homogeneous Haze Image Dataset

I-HAZE I-HAZE[4] is an indoor image dataset for sin-

gle image dehazing. The dataset was introduced in NTIRE

2018 dehazing challenge[1].

O-HAZE O-HAZE[5] is an outdoor image dataset for

single image dehazing. O-HAZE was also introduced in

NTIRE 2018 image dehazing challenge[1].

DENSE-HAZE DENSE-HAZE[2] was introduced in

NTIRE 2019 image dehazing challenge[6]. DENSE-HAZE

includes images with thicker haze than that of I-HAZE and

O-HAZE.

4.1.2 Non-Homogeneous Haze Image Dataset

NH-HAZE NH-HAZE[3] was introduced in NTIRE

2020 non-homogeneous dehazing challenge[7]. Unlike pre-

viously introduced I-HAZE, O-HAZE, and DENSE-HAZE,

NH-HAZE shows different haze densities according to local

image areas.

NTIRE 2021 Non-homogeneous dehazing challenge held

in NTIRE 2021 [8] released an image dataset for single im-

age dehazing. NTIRE 2021 exhibits similar appearance of

haze to that of NH-HAZE[3], but includes a smaller number

of scenes than that of NH-HAZE[3].

4.2. Training Details

We trained the model on a single Titan RTX. In the

training, we used Adam optimizer [14] with β1 = 0.5,

β2 = 0.999, and weight decay (L2 penalty) coefficient

λ = 1× 10−4. We initialized the learning rate to 5× 10−4,

and the learning rate decays in ratio of 0.5 in every 120th

epoch. The batch size is 4. In each experiment, we trained

the network for 3000 epochs, and picked the model with the

best PSNR score among all the training epochs. The hyper-

parameters we used in the training phase are specified in

Table 2.

Hyper-parameter Value

Optimizer Adam [14]

Initial learning rate 5× 10−4

Batch size 4

Weight decay(λ) 1× 10−4

Learning rate scheduling Step

Learning rate decaying step size 120

Training epochs 3000

Table 2: Hyper-parameter setting in training phase.

Loss weights Block Metrics

λ1 λ2 Type PSNR↑ SSIM↑ LPIPS↓
0 0 RB 19.5602 0.7764 0.3088

0 0 SRB 19.1577 0.7663 0.3187

0 0.1 RB 20.0502 0.8017 0.2773

0 0.1 SRB 19.7538 0.7965 0.2855

0 0.5 RB 20.1578 0.8171 0.2568

0 0.5 SRB 18.5607 0.7779 0.3793

0.1 0 RB 20.3884 0.8097 0.2365

0.1 0 SRB 20.6929 0.8122 0.2266

0.1 0.1 RB 20.3609 0.8172 0.2296

0.1 0.1 SRB 20.3363 0.8183 0.2273

0.1 0.5 RB 20.8112 0.8269 0.2253

0.1 0.5 SRB 20.3635 0.8188 0.2348

0.5 0 RB 20.5445 0.8253 0.2028

0.5 0 SRB 20.5840 0.8257 0.2149

0.5 0.1 RB 20.7056 0.8254 0.2030

0.5 0.1 SRB 21.0842 0.8295 0.2043

0.5 0.5 RB 20.6742 0.8367 0.2084

0.5 0.5 SRB 21.1680 0.8364 0.1964

Table 3: Ablation study on the quantitative performance. In

each experiment, the score of the proposed method is cal-

culated from the model that achieves the best PSNR score

among the 3000 training epochs on the tentative validation

set (#21∼25) of 2021 NTIRE non-homogeneous dehazing

challenge dataset. The scores written in red and blue denote

the best and the second-best scores, respectively.

We also augmented the training data with random crop-

ping to the size of 512×512, random scaling with the ratios

between 0.5 and 1, random identity mapping (p = 0.1), and

random horizontal/vertical flipping with the probability of

0.5. We did not use any pre-trained model in this work.

4.3. Ablation Study

We evaluated the performance of the proposed method

with different hyper-parameter settings on our tentative val-

idation set (#21 ∼ 25). The metrics used in the ablation

study are PSNR, SSIM [29], and LPIPS [28]. As shown in

Table 3, the experiment with λ1 = 0.5 and λ2 = 0.5 with



(a) Hazy (b) DCP [11] (c) AOD-Net [15] (d) FFA-Net [20] (e) TDN [18] (f) KTDN [26] (g) Ours (h) GT

Figure 5: Qualitative comparison of dehazing results on the tentative validation set (#21∼25) of 2021 NTIRE non-

homogeneous dehazing challenge [8] dataset.

Methods
Metrics

PSNR↑ SSIM↑ LPIPS↓
DCP [11] 11.8310 0.6462 0.4483

AOD-Net [15] 12.3350 0.6312 0.4648

FFA-Net [20] 11.3724 0.6222 0.4851

TDN [18] 18.1288 0.8188 0.2756

KTDN [26] 18.8138 0.7912 0.3029

Ours 21.1680 0.8364 0.1964

Table 4: Quantitative comparison of dehazing results on

the tentative validation set (#21∼25) of 2021 NTIRE non-

homogeneous dehazing challenge dataset. The scores in red

and blue denote the best and the second-best scores, respec-

tively.

SRB showed the best quantitative performance in terms of

the fidelity related score of PSNR and the perceptual score

of LPIPS.

4.4. Comparison with Existing Methods

Tentative Validation Set Figure 5 and Table 4 compare

the qualitative and quantitative results obtained by using

the state-of-the-art methods and the proposed method, re-

spectively, on a tentative validation set (#21∼25). Table 4

shows that [11, 15, 20] yield poor qualitative performances

since they assume the haze is homogeneous or use the im-

ages with homogeneous haze in the training phase. On the

other hand, we see that the learning-based methods trained

on non-homogeneous dataset achieve better scores in both

of the fidelity-related scores and the perceptual score. The

proposed method shows the best quantitative performance

in terms of all the three metrics as shown in Table 4.

Figure 5 also visually compares the resulting images

generated by using the proposed method and the existing

methods. Previously mentioned homogeneous dehazing

methods do not remove the haze completely, and often yield

bluish apperance. Though TDN [18] and KTDN [26] re-

move the non-homogenous haze remarkably, their results

tend to lose colorfulness or show different color tones from

that of the ground truth images. In contrary, the proposed

method reconstructs qualitatively good images.

Validation and Test Sets During the NTIRE 2021 image

dehazing competition [8], there were no ground truth im-

ages for the hazy images in the validation set (#26 ∼ 30)

and the test set (#31 ∼ 35). For these datasets, we con-

duct qualitative comparison only between the existing SID

methods [11, 15, 20, 18, 26] and the proposed method. Fig-

ures 6 and 7 represent the qualitative results on the valida-

tion and test sets, respectively. The homogeneous dehazing

method [11] and the learning-based method trained on the



(a) Hazy (b) DCP [11] (c) AOD-Net [15] (d) FFA-Net [20] (e) TDN [18] (f) KTDN [26] (g) Ours

Figure 6: Qualitative comparison of dehazing results on the validation set (#26∼30) of 2021 NTIRE non-homogeneous

dehazing challenge dataset.

(a) Hazy (b) DCP [11] (c) AOD-Net [15] (d) FFA-Net [20] (e) TDN [18] (f) KTDN [26] (g) Ours

Figure 7: Qualitative comparison of dehazing results on the test set (#31∼35) of 2021 NTIRE non-homogeneous dehazing

challenge dataset.



synthetic homogeneous dehazing dataset [15, 20] fail to re-

move locally dense haze completely. The models [18, 26]

trained on the non-homogeneous dataset [3] remove most of

the haze successfully, however their results lose the color-

fulness of images. Note that the proposed method not only

effectively removes the non-homogeneous haze, but also re-

constructs vivid colors.

5. Conclusion

In this paper, we proposed a multi-scale end-to-end de-

hazing network based on selective residual blocks. Whereas

the conventional residual modules employ constrained

weights, the proposed method trains the weighting param-

eters for the input and residual features adaptively. With-

out any physics-related or statistical prior knowledge, the

proposed method shows good quantitative performances as

well as provides visually pleasing images with vivid col-

ors. We also demonstrated that the selective residual blocks

achieve higher performance compared with the original

residual blocks.
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