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Abstract

Multiple high-resolution (HR) images can be gener-

ated from a single low-resolution (LR) image, as super-

resolution (SR) is an underdetermined problem. Recently,

the conditional normalizing flow-based model, SRFlow,

shows remarkable performance by learning an exact map-

ping from HR image manifold to a latent space. The flow-

based SR model allows sampling multiple output images

from a learned SR space with a given LR image. In this

work, we propose SRFlow-DA which has a more suitable

architecture for the SR task based on the original SRFlow

model. Specifically, our approach enlarges the receptive

field by stacking more convolutional layers in the affine cou-

plings, and so our model can get more expressive power. At

the same time, we reduce the total number of model pa-

rameters for efficiency. Compared to SRFlow, our SRFlow-

DA achieves better or comparable PSNR and LPIPS for ×4

and ×8 SR tasks, while having a reduced number of pa-

rameters. In addition, our method generates visually clear

results without excessive sharpness artifacts.

1. Introduction

The goal of super-resolution (SR) is to generate a high-

resolution (HR) image from the given low-resolution (LR)

image. Single-image SR is a fundamental task of computer

vision and can be used for various applications. A number

of deep learning-based SR methods [10, 14, 22, 23] success-

fully achieve a good SR quality in terms of peak signal-to-

noise ratio (PSNR). However, the nice PSNR score does not

guarantee the satisfaction of human visual perception [3].

To generate realistic images, generative adversarial net-

work (GAN) [7] is applied for SR the task [13, 21, 18,

25, 24, 28, 19, 17]. The GAN-based SR methods gener-

ate plausible high-frequency details and visually satisfac-

tory results. The SR methods have evolved to achieve bet-

ter quality. However, there have been few considerations

to generate a variety of output images, even though the SR

task is underdetermined so fundamentally a single LR im-

age can be mapped to many output images. Most of the SR

methods generate a single HR output image.

Recently, SRFlow [16] successfully generates diverse

SR results by using the normalizing flow [5, 6, 12]. SRFlow

extends a flow step used in [12] to receive the LR image as

a conditional input for generating an HR image consistent

with the LR image. SRFlow maps HR images to a latent

space thanks to the tractable loss function of the normal-

izing flow, and generates diverse HR images from an input

random variable sampled from the latent space with the con-

ditional LR image.

In this paper, we introduce a simple but effective mod-

ification to the SRFlow architecture for improving the SR

quality. The receptive field size of a single flow step in

the SRFlow architecture is too small, therefore, we stack

more convolutional layers to enlarge the size. Specifically,

we stack 6 3×3 convolutional layers in the affine injector

and the conditional affine coupling of the SRFlow architec-

ture, and the receptive field size is increased from 5×5 to

13×13 (Fig. 1). In experiments, we found the small recep-

tive field size affects the SR quality both quantitatively and

qualitatively. Besides, we reduce the total number of pa-

rameters and the model can be trained on a GPU with less

memory (<11GB). In the NTIRE 2021 Learning the Super-

Resolution Space Challenge [15], our approach ranked first

place in LR-PSNR which measures how much the SR out-

put is consistent with the LR input when downsampled. To

sum up, the contributions of our paper are as follows:

• We tune the SRFlow architecture by simply stacking

more convolutional layers to have a large receptive

field in a single flow step for better SR quality.

• Compared to the SRFlow, we achieve better or compa-

rable quantitative results in terms of PSNR and LPIPS

values while reducing the number of parameters and

the training time. Also, our approach generates visu-

ally clear output images without excessive sharpness.

• We show experimental results of several variants of our

approach. This will motivate researchers to design bet-

ter flow-based architectures in the future as the normal-

izing flow is a very new approach for the SR task.



2. Related Work

In this section, we introduce SR methods that generate

diverse output images. Among the methods, we use SR-

Flow as our baseline as it shows good results and can be

applied to general images.

2.1. FlowBased Methods

The normalizing flow was first introduced in [5, 20, 6]

to learn an exact mapping from data distribution to a latent

distribution by using the tractability of exact log-likelihood.

Unlike GAN [7] which learns an implicit density, the nor-

malizing flow explicitly computes the probability density.

For the SR task, a conditional normalizing flow method with

affine coupling layers was employed in [26]. However, the

scale factor was limited to ×2 SR task. Recently, SRFlow

[16] applied a similar approach for ×4 and ×8 SR tasks

and successfully generated diverse SR results. We will in-

troduce the overview of the SRFlow in Sec. 3.1.

2.2. Other Methods

There are several approaches to learn SR space and out-

put diverse images. VarSR [9] used a variational autoen-

coder to generate stochastic SR images for faces and num-

bers. The method trained to match LR and HR latent dis-

tributions and an LR image can generate diverse SR images

with the reparameterization trick at test time. In Explorable

SR [2], a consistency enforcing module was suggested to

guarantee the SR output matches the LR input when down-

sampled, while generating diverse SR images by using the

user input. One advantage of this module is that it can

be attached to any SR model. DeepSEE [4] used seman-

tic maps and disentangled style codes for explorative SR.

The method generated high-quality diverse face images up

to ×32 magnification factor.

3. Method

3.1. SRFlow

We use SRFlow [16] as our base model to generate

photo-realistic and diverse SR outputs that are consistent

with the input LR image. SRFlow is based on the condi-

tional normalizing flow, and we can formally express it as

follows:

z = f(y;x). (1)

An invertible neural network f maps an HR image y to a la-

tent variable z conditioned by the corresponding LR image

x. The normalizing flow [5, 20] computes the probability

density py|x explicitly by the log determinant of Jacobian

of each invertible layer, and the network is trained by mini-

mizing the negative log-likelihood as follows:

L = − log p(z)−
N−1∑

n=0

log | det
∂fn

∂hn
(hn; g(x))|. (2)

where N is the total number of invertible layers, n is the in-

dex of each layer, h0 = y, hN = z, hn+1 = fn(hn; g(x)),
and g is a deep convolutional neural network that extracts

rich feature for the conditioning. For realistic SR, one ad-

vantage of using the normalizing flow is that the loss is ex-

plicitly represented and practically stable compared to using

GAN [7]. After the training, the HR image y can be gener-

ated from the latent encoding z as follows:

y = f−1(z;x), where z ∼ pz. (3)

One matter with the normalizing flow is that all compo-

nents must be invertible and there are limited components

to use including invertible 1×1 convolutional layer [12].

To map HR images well into the latent space (i.e. Gaus-

sian distribution), SRFlow stacks a number of flow steps in

a multi-scale manner. Each flow step consists of actnorm,

1×1 convolution, affine injector, and conditional affine cou-

pling. Specifically, for ×8 SR, SRFlow stacks 16 flow steps

for 4 scale levels (i.e. K = 16 and L = 4). We conjecture

that stacking a number of flow steps is required to encour-

age the expressive power of the model for the SR task, due

to the small receptive field size of the components in the

flow step. Please refer to the SRFlow paper [16] for the

overall details and we will focus on our modifications from

the original SRFlow architecture in the next section.

3.2. SRFlowDA

To improve the SR performance of SRFlow, we focus

on enlarging receptive field size in the single flow step.

In the affine injector and the conditional affine coupling

of SRFlow, a shallow convolutional block is used. The

block consists of 3×3 conv, actnorm, ReLU, 1×1 conv,

actnorm, ReLU, and 3×3 conv, and its receptive field is

5×5 (Fig. 1a). The main idea of our approach is to stack

more convolutional layers to enlarge the receptive field size.

Specifically, we stack 6 3×3 convolutional layers followed

by ReLU activation except for the last convolutional layer

(Fig. 1b), and we remove actnorm by reflecting the conven-

tion that using a normalization layer does not much helpful

for the SR task [25]. Note that only the actnorms inside the

affine layers are removed but the other actnorms as a build-

ing block of the flow step still remain. By doing so, the

receptive field size is enlarged to 13×13, and the expressive

power of the model increases. We can estimate locally ac-

curate affine coefficients s and t, and we empirically found

this helps improve the performance. Note that this part is

also invertible because the same s and t values can be made

by using y1 at the backward pass and x2 is computed as

(y2 − t)/s. Please refer to [12] for more details.

Compared to the original SRFlow architecture, we re-

duce the number of flow steps from 16 to 6 (K = 6) for

each scale level because of the increased receptive field size.
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(b) Our approach (SRFlow-DA)

Figure 1. We stack more convolutional layers in the affine

injector and the conditional affine coupling to enlarge the

receptive field and enhance the expressive power.

We can naively calculate the receptive field size of the orig-

inal SRFlow and our approach within a single scale level as

129×129 (16×2 number of conv blocks with 5×5 recep-

tive field size) and 145×145 (6×2 number of conv blocks

with 13×13 receptive field size) respectively. In addition,

we further reduce the number of scale levels from 4 to 3

(L = 3) for ×8 SR and 3 to 2 (L = 2) for ×4 SR. Other

parts of the architecture are the same as SRFlow, and we

use RRDB [25] as LR image feature extractor. In a way,

our approach reduces the number of flow steps and the total

number of model parameters. As a result, our model can

be trained on a single GPU with less than 11GB memory.

Note that the original SRFlow model was trained on a sin-

gle NVIDIA V100 GPU which has at least 16GB memory.

We name our approach SRFlow-DA (Deep convolutional

block in the Affine couplings).

4. Experiments

4.1. Implementation Details

We follow the same training process as described in the

original SRFlow [16], except for the learning rate. We use

the train images of DIV2K dataset [1] and Flickr2K dataset.

We use HR training patches size of 160×160, and the sizes

of the corresponding LR patches are 20×20 and 40×40 for

×8 SR and ×4 SR respectively. We add Gaussian noise

with a standard deviation of σ = 4√
3

to the HR patches. We

use a pre-trained RRDB network as the LR image encoder

g. We first train our SRFlow-DA model f only for 105 it-

erations and then we train both f and g together for further

105 iterations. The training is conducted using Adam opti-

mizer [11] with the starting learning rate of 2× 10−4 and it

is halved at 50%, 75%, 90%, and 95% of the total training

iterations. After the training, we can generate different SR

outputs (Eq. (3)). Specifically, z ∼ N (0, τ) as we use a

Gaussian distribution and we set τ = 0.9 for all our results

as did in the original SRFlow model. Please refer to our

code for more details.1

4.2. Evaluation Metrics

Three metrics are used to quantify the quality of re-

sults, which are introduced in the NTIRE 2021 Learning

the SR Space Challenge [15]. To measure photo-realism,

the learned perceptual image patch similarity (LPIPS) [27]

is used, which is designed to measure the quality of images

from the perspective of human visual perception. To mea-

sure the spanning of the SR space, a diversity score is com-

puted by using 10 generated images from the same input LR

image. The global best score is the best one of 10 image-

level LPIPS scores, and the local best score is the mean of

best pixel-level LPIPS scores. Finally, the diversity score is

calculated as (global best - local best) / (global best) * 100.

To measure the consistency with the input LR image, the

LR-PSNR value is computed with the downsampled output

HR image. In addition to the three metrics above, we addi-

tionally measure HR-PSNR between the output HR image

and the ground truth (GT) image. Note that lower values are

better for LPIPS, and higher values are better for the diver-

sity score and PSNR. Please refer to the challenge website

for the evaluation code.2

4.3. Comparisons with Other Methods

We compare our method on the DIV2K validation set

[1] with bicubic interpolation, RRDB [25], ESRGAN [25],

and SRFlow [16]. Quantitative results are shown in the up-

per part of Table 1, and the values are from the SRFlow

paper, except for our results (SRFlow-DAs). Compared to

SRFlow, for ×4 SR, the number of parameters is reduced

from 22.8M to 8.7M and the training time is reduced to 33

hours. The inference time to generate an output image size

of 1920×1080 from an input image size of 480×270 is also

reduced from 1.98s to 1.18s. Note that the training times

of SRFlow-DAs and all the inference times are measured

on NVIDIA GeForce RTX 2080 TI. Even though SRFlow-

DA reduces the model size and the training time, SR qual-

1https://github.com/yhjo09/SRFlow-DA
2https : / / github . com / andreas128 / NTIRE21 _

Learning_SR_Space



Method Params
Time PSNR LPIPS

Diversity

Training Inference LR HR mean global local

Bicubic - - - 38.70 26.70 0.409 0.409 0.409 0

RRDB 16.7M - - 49.20 29.44 0.253 0.253 0.253 0

ESRGAN 16.7M - - 39.03 26.22 0.124 0.124 0.124 0

SRFlow 22.8M 120h 1.98s 50.64 27.09 0.120 0.119 0.089 25.24

SRFlow-DA 8.7M 33h 1.18s 50.88 27.57 0.121 0.119 0.092 23.55

SRFlow-DA-R 8.7M 33h 1.19s 50.92 27.23 0.120 0.119 0.089 25.50

SRFlow-DA-S 8.8M 25h 0.91s 50.48 27.43 0.130 0.129 0.098 24.01

SRFlow-DA-D 6.4M 30h 1.01s 49.00 26.78 0.132 0.131 0.101 23.24

(a) ×4 SR results on DIV2K validation set.

Method Params
Time PSNR LPIPS

Diversity

Training Inference LR HR mean global local

Bicubic - - - 37.16 23.74 0.584 0.584 0.584 0

RRDB 16.7M - - 45.43 25.50 0.419 0.419 0.419 0

ESRGAN 16.7M - - 31.35 22.18 0.277 0.277 0.277 0

SRFlow 34.1M 120h 1.97s 50.09 23.03 0.272 0.276 0.200 25.28

SRFlow-DA 13.3M 47h 1.01s 50.91 23.75 0.261 0.259 0.198 23.45

SRFlow-DA-R 13.3M 47h 1.04s 50.73 23.42 0.256 0.253 0.191 24.57

SRFlow-DA-S 15.0M 30h 0.65s 52.21 23.71 0.268 0.265 0.204 23.17

SRFlow-DA-D 9.5M 37h 0.80s 45.18 22.54 0.306 0.304 0.241 22.54

(b) ×8 SR results on DIV2K validation set.

Table 1. Quantitative results with other methods on DIV2K validation set. Compared to SRFlow, our approaches (SRFlow-

DA and SRFlow-DA-R) achieve better or similar performance with smaller model size and reduced training time. Inference

time is measured for generating an output image size of 1920×1080. Note that the training times and the inference times are

measured on NVIDIA GeForce RTX 2080 TI. Best values are shown in bold and second best values are underlined.

ity is better in terms of PSNR and comparable in terms of

mean LPIPS. Similarly, for ×8 SR, the number of parame-

ters is reduced from 34.1M to 13.3M and the training time

is reduced to 47 hours. The inference time to generate an

output image size of 1920×1080 from an input image size

of 240×135 is reduced from 1.97s to 1.01s. In this case,

SRFlow-DA achieves better performance in all metrics ex-

cept for the diversity score. This is because the diversity

score is calculated from the difference of global and local

LPIPS values. The difference is larger in SRFlow, however,

SRFlow-DA shows better mean, global, and local LPIPS

values. We infer the improved performance is from our pro-

posed architecture design which has better expressive power

by the non-linearity of deeply stacked conv-relu layers.

Qualitative results for ×8 SR are shown in Fig. 2. RRDB

results look overly blurry as it is trained using the mean

squared error only. The results show higher PSNR values,

but this not guarantee perceptually better images. SRFlow

successfully generates photo-realistic images but they often

look excessively sharp compared to the GT images in the

upper 4 rows. This attribute, however, makes some fine nat-

ural textures look realistic such as fur in the lower 2 rows.

Compared to SRFlow, our SRFlow-DA results look more

clear while maintaining the photo-realism. For the upper 4

rows, SRFlow-DA generates the results that look close to

the GT images without excessive sharpness. On the other

hand, in the case of the lower 2 rows, SRFlow-DA results

look less satisfactory than SRFlow results.

4.4. Challenge Results

In the NTIRE 2021 Learning the SR Space Challenge

[15], for ×4 SR task, our results from the SRFlow-DA

model obtained 50.70 (1st), 0.121 (3rd), and 23.091 (4th)

for LR-PSNR, LPIPS, and the diversity score respectively.

Similarly, for ×8 SR task, our results obtained 50.86 (1st),

0.266 (3rd), and 23.320 (4th) respectively. The numbers are

calculated on the 100 images of DIV2K test set. Our ap-

proach shows the best LR-PSNR with good LPIPS values

compared to the other participants. In other words, SRFlow-

DA successfully generates visually pleasing diverse output

images and maintains the original content of the input LR

image.



Bicubic RRDB SRFlow SRFlow-DA GT

Figure 2. Qualitative results with other methods on the DIV2K validation set for ×8 SR. SRFlow results show a better visual

quality but sometimes show excessive sharpness. SRFlow-DA results show clear images while maintaining photo-realism.
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(b) SRFlow-DA-D

Figure 3. Two variants of SRFlow-DA. See the text for de-

tails.

4.5. Variants of SRFlowDA

4.5.1 SRFlow-DA-R

For SRFlow-DA-R, we add skip connection from the output

of the first convolutional layer to the input of the last con-

volutional layer in our deep convolutional block (Fig. 3a).

With the residual learning, the model could learn more rich

features.

4.5.2 SRFlow-DA-S

For SRFlow-DA-S, we use a single-scale architecture, like

did in conventional deep SR methods. In the case of ×8

SR, we reduce the number of scale levels from 3 to 1 and

increase the number of flow steps from 6 to 18 at the same

time to balance the number of parameters (i.e. K = 18 and

L = 1). We also remove all intermediate squeeze opera-

tions, and the remaining first squeeze operation directly re-

sizes the spatial size to 1

8
which is equivalent to the LR im-

age size. The same thing applies for ×4 SR, and the model

is processed at 1

4
scale in this case.

4.5.3 SRFlow-DA-D

For SRFlow-DA-D, we use more deeper convolutional

block in the affine couplings (Fig. 3b). Specifically, we

stack 38 3×3 convolutional layers and we add skip connec-

tions for every 2 conv-relu layers. Additionally, we reduce

the number of flow steps to 1 (K = 1). In this setting, we

can check if the performance increases using only a deeper

block without many flow steps.

4.5.4 Experimental Results

Quantitative results are shown in the lower part of Ta-

ble 1. In case of ×4 SR, SRFlow-DA-R achieves better

LR-PSNR (+0.04), LPIPS (-0.0003), and diversity score

(+1.95). In case of ×8 SR, SRFlow-DA-R achieves better

LPIPS (-0.0052) and diversity score (+1.12) with lower LS-

PSNR (-0.18). Overall, SRFlow-DA-R improves the per-

formance compared to SRFlow-DA. Compared to SRFlow,

our SRFlow-DA-R results show better performance in all

metrics, reducing the number of parameters and the train-

ing time simultaneously. Note again SRFlow-DA-R shows

both better global and local LPIPS scores than SRFlow but

its diversity score is lower because the score is computed

as the span of the two scores. SRFlow-DA-S and SRFlow-

DA-D show lower performance than SRFlow-DA, but they

have advantages in shorter training and inference time.

The qualitative results of the variants are shown in Fig. 4.

SRFlow-DA-R results look clear (row 1) and look closer to

the GT than SRFlow-DA (rows 2-4). SRFlow-DA-S results

look less sharp than SRFlow-DA-R (rows 4-5). SRFlow-

DA-D results look overly noisy than the others. We infer

that the reduced number of flow steps makes mapping to

the latent space difficult.

In addition, diverse output generation results are shown

in Fig. 5. We plot 4 output patches of the same in-

put image for SRFlow-DA and SRFlow-DA-R. Different

high-frequency details are generated in each output image.

SRFlow-DA results look slightly noisy than SRFlow-DA-R

(rows 1-2). We infer the skip connection in SRFlow-DA-R

helps the training [8]. Still, both methods have difficulty in

restoring thin lines (rows 1, 3).

5. Conclusion

We proposed a simple modification of SRFlow for bet-

ter SR quality while reducing the model size and the train-

ing time (SRFlow-DA). The receptive field of a single flow

step is increased by using a deep convolutional block in-

side the affine coupling, and we empirically found this is a

useful approach for the SR task. Through the experiments,

we verified SRFlow-DA achieves better PSNR and LPIPS

values by preserving the original contents, but the diversity

score little decreased. In addition, SRFlow-DA achieved

good scores in the NTIRE 2021 Learning the SR Space

Challenge [15], for both ×4 and ×8 SR tracks. We be-

lieve that our approach can motivate researchers to design a

better normalizing flow-based SR architecture in the future.



SRFlow-DA SRFlow-DA-R SRFlow-DA-S SRFlow-DA-D GT

Figure 4. Visual comparisons for the variants of SRFlow-DAs on the DIV2K validation set. The first 3 rows are ×4 SR

results and the last 3 rows are ×8 SR results. Overall, SRFlow-DA-R results show clear images with well-generated textures.
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