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Abstract

Fundamentally, super-resolution is ill-posed problem be-

cause a low-resolution image can be obtained from many

high-resolution images. Recent studies for super-resolution

cannot create diverse super-resolution images. Although

SRFlow tried to account for ill-posed nature of the super-

resolution by predicting multiple high-resolution images

given a low-resolution image, there is room to improve the

diversity and visual quality. In this paper, we propose Noise

Conditional flow model for Super-Resolution, NCSR, which

increases the visual quality and diversity of images through

noise conditional layer. To learn more diverse data distri-

bution, we add noise to training data. However, low-quality

images are resulted from adding noise. We propose the

noise conditional layer to overcome this phenomenon. The

noise conditional layer makes our model generate more di-

verse images with higher visual quality than other works.

Furthermore, we show that this layer can overcome data

distribution mismatch, a problem that arises in normaliz-

ing flow models. With these benefits, NCSR outperforms

baseline in diversity and visual quality and achieves better

visual quality than traditional GAN-based models. We also

get outperformed scores at NTIRE 2021 challenge [21].

1. Introduction

Single image super-resolution is a computer vision

task to reconstruct a high-resolution image from its low-

resolution image. Super-resolution is an important problem

in computer vision due to its various applications includ-

ing surveillance [34], medical imaging [3, 28], astronomical

imaging [25, 19] and object detection [23].

With the development of deep learning in computer vi-

sion [7, 9, 10, 11, 26], super-resolution methods based on

deep learning [15, 18, 20, 29, 32, 33] improve performance
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Figure 1: ×4 Super-Resolution result of our model on

”0831” from DIV2K validation set compared with other

baseline models.

significantly. Models [15, 20, 32, 33] trained with L1 or

L2 loss achieve high PSNR performance. Likewise, mod-

els [13, 18, 29] trained with adversarial loss or perceptual

loss accomplish high visual quality performance.

Most super-resolution methods based on deep learning

take a low-resolution image as an input, then output a

high-resolution image. However, super-resolution is an ill-

posed problem. That is to say, one low-resolution image

can be mapped from multiple high-resolution images. SR-

Flow [22] proposed the method that can predict multiple

high-resolution images for a given low-resolution image by

learning the super-resolution space. [22] utilize normaliz-

ing flow to learn super-resolution space.

SRFlow[22] produces a variety of results other than a de-

terministic super-resolution output, but there are possibili-



ties to improve performance. Their diversity comes from

training with negative log-likelihood, not L1 or L2 loss.

SRFlow [22] outputs more diverse super-resolution images

with better visual quality than not only models that give the

deterministic result such as GAN based but also a model

that simply creates diversity through noise [27]. However,

in addition to training with negative log-likelihood, there

are more ways to increase diversity.

In this paper, we propose a model that produces results

with more advanced diversity and better visual quality than

SRFlow. Our method increases diversity by adding noise.

However, simply adding noise to input images generates

low-quality images with artifacts. To deal with this prob-

lem, we propose a structure called noise conditional layer,

which results in superior results in both metrics over SR-

Flow [22]. We also analyze that these improvements come

from resolving data distribution mismatch that exists in

other flow models such as [17]. Existing flow-based mod-

els aim to map complex data x from simple data z, but

when the two manifold dimensions are not the same, flow

models are not trained smoothly. Therefore, these distribu-

tion dimension mismatches should be addressed. This was

addressed in SoftFlow[14] and we applied similar ideas to

super-resolution tasks. Our contribution is as follows.

1. We propose a method that can improve performance on

learning the super-resolution space using flow model

through adding noise and noise conditional layer.

2. Our method improve the performance of the diversity

by adding noise to the training data to expand the data

distribution

3. Our method solves the performance degradation

caused by the mismatch of the data distribution of SR

model using normalizing flow.

2. Related Works

2.1. Single Image Super­Resolution

As deep learning-based methods [7, 9, 10, 11, 26] pro-

vide significant performance improvement, many single im-

age super-resolution methods [15, 20, 32, 33] based on

deep learning are proposed. Dong et al. [6] proposed the

first super-resolution model based on deep learning. Dong

et al. [6] propose the model, which use three convolu-

tion layers, trained with L2 loss. After that, many meth-

ods [15, 20, 32, 33] which optimized with L1 or L2 loss are

proposed. Although these models show performance im-

provement in terms of PSNR, some of their predictions are

blurry. To deal with this problem, super-resolution mod-

els [18, 29] which use adversarial loss or perceptual loss

are proposed. However, these works predict a reconstructed

high-resolution image for a given low-resolution image.

2.2. Normalizing Flow

Flow-based model, originally introduced in [4], pro-

posed deep learning framework for modeling complex high-

dimensional density. Flow-based models have made many

advances to map accurate complex distributions from sim-

ple distribution. Several approaches such as [4, 5, 17] use

invertible networks to map complex distributions from sim-

ple distributions (ex. Gaussian). [8] uses a continuous-time

invertible generative model with unbiased density estima-

tion and one-pass sampling. Besides, [14] aims to estimate

the conditional distribution of perturbed input data instead

of learning the data distribution directly to solve the dis-

crepancy problem of a dimension of data distribution. Re-

cently flow-based models are gaining popularity in the field

of image generation [5, 17]. Moreover, [2, 30] present a

conditional image generation method based on the Glow ar-

chitecture. [30] deals with SR tasks but does not produce

influential results compared to GAN-based models. For

the first time, SRFlow [22] propose a flow-based super-

resolution model which outperforms GAN-based models.

SRFlow [22] is trained with the negative log-likelihood loss

only. By using negative log-likelihood loss, SRFlow [22]

solves the deterministic output problem posed by the previ-

ous super-resolution works and learns to generate diverse

photo-realistic super-resolution images. Our method fol-

lowing Glow architecture [17] along SRFlow, solves the

data distribution problem like [14] and generates super-

resolution images of better visual quality and more diverse

outputs.

3. Method

Our main goal is to learn super-resolution space. In other

words, we aim to generate diverse super-resolution images

with high visual quality for a given low-resolution image.

In this section, we introduce our proposed method. Firstly,

we will briefly address the background to understand our

model. Next, we will discuss how to improve diversity.

Finally, we explain the noise conditional layer which im-

proves image visual quality and diversity by solving mis-

match in the distribution of data.

3.1. Background

Flow-based model is one of the effective methods for

predicting the complex distribution of real data. These mod-

els aim to convert from a simple (ex. Gaussian) distribution

to a complex (ex. Real-world) using a series of invertible

functions. These properties make complex data x can be al-

ways reconstructed from z, which is the latent vector. These

flow-based generative models are defined as:

z ∼ pz(z)

x = g(z), z = f(x)



f(x) = fn ◦ fn−1 ◦ · · · ◦ f1(z)

In this case, z is the latent variable, f and g are invertible to

each other, z = f(x) = g−1(x). Moreover, the flow model

f consists of invertible transformation, which maps dataset

x to Gaussian latent variable z and each fi has a tractable

inverse and a tractable Jacobian determinant. The series of

invertible transformations is called a normalizing flow, and

the advantage of this normalizing flow is that probability

density px can be written as follows by applying the change

of variable formula:

px(x|θ) = pz(fθ(x))| det
∂fθ

∂x
|

It allows network to be trained through the following objec-

tive functions.

− log px(x|θ) = − log pz(fθ(x))− log | det
∂fθ

∂x
|

Model f is trained by directly minimizing negative log-

likelihood. These training methods prevent the output of

the model from being deterministic. This guarantees the

diversity of the output.

SRFlow [22] is a normalizing flow-based super-

resolution method that, given a low-resolution image, can

learn a super resolution conditional distribution for that im-

age. They utilized the basic Glow architecture and modified

the existing flow step to create the conditional flow step.

The conditional flow step consists of Actnorm, 1×1 con-

volution, Affine injector, and Conditional affine coupling.

The parts that learn low-resolution images conditionally are

affine injector and conditional affine coupling.

Affine injector is as follow:

hn+1 = exp(fn
θ,s(u)) · h

n + fn
θ,b(u)

which, fn
θ,s and fn

θ,b can be any network and u = gθ(x) is

low resolution image encoding , where gθ is encoder net-

work.

Conditional affine coupling is as follow:

hn+1

A = hn
A

hn+1

B = exp(fn
θ,s(h

n
A;u)) · h

n
B + fn

θ,b(h
n
A;u)

Similar to affine injector, fn
θ,s and fn

θ,b can be any network

and u = gθ(x) is low-resolution image encoding. More-

over, hn = (hn
A , hn

B ) is a partition in the channel dimension.

3.2. How to improve Diversity

Learning the super resolution space was already ad-

dressed in [22]. [22] was trained with negative log-

likelihood, which does not use the loss as L1 loss. We

use [22] which obtained a meaningful diversity as baseline.

To achieve a higher diversity score, we started from the

fact that flow-based models aim to match the distribution of

simple data z with complex data x.

Figure 2: These images are samples of super-resolution

results of DIV2k validation set from a model trained only

with injecting noise, without noise conditional layer.

1. By varying the distribution of complex data x, i.e.

high-resolution images, the distribution of super-

resolution outputs mapped from data z will also vary

during the inference process.

2. Among the methods to vary the distribution of this data

x, we use noise injection.

x+ = x+ noise

f−1(x+|y) = z

where, x is high resolution image, f is invertible

model that maps z to x and y is low resolution image.

However, while the method of varying the distribution

by adding noise to the high-resolution image has in-

creased the diversity significantly, this is not the exact

LR image conditional training. These training meth-

ods generate super-resolution images with severe noise

when generating images from simple distribution z.

3. Therefore, for exact LR image conditional training,

noise injected into the high-resolution image was re-

sized to the size of LR image and added to the LR im-

age for training.

x+ = x+ noise

y+ = y + noise−

f−1(x+|y+) = z

where, noise− is a vector whose noise is resized in the

same size as y

This method leads to an improvement in diversity. However,

we address that this noise injection causes artifact. This can

be seen in Figure 2. Therefore, we propose the structure of

the model to remove the noise-induced artifact.

3.3. Noise Conditional Layer

It is our motivation to inform the model of information

about noise for removing the artifacts caused by adding

noise. By training the model with noise information, noise
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Figure 3: Our method proposes a flow model with noise conditional layer. Our method adds the same noise in LR images

and HR images and proceeds with noise conditional training according to these noise distributions.

will be reflected for generating images. Due to reflected

noise information, images with reduced artifacts can be gen-

erated. Therefore, we add layers that inform noise to the

model structure. We propose a noise conditional layer.

Our method is as follows. Initially, random value c is ob-

tained from uniform distribution U(0,M) as [14] did. Next,

set noise distribution N(0,Σ), where Σ = c2I . Then, we

sample noise vector v from N(0,Σ) and add noise to the

original high resolution image x to obtain perturbed data

x+. Finally, resize these vector v to get noise vector w for

low-resolution images and obtain y+ by adding w to the

original low resolution image y.

x+ = x+ v

y+ = y + w

f−1(x+|y+, v) = z

where, x is high resolution image, y is low resolution

image, v is noise vector and w is a noise vector which is

resized in the same size as y. At this point, model f is

trained with LR image and noise information. Thus, the

goal is to obtain a model conditioned on the noise and LR

image that converts latent variable z to x+ given the vector

v and y+. (i.e. f(z|y+, v) = x+)

Moreover, we conduct noise conditional training in two

ways, one for noise itself and one for standard deviation for

noise distribution. We proceed both methods in a similar

way to the conditional affine coupling of [22]. Although

standard deviation conditional training, such as those used

in [14], improves diversity and LPIPS[31], it tends to create

artifact from the generated images. In contrast, with noise

conditional training, the numerical performance is slightly

lower, but the frequency of occurring artifacts in the gen-

erated images is reduced and we finally adopt noise condi-

tional training.

We also deal with the following problem:

• The flow-based model aims to create a complex distri-

bution, x, from a simple distribution z. However, the

manifold data dimension between data x and data z is

not always the same. This makes it difficult to predict

the distribution of complex data.

Our method solves the mismatch of data distribution. The

idea that solves this problem exists in SoftFlow[14], which

adds noise to improve the performance of the flow model.

[14] proposes to estimate the conditional distribution of per-

turbed data to diminish the dimension difference between

these data and the target latent variable. The key here is to

add noise that is obtained from randomly selected distribu-

tion and to use these distribution parameters as conditions.

[14] has shown that these methods can experimentally suc-

ceed in capturing the innate structure of manifold data. In

the same principle, we increase performance for learning

the super-resolution space and image visual quality using

normalizing flow through adding noise and noise (distribu-

tion parameters) conditional training.

Our model goes through the same process as [22]:

squeeze, flowstep, split. Similar to [22], the LR image is en-

coded through the low-resolution encoder, which is used for

conditional training. Also, flowstep consists of transition

step and conditional flow step, which is equivalent to [22].

The difference between [22] and our model lies at the core
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Figure 4: The key to our model is the Flowstep block in the

picture above.

of SRFlow, conditional flow step. The noise conditional

layer is added to the existing four configuration steps. In

other words, it consists of five steps: actnorm, 1×1 convo-

lution, affine injector, and two conditional affine couplings

(Noise conditional layer, LR conditional layer). There is the

structure of five steps in Figure 4. Moreover, only negative

log-likelihood was used for loss, like [22]. The network is

trained with the aim of minimizing the following negative

log-likelihood.

− log px|y,v(x|y, v, θ) =

− log pz(fθ(x; y, v))− log | det
∂fθ

∂x
(x; y, v)|

where x is high resolution image, y is low resolution im-

age and v is noise vector. During inference, we add a zero

vector instead of noise. In inference, because we add zero

vector, we need dequantization the same as SRFlow. This

architecture enables the model to perform noise conditional

training, resulting in the reduced artifact.

Noise conditional layer performs better than existing

models because our method not only recovers image vi-

sual quality dropped by noise injection, but also solves the

problem with data distribution mismatch. Noise conditional

layer solves the problem of data distribution mismatch and

increase the diversity of the data distribution to add noise

to the underlying HR image, resulting in performance im-

provements in both visual quality and diversity.

4. Experiments

4.1. Dataset and Metric

We use DF2K dataset, which is a merged dataset with

DIV2K [1] and Flick2K1, for training the proposed model.

DIV2K dataset [1] is composed of 800 train images, 100

validation images, and 100 test images. Similarly, Flick2K

contains 2560 training images. Additionally, we use

crawled 498 high-resolution images, which are 2K resolu-

tion, from the Unsplash website2 to increase the amount of

train data for NTIRE 2021 challenge [21]. We refer to the

1https://github.com/limbee/NTIRE2017
2https://unsplash.com

Figure 5: The sample images of Unsplash 2K

crawled dataset as Unspalsh2K. Figure 5 shows sample im-

ages of Unsplash2K dataset. Unsplash2K dataset is publicly

available3. For testing, we use the DIV2K validation im-

ages because the ground truth images of the DIV2K testset

are not publicly available.

We use the following metrics for comparing perfor-

mance.

• To compare the visual quality, we use LPIPS [31] as

several works [12, 22] did. LPIPS [31] is computed

by measuring distance in feature space between two

images.

• NTIRE 2021 challenge [21] uses a diversity score to

measure the spanning of the super-resolution space.

We also use the same metric to evaluate diversity. They

calculated the diversity in the following way. Sample

10 images and calculate global best and local best be-

tween the samples and the ground truth. The local best

is the full image’s average of the best score for each

pixel out of 10 samples. The global best is the best

average of the whole image’s score. The diversity for-

mula is as follows:

diversity =
global best− local best

global best
∗ 100

• To measure the low-resolution consistency, we use the

average LR-PSNR of 10 samples. The LR-PSNR is

calculated by computing the difference between down-

sampled prediction image and a low-resolution image.

• We use the LR-PSNR worst, which is the minimum

value, of 10 samples to check if artifacts exist. If LR-

PSNR worst is low, some of the generated samples

have terrible artifacts.

3https://github.com/dongheehand/unsplash2K



Model Diversity LPIPS LR PSNR

RRDB [29] 0 0.253 49.20

ESRGAN [29] 0 0.124 39.03

ESRGAN+ [27] 22.13 0.279 35.45

SRFlow [22] 25.26 0.120 49.97

NCSR (Ours) 26.72 0.119 50.75

NCSR* (Ours) 26.79 0.118 50.88

Table 1: General image SR ×4 results on the 100

validation images of the DIV2K dataset

4.2. Implementation Details

We describe the training details and model hyper-

parameters in this section. For each training step, 18 high-

resolution patches are extracted. The size of the extracted

patch is 160×160 and extracted patches are used as ground-

truth. The low-resolution images downsampled from high-

resolution patches via bicubic downsampling are used as

input. Both input images and ground-truth images are nor-

malized to [0, 1].

RRDB [29] is used for low-resolution encoder for our

proposed model. Noise conditional layers are added at

the first and the second block based on the order of infer-

ence. We use ADAM optimizer [16] by setting β1 = 0.9,

β2 = 0.99, ǫ = 10−8. To augment data, we randomly

rotate patches 90, 180, 270 degrees and randomly flip hor-

izontally. The learning rate is initialized to 2 × 10−4. The

learning rate is halved at 110K and 165K updates. The other

settings are the same as SRFlow [22]. PyTorch [24] is used

to implement our model. The code and pretrained models

are publicly available4.

4.3. Comparision with other models

To show superiority of our model, we compare our

method with other super-resolution methods. We com-

pare performance with RRDB [29], ESRGAN [29], ESR-

GAN+ [27] and SRFlow [22]. RRDB [29] is PSNR ori-

ented model which is trained with L1 loss. ESRGAN [29]

and ESRGAN+ [27] are GAN based model. SRFlow [22]

is Flow-based model.

We evaluated the performance of these models with three

metrics: LPIPS, diversity score, LR-PSNR. For ×4 SR

model, our proposed model outperformed the state-of-the-

art model SRFlow on all metrics as shown in table 1. Fur-

thermore, our model achieves superior result than GAN

based model in terms of LPIPS, which is a perceptual mea-

sure.

Similarly, we measured the performance of our model

for ×8 SR. We do not compare with ESRGAN+, because

there is no model for ×8 SR. In ×8 task, our method shows

4https://github.com/younggeun-kim/NCSR

Model Diversity LPIPS LR PSNR

RRDB [29] 0 0.419 45.43

ESRGAN [29] 0 0.277 31.35

SRFlow [22] 25.31 0.272 50.00

NCSR (Ours) 26.8 0.278 44.55

NCSR* (Ours) 25.7 0.253 49.97

Table 2: General image SR ×8results on the 100 validation

images of the DIV2K dataset

a better diversity score than SRFlow. Comparable results

are also shown in terms of LPIPS and LR-PSNR.

We also do an experiment by adding Unsplash2K, which

is an extra training dataset. When we add Unsplash2K to

train data, all metrics are slightly better for both ×4 SR and

×8 SR. In table 1 and 2, NCSR means the model trained

with DF2K only, and NCSR* means the model trained with

DF2K and Unsplash2K.

Qualitative results are shown in Figure 6, 7. Figure 6

shows that our proposed model reconstruct textures and de-

tails compared to other works. Random samples generated

by our model are shown in Figure 7.

For the flow-based SR model, we set the temperature as

0.9. However, the temperature is 0.85 for our ×8 SR model

trained with DF2K only.

4.4. Ablation Study

In this section, we analyze the performance of the pro-

posed model according to three factors.

Std conditional layer vs. noise conditional layer We

compare the performance of which value is used for con-

ditional layer. While the noise conditional layer uses sam-

pled noise, the standard deviation conditional layer uses the

standard deviation of sampled noise, which is injected into

high-resolution images. As you can see in the table 6, the

standard deviation conditional layer makes LR-PSNR worst

value lower than our noise conditional layer. This means

that the standard deviation conditional layer creates many

artifacts. It is because the standard deviation conditional

layer did not provide sufficient information to the model.

Therefore, the standard deviation is not enough for noise-

aware training when noise-injected inputs are given.

With or without noise conditional layer We investi-

gate the effect of the noise conditional layer. Without noise

conditional layer, noises are injected in input images. As

you can see in Table 5, LPIPS is high without a noise con-

ditional layer. In other words, the image visual quality is

not good. Furthermore, LR-PSNR is low, which means that

there are lots of artifacts. Images with artifacts can be seen

in Figure 2. Table 5 shows the detailed performance com-

parison with the presence of noise conditional layer.

Where to add noise conditional layer We also experi-



0850 from DIV2K
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Figure 6: Qualitative comparisons with other methods for ×8 SR model.

Figure 7: Random samples generated by NCSR. Upper : ×4 SR model, Lower : ×8 SR model

LPIPS LR PSNR Div. Score

Team

svnit ntnu 0.355 27.52 1.871

SYSU-FVL 0.244 49.33 8.735

nanbeihuishi 0.161 50.46 12.447

SSS 0.110 44.70 13.285

FudanZmic21 0.273 47.20 16.450

FutureReference 0.165 37.51 19.636

SR DL 0.234 39.80 20.508

CIPLAB 0.121 50.70 23.091

BeWater 0.137 49.59 23.948

njtech&seu 0.149 46.74 26.924

Deepest(ours) 0.117 50.54 26.041

Table 3: Quantitative results for NTIRE 2021 Challenge

on Learning Super Resolution Space on ×4 track

LPIPS LR PSNR Div. Score

Team

svnit ntnu 0.481 25.55 4.516

SYSU-FVL 0.415 47.27 8.778

SSS 0.237 37.43 13.548

FudanZmic21 0.496 46.78 14.287

SR DL 0.311 42.28 14.817

FutureReference 0.291 36.51 17.985

CIPLAB 0.266 50.86 23.320

BeWater 0.297 49.63 23.700

njtech&seu 0.366 29.65 28.193

Deepest(ours) 0.259 48.64 26.941

Table 4: Quantitative results for NTIRE 2021 Challenge

on Learning Super Resolution Space on ×8 track



Model w/o NCL with NCL

Diversity 25.38 26.72

LPIPS 0.1228 0.1193

LR PSNR 50.08 50.75

LR PSNR-worst 47.32 49.14

Table 5: Performance comparison between model with

noise conditional layer and without noise conditional layer

mentally show that it is recommended that the noise condi-

tional layer is only included in the first block and the second

block based on the order of inference. The model with a

noise conditional layer in all blocks generates images with

artifact. They show slightly better scores in terms of diver-

sity, but due to the occurrence of these artifacts, we adopt to

add our noise conditional layer in the first and second block.

When generating super-resolution output, we need an inter-

val at the end of network to generate the image without such

noise because of noise added in the input and the noise con-

ditional layer.

That is to say, we find that there should be noise-free

block at the end of network. The noise-free block is the

block that there is no noise conditional layer. Therefore, if

there is no noise-free block, this could be the factor that

make the artifact. You can show the results described above

in the following table 6.

5. NTIRE2021 challenge

Our method, NCSR, scored high in both tracks of NTIRE

2021 Learning Super Resolution Space Challenge [21]. To

measure how much information is preserved in the super-

resolution image from the low-resolution image, the com-

petition measured the LR-PSNR. In this competition, a

team with high perceptual image visual quality and diver-

sity scores becomes the winner in the case that LR-PSNR

exceeds only 45. Among teams with LR-PSNR over 45,

we take the first place in LPIPS and the second place in

diversity score for ×4 track. Moreover, in the ×8 track,

our model takes the first place in both LPIPS and diver-

sity scores. The quantitative results of NTIRE 2021 Super-

Resolution Challenge are shown in Table 3, Table 4.

6. Conclusion

We propose noise conditioned flow model for learning

super-resolution space. Our proposed model uses a noise

conditional layer to generate more diverse super-resolution

images with high visual quality.

To learn more diverse data distribution, we add a ran-

dom noise to images. Although data distribution is broader,

adding noise cause artifacts with terrible quality in super-

resolution images. Therefore, a noise conditional layer is

Noise Conditional Layer ✗ ✗ X X X

Std Conditional Layer ✗ X ✗ ✗ ✗

Noise-free block ✗ X ✗ X X

Add extra data ✗ ✗ ✗ ✗ X

LR-PSNR worst 47.32 45.78 49.01 49.14 50.13

Table 6: LR-PSNR worst comparison for Ablation Study

proposed for stable training when noise is added to im-

ages. By using the noise conditional layer, we can obtain

more diverse super-resolution images without visual degra-

dation. We show the superiority of our proposed model

on the DIV2K dataset under several settings. Furthermore,

our proposed model achieves high quantitative results on

NTIRE 2021 Super-Resolution Challenge [21].
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