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Abstract

Social media images are generally transformed by fil-

tering to obtain aesthetically more pleasing appearances.

However, CNNs generally fail to interpret both the image

and its filtered version as the same in the visual analysis

of social media images. We introduce Instagram Filter Re-

moval Network (IFRNet) to mitigate the effects of image fil-

ters for social media analysis applications. To achieve this,

we assume any filter applied to an image substantially in-

jects a piece of additional style information to it, and we

consider this problem as a reverse style transfer problem.

The visual effects of filtering can be directly removed by

adaptively normalizing external style information in each

level of the encoder. Experiments demonstrate that IFR-

Net outperforms all compared methods in quantitative and

qualitative comparisons, and has the ability to remove the

visual effects to a great extent. Additionally, we present the

filter classification performance of our proposed model, and

analyze the dominant color estimation on the images unfil-

tered by all compared methods.

1. Introduction

In recent years, hundred of millions of photos have been

shared on different social media platforms (e.g. Instagram,

Facebook, etc.). Predicting the preferences of the users by

analyzing their posts on such platforms becomes a crucial

element of increasing the profitability for different indus-

tries (e.g. food, e-commerce and fashion). This analysis is

roughly composed of understanding contents of a bunch of

images and extracting particular information that may be

useful for a certain domain. The first part of this compo-

sition, visual understanding, is mostly attacked by various

deep learning approaches and their recent developments [8].

Visual understanding for a specific purpose may con-

tain several different tasks to be accomplished, such as

image classification, object detection, instance segmenta-

tion and image retrieval. Convolutional Neural Networks

(CNNs) show an outstanding performance on visual un-

Figure 1: Failure cases arising from filtering on detection

and segmentation tasks in fashion domain. Example images

are predicted by Attr-Mask-RCNN trained on Fashionpedia

dataset, which is introduced in [15].

derstanding tasks, and there are several prominent studies

[9, 10, 12, 19, 27, 28, 31] proposing different fundamental

solutions to these tasks by employing the variants of CNNs.

However, CNNs may not deliver the same performance in

real-world applications, as in the standard benchmark stud-

ies, due to the varied distractive factors like noise or blurring

in real-world images or different transformations applied to

the images. Recent studies [1, 11, 21, 33] have shown that

CNNs are sensitive to these distractive factors, and they lead

to degrade the performance significantly.

With the intent of exhibiting aesthetically more pleasing

appearances or scenes, the images shared on social media

platforms are mostly transformed into a different version

by applying some filters. These filters modify the origi-



nal image in many different ways (e.g. adjusting contrast,

brightness, hue, saturation; introducing different levels of

blur and noise; applying color curves or vignetting). These

modifications not only make an image more aesthetically

pleasing, but also interpolate a particular style information

to its feature maps. Considering the performance of visual

understanding systems, it is important to handle such in-

terpolations without turning the problem into an ill-posed

problem. Note that detecting the levels of modifications ap-

plied during application of the filters for each single image

is an ill-posed problem. At this point, CNNs do not give

the exact outputs for an image and its filtered version, as

shown in Figure 1, due to the differences on their feature

maps caused by from filtering. This leads to the perfor-

mance degradation on visual understanding tasks in various

domains.

Previous studies addressing this issue have proposed dif-

ferent solutions that try to classify the specific filter applied

to the images [2, 3, 4, 33] or to learn the complex parame-

ters of a set of transformations applied to the images [1, 29].

Although these solutions have the ability to predict the filter

or a set of transformations applied, they could not recover

the original image. In this study, we assume that any filter

applied to an image basically stands for the additional style

information injected to the images. Therefore, we consider

this problem as a reverse style transfer problem. In our ap-

proach, the style information from the filtered source image

is learned in adaptive manner, and normalized its feature

maps in the encoder to be able to generate unfiltered images

with the help of adversarial learning. Our main contribution

in this study can be summarized as follows:

• We propose a novel filter removal architecture, namely

Instagram Filter Removal Network (IFRNet), which

has encoder-decoder structure that normalizes the style

information in the encoder to remove the visual effects

of Instagram filters.

• We introduce a new dataset, namely Instagram-

Filtered Fashionable Images (IFFI), which is a set of

10,200 high-resolution fashionable images composed

of 600 collected images and their filtered versions by

16 different Instagram filters.

• We compare the qualitative and quantitative results of

IFRNet with the previous filter removal approach [1]

and the fundamental image-to-image translation stud-

ies [14, 30, 38].

• As additional experiments, we present the filter classi-

fication performance of IFRNet, and analyze the dom-

inant color estimation on the images unfiltered by the

compared methods.

2. Related Works

2.1. Filter Recognition and Removal

There are limited studies on recognizing the filters ap-

plied to an image. Chen et al. [3] introduces a Siamese CNN

architecture to classify the filters by employing a discrim-

inative pair sampling and an adaptive margin contrastive

objective function. Bianco et al. [2] investigates the per-

formance of some standard CNN architectures (i.e AlexNet

[20], LeNet [22] and GoogLeNet [32]) on small subset of

Places2 dataset [37] where 22 Instagram filters are applied

to the samples. Likewise, Chu and Fan [4] examines the

performance of transfer learning approach on AlexNet [20],

VGG16 [31] and ResNet-50 [10] architectures. Sen et al.

[29] proposes a method using CNNs that learns to extract

the parameters of transformations of filters from a reference

image, and then transfers this information to a target im-

age. Wu et al. [33] demonstrates that it is possible to reduce

the effects of filtering on image classification by employing

adaptive feature normalization approach. Lastly, Bianco et

al. [1] discusses a noticeable strategy to remove the filters

from the images. This strategy involves learning the para-

metric local transformations for each filter adaptively by

CNNs to restore the images. Apart from these studies, we

introduce an adversarial methodology that directly learns to

remove the visual effects brought by the filters, and recover

the images back to their original versions.

2.2. Style Transfer

Style Transfer is the variant of image-to-image transla-

tion tasks where the main goal is to transfer the style infor-

mation extracted from a reference image into a target im-

age while preserving its context information. Recent stud-

ies [6, 7, 13, 14, 16, 17, 38] show that many style infor-

mation from different reference images can be successfully

transferred into many different target images in varied do-

mains. The underlying common strategy in these studies

is to capture the style information from the feature repre-

sentation of an image, and then to learn to synthesize this

information and the context information of another image.

Inspired from this strategy, we assume that the filters ap-

plied to images can be interpreted as the style information

injected to the original version, and with the help of adap-

tive feature normalization [13], it can be swept away from

the images during the feature extraction. Therefore, we re-

fer this task as reverse style transfer where the particular

style is removed from an image, instead of transferring it

into a target image.

3. Methodology

Our proposed architecture, namely IFRNet, directly re-

moves the style information injected to the images by fil-

ters. IFRNet achieves it by normalizing the feature maps



(a) Original (b) Brannan (c) Hudson (d) Lo-Fi (e) Sutro (f) Toaster (g) X-Pro II

Figure 2: Original images from IFFI dataset and their filtered versions by 7 example filters.

of filtered images, and directly generates the unfiltered ver-

sion of them. Moreover, we introduce a dataset containing

10,200 filtered high-resolution fashionable images to vali-

date the performance of our approach.

3.1. IFFI: Instagram­Filtered Fashionable Images

Previous studies have picked a small subset of well-

known datasets (i.e. [5, 37]) to use for validating their per-

formance. These subsets with the filtered versions of the

samples have not been open-sourced, and it may not be pos-

sible to reproduce the results in these studies. Moreover,

the samples in these datasets do not seem like social media

posts, which mostly have aesthetic concerns. Due to these

reasons, we have collected a set of aesthetically pleasing

images that are filtered by 16 Instagram filters. IFFI dataset

contains high-resolution (1080×1080) 600 images and with

their 16 different filtered versions for each. In particular,

we have picked mostly-used 16 filters: 1977, Amaro, Bran-

nan, Clarendon, Gingham, He-Fe, Hudson, Lo-Fi, Mayfair,

Nashville, Perpetua, Sutro, Toaster, Valencia, Willow, X-Pro

II. Some examples of collected images and their filtered ver-

sions can be seen in Figure 2.

3.2. IFRNet: Instagram Filter Removal Network

We define the problem of removing Instagram filters

from the images as a reverse style transfer problem, where

any visual effect injected by a particular filter is removed

from an image by directly reverting them back to its origi-

nal style. To achieve this, we propose Instagram Filter Re-

moval Network (IFRNet), which has encoder-decoder struc-

ture employing adaptive feature normalization strategy to

all layers in the encoder.

Style extractor module contains five-layer fully-

connected network ffc. It maps the feature representations

zvgg , encoded by a pre-trained VGG network, to the latent

space. There are N fully-connected heads attached to ffc,

where N equals to the number of normalization layer in the

encoder. Each head is responsible for adapting the affine

parameters yi of corresponding normalization layers in the

encoder. This module can be formulated as follows

yi = hi(ffc(zvgg)) (1)

where hi(·) is ith fully-connected head of style extractor

module and yi represents the predicted mean and variance

vectors for the corresponding normalization layer.

Adaptive instance normalization (AdaIN) [13] makes it

possible to adapt the style of an input image to any arbi-

trary style of a target image by transferring the feature statis-

tics computed across spatial locations. Formally, AdaIN re-

ceives the feature maps of the content image x and the style

input y, and aligns the channel-wise mean and variance of

these maps to match the style information obtained from y.

AdaIN(x, y) = σ(y)

(

x− µ(x)

σ(x)

)

+ µ(y) (2)

In our design, we consider the filters applied to the im-

ages as an external style information, and simply employ

AdaIN to eliminate this information from these images. The

encoder of IFRNet is composed of 6 residual blocks, and

each of them has specific AdaIN layer to normalize the fea-

ture maps in each level with its corresponding affine pa-

rameters extracted by previous module. To preserve any



Figure 3: Overall architecture of IFRNet. The latent representations of the images are fed into style extractor module ffc,

then the affine parameters are calculated, and sent to the corresponding AdaIN layer to eliminate the style information from

the feature maps. At the end, the decoder part of IFRNet generates the unfiltered version of the input images.

related information about the original style, we include skip

connections to the normalized feature maps before sending

them to the next layer. In this way, the encoder has the

capacity not only to learn to remove the external style infor-

mation, but also to preserve the related ones.

oi = ri(vi, yi) + vi (3)

where ri(·) represents the residual block at ith layer of the

encoder, which receives the feature maps vi and the affine

parameters yi, and oi is the output of this block. Note that

the normalization does not have any impact on the feature

maps when its corresponding affine parameters are set to

zero for a particular layer, which means there is no external

style information remaining on feature maps at this level.

After obtaining the latent representations of the filtered

images including no external style information, we feed

them to both the decoder part of IFRNet and an auxiliary

classifier for filter type. The decoder contains a number of

consecutive upsampling and residual convolutional blocks,

and it generates the unfiltered version of the input image

with the help of adversarial training. Moreover, the aux-

iliary classifier is a simple feed-forward network that pro-

duces the predicted filter type. At this point, we design two

discriminator models (i.e. PatchGAN) which separately pe-

nalize the global image and the local structures at the scale

of patches, and follow the adversarial training strategy in

[14]. Overall architecture of IFRNet is shown in Figure 3.

The objective function for IFRNet is composed of three

main components, which are texture consistency loss, se-

mantic consistency loss, adversarial loss extended with aux-

iliary classification loss. Texture consistency loss computes

the sum of the patch-wise relative difference between the

feature maps of the input and the target (i.e. ID-MRF loss)

[24, 25], and leads to enhance the details in the generated

images by minimizing the inconsistency between the input

patch and the most similar target patch. Secondly, seman-

tic consistency loss [16] ensures the input and target images

have similar feature representations at different scales by

minimizing Euclidean distance between them (see Eq. 4).

Lsem =

P−1
∑

p=0

1

CiHiWi

‖Φp
i (Iout)− Φp

i (Igt)‖
2

2
(4)

where Φp(·) is the feature map of pth layer of pre-trained

VGG16 network [31] with the shape of Ci × Hi × Wi,

Iout is the output of IFRNet and Igt is the input image. At

this point, we use only relu3 2 layer of VGG16 for this

loss with the intent of controlling over the computational

complexity of training. Morover, IFRNet contains an auxil-

iary classifier that receives the latent representations of the

filtered images as the input, and predicts their filter types.

These predictions provide the extra information to the dis-

criminators about the input images, and thus it makes train-

ing of discriminators more stabilized. Note that employ-

ing an auxiliary classifier does not improve the performance

significantly. The general formula of our adversarial train-

ing can be seen in Equation 5.

Ladv = Lglo + Lloc + λgpLgp + λclsLcls (5)

where Lglo and Lloc represent the objective functions for

global and local discriminators, respectively. Lgp is the gra-

dient penalty whose weight λgp is set to 10, and Lcls is the



Filtered Original IFRNet (ours) PE [1] pix2pix [14] CycleGAN [38] AngularGAN [30]

Figure 4: Comparison of the qualitative results of Instagram filter removal on IFFI dataset. Filters applied (top to bottom):

Sutro, Willow, Nashville, Amaro, Lo-Fi, Toaster.

classification loss whose weight λcls is set to 0.5. Finally,

our objective function for IFRNet can be represented as fol-

lows:

L = λtexLtex + λsemLsem + λadvLadv (6)

3.3. Experimental Setup

In our study, we used our dataset, namely IFFI dataset,

which contains 500 training and 100 test images combined

with the set of their filtered versions with 16 different In-

stagram filters. We trained IFRNet with the resized images

(i.e. 256 × 256) for 120,000 steps with the batch size of 8.

We only applied horizontal flipping to the images, no other

data augmentation technique is applied. We used Adam op-

timizer [18] with β1 = 0.5 and β2 = 0.9 for both gen-

erator and discriminator networks. The learning rate for

generator network is 2 × 10−4, and 10−3 for discrimina-

tor networks, and we did not change it during training. The

weights of the main components of our objective function

can be seen as follows: λtex = 10−3, λsem = 10−4 and

λadv = 10−3. The implementation of IFRNet is done on

PyTorch [26]. The experiments have been conducted on

2x NVIDIA RTX 2080Ti GPUs, and a single run takes ap-

proximately 2 days to be completed. The source code can

be found at https://github.com/birdortyedi/

instagram-filter-removal-pytorch.



4. Results

In this study, we compare the performance of IFRNet

against a recent approach using CNNs for removing In-

stagram filters [1], and also well-known paired/unpaired

image-to-image translation studies including pix2pix [14],

CycleGAN [38] and AngularGAN [30]. For all these dif-

ferent methods, we have conducted several experiments on

IFFI dataset with their default training settings.

4.1. Qualitative Comparison

As shown in Figure 4, our proposed IFRNet achieves su-

perior performance on Instagram filter removal when com-

pared to the other methods. IFRNet can remove the visual

effects injected to the images by filters at a large scale, while

the other methods produce the outputs with significant dif-

ferences from their original versions (i.e. inconsistent back-

ground or foreground colors, some artifacts on the corners

and the residuals of the filters). Therefore, we demonstrate

that the external style information can be swept away from

the images by normalizing the feature maps at each level in

the encoder.

It is important to remark that some filters (e.g. Toaster,

Sutro, Willow, Brannan) apply several different transforma-

tions to the images, which may substantially alter the im-

portant details in the images. For example, Toaster adds

vignette and burning effects to the image (see the last row

in Figure 4), or Willow directly attacks to the color infor-

mation, and transform the image into a purplish gray-like

image (see the second row in Figure 4). Although the com-

pared methods struggle to recover the images filtered by

such challenging filters, IFRNet is able to remove these fil-

ters within a certain extent. Note that IFRNet does not have

an objective function specialized to colorize the images, as

in [36, 34], hence it cannot recover the images filtered by

Willow as well as the other filters. More examples recov-

ered by IFRNet are shown in Figure 7.

4.2. Quantitative Analysis

We have employed four common image similarity met-

rics in our experiments to evaluate the quantitative perfor-

mance of IFRNet, they can be specified as SSIM, PSNR,

Learned Perceptual Image Patch Similarity (LPIPS) [35]

and CIE 2000 Color Difference (CIE-∆E) [23].

Table 1 summarizes the performances of our proposed

model and the other compared methods trained on IFFI

dataset. Our proposed model outperforms the other com-

pared methods on all common metrics. Particularly, the

previous filter removal approach using CNNs [1] has lim-

ited performance, especially on the metrics prioritizing to

measure the structural and perceptual similarity between

the images (i.e. SSIM and LPIPS), since it does not take

any advantage of adversarial training. CycleGAN [38] suf-

fers from its inherent design, which is suitable for unpaired

Method SSIM ↑ PSNR ↑ LPIPS ↓ CIE-∆E ↓

PE [1] 0.748 23.41 0.069 39.55

pix2pix [14] 0.825 26.35 0.048 30.32

CycleGAN [38] 0.819 22.94 0.065 36.59

AngularGAN [30] 0.846 26.30 0.048 31.11

IFRNet (ours) 0.864 30.46 0.025 20.72

Table 1: Quantitative performance of our proposed model

and other compared methods on IFFI dataset.

many-to-many image translation tasks. Although this ap-

proach shows outstanding performance on numerous appli-

cations in different domains, it falls behind our approach,

and also AngularGAN [30] (its following study special-

ized for color constancy) and even pix2pix [14] (its primary

study proposing a general solution for the image-to-image

translation tasks). This intrinsically indicates that the ap-

proach learning to translate the input image to the target do-

main with the help of cycle consistency loss may not work

as well as the other methods in the case of the existence of

the paired images for many-to-one translation tasks. Note

that we have used the official implementations of the com-

pared studies with their default hyper-parameter settings.

4.3. Filter Classification

In addition to removing Instagram filters from the im-

ages, we also demonstrate the performance of the auxiliary

classifier of IFRNet on the same experimental setup. As

we discuss in Section 3.2, IFRNet has an auxiliary classi-

fier that provides the extra information from the images to

the discriminators to stabilize the adversarial training. This

branch basically gives an output for the filter types of the

images.

IFRNet achieves 87.5% overall classification accuracy

on IFFI dataset. Considering classifying each filter as a sep-

arate task, we have measured the classification performance

of IFRNet on each filter in order to evaluate how hard to dif-

Figure 5: Confusion matrix for the number of the correct

predictions of auxiliary classifier of IFRNet for each filter

on IFFI dataset.



ferentiate these filters. As shown in Figure 5, our proposed

model does not perform the same for all filters, and gives

better results for the filters containing different remarkable

transformations (e.g. Sutro, Willow and Toaster). As afore-

mentioned in Section 4.1, these particular filters dramati-

cally change the visual details in the images, and thus it

makes the process of classification of these filters less com-

plicated. On the contrary, IFRNet gets more confused on

differentiating more perceptibly similar filters, like Amaro-

Valencia, He-Fe-Lo-Fi and Clarendon-Original. Therefore,

we can say that the filters containing several different trans-

formations are more likely to be classified correctly, but it

is harder to remove them from the images.

4.4. Dominant Color Estimation Analysis

Considering the practical applications of Instagram filter

removal for visual understanding tasks, we analyze the per-

formance of a simple dominant color estimation algorithm

on recovered images by IFRNet and the other methods. The

algorithm applies K-Means Clustering to the color space of

the images, and finds N cluster centers (i.e. the dominant

colors). For our proposed model and the other methods, we

compare CIE 2000 Color Difference (CIE-∆E) [23] of all

dominant colors extracted by this algorithm.

Example results of dominant color estimation algorithm

on unfiltered images are shown in Figure 6. Supporting the

quantitative analysis in Section 4.2, our proposed model has

the ability to recover the color information better than other

compared methods, even if it does not contain any special

strategy for this information. Note that IFRNet does not

directly model the color conversion mapping, but learns the

injected style information. Moreover, to compare the other

methods, the images unfiltered by the previous study using

CNNs by exploiting the polynomial expansion [1] and An-

gularGAN [30] have closer and consistent dominant color

predictions than the ones unfiltered by the prominent image-

to-image translation methods [14, 38], since [1, 30] contain

different modules to specialize to gather color information.

5. Conclusion

In this study, we introduce IFRNet, an encoder-decoder

structure applying adaptive feature normalization to all lev-

els in the encoder to remove the external visual effects in-

jected by filters. Experiments on Instagram filter removal

task verify that IFRNet eliminates the external visual effects

to a great extent. The main idea behind IFRNet is to con-

sider the external visual effects as the style information, and

we show that it is possible to remove them by normalizing

the style of all feature maps, similar to the approach in style

transfer studies. By extending the scope of the dataset for all

available Instagram filters, this method could be employed

for pre-processing the social media images before feeding

them into a vision framework to enhance its performance.

Valencia

Original

Sutro

IFRNet (ours)

PE [1]

pix2pix [14]

CycleGAN [38]

AngularGAN [30]

Toaster

Figure 6: Example results of dominant color estimation on

the images unfiltered by the compared methods. The bar

on the right side of the images represents the weights of

5 dominant colors extracted by K-Means Clustering, and

color distances (CIE 2000 [23]) to its corresponding color

in the original image are shown on each color of this bar.



Figure 7: More examples from the results of IFRNet on IFFI dataset. Rows: (Odd) Filtered images, (Even) Original images at

the first column, the rest represents the recovered versions of corresponding filtered images. The filters applied (left to right)

for the first image: Brannan, Lo-Fi, Perpetua, Nashville, Sutro, Valencia, for the second image: Brannan, 1977, Clarendon,

Valencia, Gingham, He-Fe, for third image: Clarendon, Valencia, Brannan, Willow, Lo-Fi, Nashville, for fourth image:

He-Fe, Brannan, Toaster, Lo-Fi, Nashville, Perpetua.
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