This CVPR 2021 workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Wide Receptive Field and Channel Attention Network for JPEG Compressed
Image Deblurring

Donghyeon Lee”, Chulhee Lee’
Samsung Electronics
Hwaseong, Korea

donghyeonl223@gmail.com,
bbfreezer@gmail.com

Abstract

A motion blurred image stored in the joint photographic
experts group (JPEG) image compression format contains
both motion blur and JPEG artifacts. Therefore, it is very
difficult to restore the original image from a blurred and
JPEG-compressed image. To address this problem, this
paper proposes two methods: a wide receptive field and
channel attention network (WRCAN), and JPEG auto-
encoder loss. First, the WRCAN utilizes a large receptive
field and considers the interdependencies among channels
of a feature map. Second, the proposed JPEG auto-encoder
loss enables the WRCAN to learn prior knowledge of JPEG
compression artifacts such that the proposed WRCAN can
effectively restore the original image from JPEG-
compressed images. The proposed methods are evaluated
on the JPEG-compressed REDS dataset by participating in
the NTIRE 2021 workshop challenges on Image Deblurring
Track 2 JPEG artifacts. The WRCAN trained with the
proposed loss ranked third with an output of 29.60dB on
the REDS test set, indicating that the proposed methods
provide state-of-the-art results. The source codes, model,
and data are available at
https://github.com/dhyeonlee/WRCAN-PyTorch.

1. Introduction

The target of single image deblurring is to reconstruct an
image that contains detailed information of the original
image from a blurred image. On the other hand, the joint
photographic experts group (JPEG) image restoration aims
to remove visual artifacts from a JPEG compressed image.
These two problems are often combined in many cases
because photographs captured with a camera are typically
stored in JPEG format to reduce network traffic and storage.
The JPEG compression algorithm partitions an image into
8% 8 non-overlapping blocks and performs a discrete cosine
transform (DCT) for each block, where each transformed
coefficient is quantized to be effectively compressed via
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entropy coding. Hence, many high-frequency components
in the image are lost by quantization, thereby resulting in
ringing artifacts. In addition, pixel discontinuities, often
referred to as blocking artifacts, occur at boundaries of the
8 X 8 pixel blocks because the transformation and
quantization are performed on 8x8 pixel non-overlapping
blocks. As a result, the image blurred and stored in JPEG
format contains motion blurs and JPEG compression
artifacts. Therefore, it is difficult to restore the original
image from a blurred and JPEG-compressed image.

Recent studies regarding JPEG image restoration and
deblurring are based on the convolutional neural network
(CNN) owing to their superior performance. Previous
studies in [1, 2, 3] demonstrate that the wide receptive field
of CNN s result in better image restoration and deblurring
because more information can be utilized by referring to
larger image areas. However, these approaches do not focus
on important channels in the feature maps. In other studies,
the channel attention mechanism is employed to emphasize
the informative channel of an input feature map [4, 5, 6].
The channel attention mechanism enables a deep learning
model to focus on important features to improve
performance. However, in the abovementioned studies, a
large receptive field size is not considered when
emphasizing the important channels of a feature map in a
single basic block. For JPEG image restoration, prior
knowledge pertaining to JPEG compression is used in
recent neural network architectures, which comprises both
pixel and DCT domains to account for the characteristics of
the DCT in JPEG format [7, 8]. However, image deblurring
cannot be integrated directly in these studies, because the
general image deblurring framework differs from the JPEG
image restoration framework.

In this paper, a new CNN architecture for JPEG
compressed image deblurring is proposed. In addition, a
new loss function for JPEG artifact reduction is proposed.
The contributions of this study are as follows.

® This paper proposes the wide receptive field and
channel attention network (WRCAN). The basic block
of the WRCAN enables both a large local receptive



field and a channel attention mechanism to be utilized.

® JPEG auto-encoder loss (Lgg_jppg) is proposed to
enable the WRCAN effectively to learn the prior
knowledge of JPEG compression artifacts without
modifying the network. Hence, the WRCAN need not
perform any additional computation for JPEG artifact
reduction at the inference time.

® This study demonstrates that the WRCAN combined
with the proposed JPEG auto-encoder loss can
effectively solve the JPEG-compressed deblurring
problem.

The proposed methods are evaluated on the JPEG-
compressed REDS dataset by participating in the NTIRE
2021 workshop challenges on Image Deblurring Track 2
JPEG artifacts [9]. The evaluation results show that the
WRCAN and Lyg_;p  yield state-of-the-art results.

2. Related Works

2.1. Single Image Deblurring

Early studies pertaining to image deblurring focus on
estimating blur kernels, which are modeled as uniform or
non-uniform blurs. In studies focusing on uniform
deblurring [10,11,12,13,14,15], it is assumed that a blurred
image is convoluted with an unknown blur kernel, and the
problem is defined as an optimization problem, the purpose
of which is to accurately estimate the blur kernel. Fergus et
al. [10] assume a camera movement as a single blur kernel,
and the kernel is estimated using sparse gradients. Sun et al.
[11] estimate a blur kernel using edge patches learned from
training images. Michaeli ef al. [12] use internal patch
recurrence to estimate a blur kernel. Although these
methods are effective for natural image deblurring, they are
not effective for non-natural images or in low-light
conditions. Hence, domain-specific priors are used for
estimating a blur kernel such as deblurring low-light images
[13], text images [14], and face images [15]. However,
because these are domain-specific, their application scope
is limited. In general, image deblurring cannot be estimated
as a single blur kernel. Therefore, deblurring images based
on assuming the non-uniform blurring is investigated in [16,
17]. Kim et al. [16] propose a deblurring framework by
estimating a pixel-wise blur kernel and a latent image for
dynamic scene deblurring. Bahat et al. [17] estimate the
blur fields of an input image by analyzing the spectral
contents of blurry image patches and achieve performance
similar to those of CNN-based approaches.

Recent studies of image deblurring are based on CNNs
[3,5,18,19,20,21,22,24]. Nah et al. [ 18] propose a multi-
scale network architecture, in which deblurring is
performed in a coarse-to-fine manner. The CNN
architecture proposed by Tao et al. [19] uses images of
different scales and propagates the result of a lower-scale

network to a higher-scale network. Zhang et al. [20] present
a hierarchical CNN inspired by spatial pyramid matching,
in which deblurring is performed in fine-to-coarse grids.
Brehm et al. [3] propose a residual block with atrous
convolution, where the residual block contains four parallel
paths of atrous convolution with different local receptive
fields. Kaufman et al. [21] present analysis and synthesis
networks for image deblurring, where the former estimates
a two-dimensional blur kernel, and the latter creates a
deblurred image using the estimated kernel and an input
image. Qi et al. [5] propose a feature fusion block that
consists of a channel attention module and a pixel attention
module. Kupyn ef al. [22] apply an adversarial loss for
image deblurring, where a feature pyramid network is used
as a generator and a relativistic discriminator [23] is
adopted as a discriminator. Zhang et al. [24] present a
combination of two generative adversarial network (GAN)
models, i.e., the blur GAN and deblur GAN, where the
former learns image blurring by generating and
discriminating fake blur images, whereas the latter learns
image deblurring by creating fake sharp images from the
fake blur images.

2.2. JPEG artifact reduction

Early works for JPEG image restoration use deblocking
filters to reduce discontinuities between non-overlapped
8x8 pixel blocks [25, 26]. To reduce blocking artifacts in
JPEG-compressed images, Lee et al. [25] adaptively use
various block predictors based on the frequency component
in the DCT domain. Yoo et al. [26] classify blocks into flat
or edge blocks and apply different deblocking filters based
on the classification results. However, because JPEG-
compressed images contain not only blocking artifacts, but
also other artifacts such as ringing artifacts, the image
restoration performance of the deblocking filter is not good.

Meanwhile, data-driven learnings are investigated for
general image restoration [27, 28, 29]. First, dictionaries are
learned from training image data. Second, an uncompressed
image is reconstructed using the sparse representation of
the learned dictionaries. Choi et al. [27] train different
dictionaries based on the characteristics of the training
images, and optimal dictionaries are automatically selected
for JPEG artifact reduction. The method proposed by Rothe
et al. [28] learns linear regressors from training data and
regresses a test image to an artifact-free image by selecting
learned regressors at the nearest anchoring points. Liu et al.
[29] propose a dual-domain sparsity-based image
restoration, where dictionaries are learned jointly in the
DCT and pixel domains.

Extensive research has been conducted regarding JPEG
image restoration based on CNNs because they outperform
previous approaches [1, 2, 5, 7, 8, 30, 32, 33, 34]. Dong et
al. [30] introduce a CNN that is a modified version of the
super-resolution CNN for JPEG artifact reduction. Lie et al.



[1] wutilize a large receptive field with reduced
computational complexity by applying a wavelet transform
to the U-Net architecture. Fu et al. [2] propose deep
convolutional sparse coding architecture with atrous
convolution [31] to obtain a high-level receptive field. Tai
et al. [32] emphasize the importance of memorizing
previous features and increase the depth of a CNN using
dense connections. Zhang et al. [33] propose a residual
dense network for the more effective usage of hierarchical
features from an input image and utilize local features via
densely connected local layers. Zhang et al. [S] present a
residual non-local network which consists of residual local
and non-local attention blocks. Galteri et al. [34] propose a
fully convolutional residual network trained using a
generative adversarial framework. Meanwhile, prior
knowledge regarding JPEG compression is adopted for
CNNs [7, 8]. Wang et al. [7] propose a dual-domain model,
in which an input image is first processed in a DCT domain
followed by a pixel domain. Zhang et al. [8] use auto-
encoders in both the DCT and pixel domains, and the
outputs of auto-encoders and input images are considered
for artifact reduction.

3. Proposed WRCAN and JPEG auto-
encoder loss

This section describes the proposed WRCAN, which not
only utilizes a large receptive field, but also adaptively
weights each channel of the feature map. The proposed
JPEG auto-encoder loss function, which enables the model
to extract and learn the characteristics of a JPEG
compressed image, is described in this section as well.

3.1. Wide receptive field and channel attention
network (WRCAN)

Overall Architecture

The base architecture of the proposed WRCAN follows
that of the U-Net [35]. Therefore, the WRCAN utilizes a
significant number of parameters with a reduced number of
computations thanks to the pooling operation. Moreover,
the WRCAN can precisely localize the output image by
capturing the context of a high-resolution input image
through a skip-connection. Figure 1 shows the proposed
WRCAN. The WRCAN receives a blurred image (1) and
outputs a sharpened image (I5). Here, Conv(Ciy,, CoyerS =
1,d = 1) represents a convolution layer that receives a
feature map with C;;, channels and outputs a C,,,;-channel
feature map. The s and d denote the size of stride and
atrous rate [36] of the convolution layer, respectively. The
s and d values are 1, unless explicitly specified. The
Encoder;(Ci,, Coyr) and Decoder;(Ciy, Cyyp) represent
the encoder and decoder layers, respectively, with C;,, input
channels and C,,; output channels, respectively. Here, [
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Figure 1. The proposed architecture of wide receptive field
and channel attention network. Here, @ represents element-
wise addition of two feature maps.

represents the encoding level of the input feature map,
which increases as a feature map passes an encoder block.
RG,(C;y,) represents the residual group (RG) block, where
n is its index. It is noteworthy that the RGs have the same
number of input and output feature map channels.

The WRCAN uses one convolution layer for the feature
extraction, i.e., Conv(3,64). Equation (1) expresses the
feature extraction operation.

fre = Conv(3,64) o IP €))

In Equation (1), o represents the operation between an
operand (IZ in Equation (1)) and an operator (Conv(3, 64)
in Equation (1)). Hereinafter, this is also used for other
operands and operators as well. Meanwhile, frz, which is
the feature extracted from I® , passes through two
consecutive encoder blocks.

Figure 2(a) shows the architecture of the encoder. The
encoder receives the input feature map fgyc (1) and outputs
two types of feature maps, i.e., feyc(I + 1) and frye (L +
1). Equations (2.1) and (2.2) show the operations of the
encoder. Hereinafter, the C;, and C,,,; are omitted from the
equations and are replaced with - for simplicity. The s in
the Conv(:) denotes the stride size of the convolution layer,
and ReLU represents a rectified linear unit [37].

fenc(l+1) = ReLU o Conv(®) © fenc (1) (2.1)
fenci(L +1) = Conv(,s = 2) o frye (I + 1) 2.2)

In Equation (2.1), fzyc(l+ 1) is generated by the
convolution and nonlinear transformation of fry-(1). In
Equation (2.2), fgnci(l+ 1) is generated by a strided
convolution with fgye(l +1). fenc(L+ 1) and fye (L +
1) are passed to a decoder with the same encoding level and
the next encoder, respectively.

After frp passes two encoders, fryc(2) and feyci(2)
are generated. fgyc(2) is passed to Decoder; , and
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Figure 2. Detailed architecture of the wide receptive field and
channel attention network. (a) Encoder architecture; (b)
architecture of residual group composed of wide receptive
residual blocks with channel attention and convolution layer;
(c) decoder architecture.

fenci(2) is passed through a convolution layer. This
convolution layer expands the number of channels of
fenci(2) before feyci(2) enters the RGs. Equation (3)
shows the expansion operation.

fexp = Conv(®) o fenci(2) (3)

fexp enters several RGs, which is RG,, (), for nonlinear
transformations and the following convolution layer. In this
study, the proposed WRCAN consists of four RGs.
Equation (4) shows the operation of the RGs. In this
equation, fy,r is the nonlinear transformed feature map
from frxp, and + represents the pixel-wise addition of the
feature maps.

furr = fexp + Conv(:) e RG3()) o RG, () ° RGy () o
o RGo() © frxp

Figure 2(b) shows the architecture of a single RG, which
basically follows that of a RG in [6]. The proposed RG
consists of M number of the wide receptive residual blocks

with channel attention (WRCAs) and one convolution layer.

The WRCA is newly proposed in this paper and its detailed
architecture is discussed in the next section. Herein, the
input and the output feature maps of the RG are represented
as fre(n) and fre(n + 1), respectively. In the proposed
RG architecture, 16 WRCAs constitute one RG (M = 16).
After this nonlinear transformation, the fy;r passes through
two decoder blocks.

Figure 2(c) shows the architecture of the decoder, where
foec(l+ 1) is upscaled by two to match the spatial
resolution of fzyc(l + 1). One convolution layer and one

pixel shuffle layer [38] double the height and width of the
input feature map. The doubled fpg-(l+ 1), which is
foecr(l + 1), and feyc (I + 1) are concatenated and passed
to a convolution layer and a ReLU to generate fpgq(1).
Equations (5.1) and (5.2) show the operations for fpgcr (1)
and fpgc (D), respectively. Here, [-,-] in Equation (5.2)
represents the concatenation operation of the two feature
maps.

foect(D) = Pixelshuf fle(2) o Conv() ° fpgc(D) 5.1)
foec(l) = ReLU o Conv(-) 5.2)
o [fopct + 1), fgnc (L + 1] (5.

Through the operations of the two decoder blocks, the
residual feature 1y, i.e., fpgc(0), is generated. The
sharpened feature f; is generated by adding fgy to 15, and
the final output IS is generated from the fi through one
convolution layer.

Wide receptive residual block with channel attention
(WRCA)

This section discusses the proposed WRCA as a basic
block that composes the RG of the WRCAN. The purpose
of the WRCA is to enable the WRCAN to extract features
from a large receptive field and emphasize important
channels from the extracted features. A residual block with
parallel atrous convolution is known to be effective in
extracting features with various receptive fields [3]. It is
known that the channel attention mechanism can emphasize
important channels of a feature map [6]. In this paper, to
utilize the advantages of both architectures, a residual block
with parallel atrous convolution and the channel attention
mechanism are combined for the WRCA. Consequently, a
series of WRCAs in each RG can extract important features
in large image areas. In other words, the WRCAN utilizes
feature maps both within and across the feature map
channels. The detailed architecture of the WRCA is as
follows. Figure 3(a) shows the architecture of the proposed
WRCA. Here, fiyyrca(m) is the input feature map of the m-
th WRCA in each RG, and f.,(m) represents the input
feature map of the channel attention module in the m-th
WRCA. fra(m + 1) represents the output of the channel
attention module of the m-th WRCA. fygca(m + 1) is the
output of the m-th WRCA, which becomes the input feature
map of the m+1-th WRCA. Each WRCA extracts
features with a large receptive field through multiple rates
of atrous convolutions and then emphasizes the important
channels of the atrous convolutions’ outputs using the
channel attention module.

The WRCA adopts four parallel convolutions with
different atrous rates, i.e., 1, 2, 3, and 4, as used in [3].
However, the proposed method uses ReLU activation
instead of a leaky rectified linear unit (LeakyReLU) [39]
for atrous convolution layers to achieve fast convergence in
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Figure 3. Architecture of basic block of WRCAN. (a)
Architecture of wide receptive residual block with channel
attention; (b) architecture of channel attention module.

training. One convolution layer with no activation is added
after the concatenation of the four atrous convolutions. This
convolution layer is working as a local feature extraction
layer. The output of the local feature extraction layer,
fca(m), enters the channel attention module, as shown in
Figure 3(b). This channel attention module extracts the
weights of each channel via global average pooling,
channel squeezing, and expansion; subsequently, it
multiplies the extracted weights with the input feature map.
Equation (6) shows the output of the m -th WRCA,

fwrca(m + 1).
fwrca(m +1) = fiypca(m) + fea(m + 1) (6)

Table 1 shows an investigation into the WRCA
architecture. In this table, WR represents the wide receptive
field block with the atrous convolution layers, and CA
represents the channel attention mechanism. The Case 1 in
the table represents the residual block of [40]. For this
investigation, the number of RG is reduced to one, and 300
epochs are trained with L1 loss. PSNR and SSIM are
measured on REDS validation set. As shown in the Case 2
and Case 3, when only one of WR and CA is applied to the
residual block, PSNR is improved by 0.15dB and 0.11dB,
respectively. When both WR and CA are applied to the
residual block, which is the proposed WRCA, PSNR is
improved by 0.26dB as shown in Case 4. These
experiments show that the proposed WRCA is an effective
basic block.

The WRCA has an architecture similar to that of the
RCA-ASPP [41]. However, RCA-ASPP uses a 1 X1
convolution and a ReLU after the atrous convolutions to
fuse the channel-wise feature map information, whereas the

Case WR CA PSNR (dB) SSIM
1 x x 28.45 0.8030
2 v x 28.60 0.8061
3 x v 28.56 0.8057
4 v v 28.71 0.8089

Table 1. An investigation into the WRCA architecture. v and %
indicate that each method is applied and not applied,
respectively.

WRCA adopts a 3x3 convolution layer and no activation
after atrous convolutions to extract local features. In
addition, the purpose of RCA-ASPP is different from that
ofthe WRCAN in that it is used to resolve the misalignment
between depth maps and color guidance images.

3.2. Auto Encoder Loss for JPEG artifacts

This section discusses the proposed JPEG auto-encoder
loss, Lyg—_jp . To effectively reduce JPEG artifacts, the
WRCAN should be trained with an appropriate loss
function that represents the characteristics of JPEG-
compressed images. The proposed Lyg_jpg; utilizes a
JPEG-compressed ~ ground-truth  image, [/PE¢(HR)
which can be easily generated by compressing the ground-
truth image in JPEG format. Equation (7) shows the
proposed Lyg_jpgg, which uses the L2 norm for a stable
training. The magnitude of the gradient of the L1 norm is 1
except for zero loss; however, that of the L2 norm decreases
with Lyg_pge-

LAE—]PEG(IAE_]PEG'IHR) — |1AE—]PEG'IHR|2 (7)

Here, I"® represents the ground-truth image. I/PE¢(HR)
and [4E-JPEG  gre the input and output of the auto-encoder,
respectively. The gray region in Figure 1 represents the
auto-encoder for the proposed Ljg_;pgg . Therefore, the
auto-encoder of the proposed WRCAN is the rest part of the
WRCAN except the RGs and one following convolution
layer of the RGs. In addition, the auto-encoder includes skip
connections. Equation (8) shows the procedure for
obtaining the I4£~/7  from a /PE¢HR) In this equation,
skip connections are excluded for simplicity.

T4E=JPEG = Conv o Decoder, ° Decoder,

o Conv o Encoder; o Encoder,  (8)
o Cony o [JPEG(HR)

The auto-encoder loss [42] proposed by Kwak and Son,
is for image super-resolution, and its purpose is to model
generalization by inputting the same ground-truth images
into the encoder and decoder. By contrast, the proposed
Lg_jpEc is intended for training the WRCAN such that the
original image can be restored from a JPEG-compressed



image. Therefore, the encoders are trained to output
meaningful features by considering the JPEG compression
artifacts. The RGs and the decoders are trained to restore
the original image with the feature map provided by the
encoders. The proposed Lsg_jppg 1S a computationally
efficient method for improving the performance of the
WRCAN without increasing its size.

4. Experimental Results

4.1. Dataset and Evaluation method

The REDS dataset [43], which is the dataset for the
NTIRE 2021 Image Deblurring Challenge Track 2. JPEG
Artifacts [9], is used for training and validating of the
proposed network. The training set of the dataset is
composed of 240 image sequences. The validation and test
set consist of 30 sequences of images, respectively. Each
sequence of the training, validation, and test datasets
consists of 100 ground-truth images (I#®) and 100 blurred
images (I®) compressed in JPEG format using a quality
factor of 25. To evaluate the proposed network, PSNR and
SSIM between the restored image IS and the I"F are
measured on RGB channels.

4.2. Training Details

Various types of data augmentations are applied to train
the WRCAN. The training data are augmented with random
horizontal flips and rotations. The RGB channels of IZ and
IR are randomly permuted with a probability of 0.5. In
addition, Gaussian random noise with a standard deviation
of 2 is applied with a probability of 0.5. After these
augmentations, the pixel values of the training images are
normalized to the range of [0, 1]. The batch size is set to 16.
The WRCAN is trained 400 epochs with a patch size of
256256 or is trained 375 epochs with a patch size of
320 X 320. During the training, one patch is randomly
fetched from each image. Hence, one epoch contains
24,000 pairs of patches. The Adam optimizer [44] is used
for training the proposed model. The initial learning rate is
set to 1 X 10™*, and the learning rate is halved at 100, 200,
250, 300, and 350 epochs during the training. The weight
decay parameter is set to 10™° when Lyg_;p  is applied.

Equation (9) shows the loss function for training the
proposed network, where both the L1 loss and Lyg_;pgg are
used.

L(IS IAE—]PEG IHR)
= Ao L1(S, IHR) + 2, 9)
“Lag—jpgg (IAE~TPECG, [HR)
In this study, 4, and A, are setto 1 and 0.1, respectively.
To calculate Lyg—jpgg, I/PE¢HR) is generated by a JPEG

Method PSNR (dB) SSIM
LR 2491 0.7963
WRN with L1 28.90 0.8131
WRCAN with L1 28.93 0.8138
WRCAN with L1 + Lag_pgc 28.99 0.8154
WRCAN with L1 * 29.06 0.8160
WRCAN with L1 + Lyg_;pg¢ * 29.12 0.8175
WRCAN with L1 + Lyg_jpgc * 29.20 0.8192
patch = 320

Table 2. Average PSNR (dB) and SSIM on REDS validation set.
The L1 loss and Lyg_jpgg represent the loss functions used for
training WRCAN. Here, * indicates self-ensemble (x8). The 320
in the last row represents the training patch size is 320x320.

compression of the IR with a quality factor of 25. After the
training process, the model with the highest PSNR on the
sequence 000 in the validation set is selected as the
parameter of the WRCAN. The proposed WRCAN is
implemented using PyTorch [38, 45] and trained using four
NVIDIA RTX 2080Ti GPUs. For the training of the
WRCAN, 9 days and 12 days are required when the
network is trained with L1 loss and L1 + Lyg_;pgg losses,
respectively. The number of parameters of the WRCAN is
156,974,339 including bias.

4.3. Evaluation of WRCAN

Quantitative and Qualitative Evaluations

Table 2 shows the average PSNR and SSIM values of the
proposed network on the REDS validation set. In the third
row of this table, the average PSNR value of the WRCAN
without the channel attention mechanism, which is named
as wide receptive field network (WRN), is shown.
Compared with the WRCAN in the fourth row, the channel
attention mechanism enables the network to achieve a
PSNR that is higher 0.03dB. In addition, the WRCAN
trained with the L1 loss and the proposed Lug_;pgq
achieves a higher average PSNR than the model trained
with only the L1 loss by 0.06dB. This shows that Lyg_jp
enables the WRCAN to further improve the performance of
the WRCAN for deblurring the JPEG-compressed image
without additional computations at the inference time.
Compared with the single model, the self-ensemble method
[38] improves the PSNR by 0.13dB. Seven augmented
input images are generated from the IZ via flipping and
rotation. Eight input images, one I®, and seven augmented
images are input to the WRCAN. The eight output images
are aligned to I and averaged pixel-wise. As shown in the
last row in Table 2, the WRCAN trained with a patch size
of 320x320 results in an output that is 0.08dB higher than
that of the WRCAN trained with a patch size of 256X256
on validation images of the REDS dataset. This result
shows that a larger-sized training patch improves the
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Figure 4. Examples of input, results, and ground truth sharp images from the REDS validation set. (a) Blurred input images; (b)
Results of WRCAN with L1 loss; (¢) Results of WRCAN with L1 and JPEG auto-encoder losses; (d) Ground truth images.

performance of the WRCAN.
The qualitative evaluation shows the effect of Lyg_;pgq

more clearly. Figure 4 shows a comparison of the result
images of the WRCAN with the input and ground-truth

images. A self-ensemble is applied to the WRCAN’s results.

In Figure 4, the “003” and “00000060” represents the
names of the sequence and frames, respectively, in
003/00000060. In the case of the result of 003/00000060,
the WRCAN trained with Lyg_;pg recovers the clothes

and the camera strap, but the network trained with L1 loss
doesn’t. In addition, the stripe in image 026/00000054 is
well recovered by the WRCAN trained with Lyp_pgg, but
the same position in the result of the WRCAN trained with
the L1 loss is blurred. The other images indicate the same
tendency. In the case of 004/00000093, the proposed
WRCAN trained with Lyg_;pg; is found to best recover
details such as characters, and window frames the most
effectively. In addition, in 010/00000098, the trees and



Image Deblurring Track 2. JPEG

Team artifacts

PSNRT | SSIMT | LPIPS! | Rank
The Fat, The Thin

and The Strong 29.70 | 0.8403 | 0.2319 1
Noah CVlab 29.62 | 0.8397 | 0.2304 2
CAPP_OB (Ours) 29.60 | 0.8398 | 0.2302 3
Baidu 29.59 | 0.8381 | 0.2340 4
SRC-B 29.56 | 0.8385 | 0.2322 5
Mier 29.34 | 0.8355 | 0.2546 6
VIDAR 29.33 | 0.8565 | 0.2222 7
DuLang 29.17 | 0.8325 | 0.2411 8
TeamlInception 29.11 0.8292 | 0.2449 9
Giantpandacv 29.07 | 0.8286 | 0.2499 10
Maradona 28.96 | 0.8264 | 0.2506 11
LAB FHD 28.92 | 0.8259 | 0.2424 12
SYJ 28.81 | 0.8222 | 0.2546 13
Dseny 28.26 | 0.8081 | 0.2603 14
IPCV IITM 2791 | 0.8028 | 0.2947 15
DMLAB 27.84 | 0.8013 | 0.2934 16
Blur Attack 2741 | 0.7887 | 0.3124 17

Table 3. Comparison of the methods on REDS test set blurred
and JPEG compressed. CAPP_OP represents the result of
WRCAN. Here, T indicates the higher value is the better result
and | means the lower value is the better result.

window frame of the boat are clearly recovered by the
WRCAN trained with Lyg_jp . Based on the quantitative
and qualitative evaluations, the proposed Lug_;pge
improves the performance of the WRCAN by enhancing the
ability to restore the original image from a JPEG-
compressed image without additional computations at the
inference time.

Experimental Results on NTIRE 2021 Challenge

Table 3 shows the results of NTIRE 2021 Image
Deblurring Challenge Track 2. JPEG artifacts [9], where the
WRCAN is trained with a patch size of 320x320 and 375
epochs. The rank is determined based on the PSNR. The
SSIM and LPIPS, which is learned perceptual image patch
similarity [46], are considered when the difference in the
PSNR is not significant.

The result of the WRCAN trained with the proposed loss
function is shown as CAPP_OB. The proposed method
ranked third. In terms of PSNR, the teams ranked from
second to fourth are similar. However, the SSIM result of
the WRCAN is the second highest, and it also has a
significant margin compared with the team ranked in the
fourth. In addition, the WRCAN demonstrates the second-
best result in terms of the LPIPS. These results show that
the WRCAN provides state-of-the-art performances in the
field of deblurring images compressed by JPEG.

5. Conclusion

A state-of-the-art CNN architecture for JPEG image
deblurring is proposed herein. The proposed WRCAN has
a large receptive field and emphasizes the importance of
feature map channels. For a large receptive field, the
residual atrous convolution layer constitutes the basic block.
In addition, the channel attention mechanism adaptively
weights the highly informative channels of the feature map
after the parallel atrous convolution layers. Hence, the
proposed WRCAN can capture and utilize meaningful
features from the input image. In addition to the WRCAN,
Lyg_jp is proposed. Lyg_jpg; enables the JPEG artifacts
to be aware of the original image restoration function of the
auto-encoder. This paper shows that adopting Lyg_pgg is
an effective method to train the WRCAN for deblurring of
JPEG-compressed images. Experimental results show that
the proposed network and loss function results in an output
0f 29.60dB on the REDS test set and ranked third on Image
Deblurring Track 2 of the NTIRE 2021 Challenges. This
indicates that the proposed methods provide state-of-the-art
results and are effective for deblurring images compressed
by JPEG.
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