
 

 

 
Abstract1 

 
A motion blurred image stored in the joint photographic 

experts group (JPEG) image compression format contains 
both motion blur and JPEG artifacts. Therefore, it is very 
difficult to restore the original image from a blurred and 
JPEG-compressed image. To address this problem, this 
paper proposes two methods: a wide receptive field and 
channel attention network (WRCAN), and JPEG auto-
encoder loss. First, the WRCAN utilizes a large receptive 
field and considers the interdependencies among channels 
of a feature map. Second, the proposed JPEG auto-encoder 
loss enables the WRCAN to learn prior knowledge of JPEG 
compression artifacts such that the proposed WRCAN can 
effectively restore the original image from JPEG-
compressed images. The proposed methods are evaluated 
on the JPEG-compressed REDS dataset by participating in 
the NTIRE 2021 workshop challenges on Image Deblurring 
Track 2 JPEG artifacts. The WRCAN trained with the 
proposed loss ranked third with an output of 29.60dB on 
the REDS test set, indicating that the proposed methods 
provide state-of-the-art results. The source codes, model, 
and data are available at 
https://github.com/dhyeonlee/WRCAN-PyTorch. 
 

1. Introduction  

The target of single image deblurring is to reconstruct an 
image that contains detailed information of the original 
image from a blurred image. On the other hand, the joint 
photographic experts group (JPEG) image restoration aims 
to remove visual artifacts from a JPEG compressed image. 
These two problems are often combined in many cases 
because photographs captured with a camera are typically 
stored in JPEG format to reduce network traffic and storage. 
The JPEG compression algorithm partitions an image into 
8×8 non-overlapping blocks and performs a discrete cosine 
transform (DCT) for each block, where each transformed 
coefficient is quantized to be effectively compressed via 
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entropy coding. Hence, many high-frequency components 
in the image are lost by quantization, thereby resulting in 
ringing artifacts. In addition, pixel discontinuities, often 
referred to as blocking artifacts, occur at boundaries of the 
8 × 8 pixel blocks because the transformation and 
quantization are performed on 8×8 pixel non-overlapping 
blocks. As a result, the image blurred and stored in JPEG 
format contains motion blurs and JPEG compression 
artifacts. Therefore, it is difficult to restore the original 
image from a blurred and JPEG-compressed image. 

Recent studies regarding JPEG image restoration and 
deblurring are based on the convolutional neural network 
(CNN) owing to their superior performance. Previous 
studies in [1, 2, 3] demonstrate that the wide receptive field 
of CNNs result in better image restoration and deblurring 
because more information can be utilized by referring to 
larger image areas. However, these approaches do not focus 
on important channels in the feature maps. In other studies, 
the channel attention mechanism is employed to emphasize 
the informative channel of an input feature map [4, 5, 6]. 
The channel attention mechanism enables a deep learning 
model to focus on important features to improve 
performance. However, in the abovementioned studies, a 
large receptive field size is not considered when 
emphasizing the important channels of a feature map in a 
single basic block. For JPEG image restoration, prior 
knowledge pertaining to JPEG compression is used in 
recent neural network architectures, which comprises both 
pixel and DCT domains to account for the characteristics of 
the DCT in JPEG format [7, 8]. However, image deblurring 
cannot be integrated directly in these studies, because the 
general image deblurring framework differs from the JPEG 
image restoration framework. 

In this paper, a new CNN architecture for JPEG 
compressed image deblurring is proposed. In addition, a 
new loss function for JPEG artifact reduction is proposed. 
The contributions of this study are as follows. 

 This paper proposes the wide receptive field and 
channel attention network (WRCAN). The basic block 
of the WRCAN enables both a large local receptive 
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field and a channel attention mechanism to be utilized.  
 JPEG auto-encoder loss ( 𝐿஺ாି௃௉ாீ ) is proposed to 

enable the WRCAN effectively to learn the prior 
knowledge of JPEG compression artifacts without 
modifying the network. Hence, the WRCAN need not 
perform any additional computation for JPEG artifact 
reduction at the inference time. 

 This study demonstrates that the WRCAN combined 
with the proposed JPEG auto-encoder loss can 
effectively solve the JPEG-compressed deblurring 
problem.  

The proposed methods are evaluated on the JPEG-
compressed REDS dataset by participating in the NTIRE 
2021 workshop challenges on Image Deblurring Track 2 
JPEG artifacts [9]. The evaluation results show that the 
WRCAN and 𝐿஺ாି௃௉  yield state-of-the-art results. 

2. Related Works 

2.1. Single Image Deblurring 

Early studies pertaining to image deblurring focus on 
estimating blur kernels, which are modeled as uniform or 
non-uniform blurs. In studies focusing on uniform 
deblurring [10,11,12,13,14,15], it is assumed that a blurred 
image is convoluted with an unknown blur kernel, and the 
problem is defined as an optimization problem, the purpose 
of which is to accurately estimate the blur kernel. Fergus et 
al. [10] assume a camera movement as a single blur kernel, 
and the kernel is estimated using sparse gradients. Sun et al. 
[11] estimate a blur kernel using edge patches learned from 
training images. Michaeli et al. [12] use internal patch 
recurrence to estimate a blur kernel. Although these 
methods are effective for natural image deblurring, they are 
not effective for non-natural images or in low-light 
conditions. Hence, domain-specific priors are used for 
estimating a blur kernel such as deblurring low-light images 
[13], text images [14], and face images [15]. However, 
because these are domain-specific, their application scope 
is limited. In general, image deblurring cannot be estimated 
as a single blur kernel. Therefore, deblurring images based 
on assuming the non-uniform blurring is investigated in [16, 
17]. Kim et al. [16] propose a deblurring framework by 
estimating a pixel-wise blur kernel and a latent image for 
dynamic scene deblurring. Bahat et al. [17] estimate the 
blur fields of an input image by analyzing the spectral 
contents of blurry image patches and achieve performance 
similar to those of CNN-based approaches.  

Recent studies of image deblurring are based on CNNs 
[3, 5, 18, 19, 20, 21, 22, 24]. Nah et al. [18] propose a multi-
scale network architecture, in which deblurring is 
performed in a coarse-to-fine manner. The CNN 
architecture proposed by Tao et al. [19] uses images of 
different scales and propagates the result of a lower-scale 

network to a higher-scale network. Zhang et al. [20] present 
a hierarchical CNN inspired by spatial pyramid matching, 
in which deblurring is performed in fine-to-coarse grids. 
Brehm et al. [3] propose a residual block with atrous 
convolution, where the residual block contains four parallel 
paths of atrous convolution with different local receptive 
fields. Kaufman et al. [21] present analysis and synthesis 
networks for image deblurring, where the former estimates 
a two-dimensional blur kernel, and the latter creates a 
deblurred image using the estimated kernel and an input 
image. Qi et al. [5] propose a feature fusion block that 
consists of a channel attention module and a pixel attention 
module. Kupyn et al. [22]  apply an adversarial loss for 
image deblurring, where a feature pyramid network is used 
as a generator and a relativistic discriminator [23] is 
adopted as a discriminator. Zhang et al. [24] present a 
combination of two generative adversarial network (GAN) 
models, i.e., the blur GAN and deblur GAN, where the 
former learns image blurring by generating and 
discriminating fake blur images, whereas the latter learns 
image deblurring by creating fake sharp images from the 
fake blur images. 

2.2. JPEG artifact reduction 

Early works for JPEG image restoration use deblocking 
filters to reduce discontinuities between non-overlapped 
8×8 pixel blocks [25, 26]. To reduce blocking artifacts in 
JPEG-compressed images, Lee et al. [25] adaptively use 
various block predictors based on the frequency component 
in the DCT domain. Yoo et al. [26] classify blocks into flat 
or edge blocks and apply different deblocking filters based 
on the classification results. However, because JPEG-
compressed images contain not only blocking artifacts, but 
also other artifacts such as ringing artifacts, the image 
restoration performance of the deblocking filter is not good.  

Meanwhile, data-driven learnings are investigated for 
general image restoration [27, 28, 29]. First, dictionaries are 
learned from training image data. Second, an uncompressed 
image is reconstructed using the sparse representation of 
the learned dictionaries. Choi et al. [27] train different 
dictionaries based on the characteristics of the training 
images, and optimal dictionaries are automatically selected 
for JPEG artifact reduction. The method proposed by Rothe 
et al. [28] learns linear regressors from training data and 
regresses a test image to an artifact-free image by selecting 
learned regressors at the nearest anchoring points.  Liu et al. 
[29] propose a dual-domain sparsity-based image 
restoration, where dictionaries are learned jointly in the 
DCT and pixel domains. 

Extensive research has been conducted regarding JPEG 
image restoration based on CNNs because they outperform 
previous approaches [1, 2, 5, 7, 8, 30, 32, 33, 34]. Dong et 
al. [30] introduce a CNN that is a modified version of the 
super-resolution CNN for JPEG artifact reduction. Lie et al. 



 

 

[1] utilize a large receptive field with reduced 
computational complexity by applying a wavelet transform 
to the U-Net architecture. Fu et al. [2] propose deep 
convolutional sparse coding architecture with atrous 
convolution [31] to obtain a high-level receptive field. Tai 
et al. [32] emphasize the importance of memorizing 
previous features and increase the depth of a CNN using 
dense connections. Zhang et al. [33] propose a residual 
dense network for the more effective usage of hierarchical 
features from an input image and utilize local features via 
densely connected local layers. Zhang et al. [5] present a 
residual non-local network which consists of residual local 
and non-local attention blocks. Galteri et al. [34] propose a 
fully convolutional residual network trained using a 
generative adversarial framework. Meanwhile, prior 
knowledge regarding JPEG compression is adopted for 
CNNs [7, 8]. Wang et al. [7] propose a dual-domain model, 
in which an input image is first processed in a DCT domain 
followed by a pixel domain. Zhang et al. [8] use auto-
encoders in both the DCT and pixel domains, and the 
outputs of auto-encoders and input images are considered 
for artifact reduction.  

3. Proposed WRCAN and JPEG auto-
encoder loss 

This section describes the proposed WRCAN, which not 
only utilizes a large receptive field, but also adaptively 
weights each channel of the feature map. The proposed 
JPEG auto-encoder loss function, which enables the model 
to extract and learn the characteristics of a JPEG 
compressed image, is described in this section as well. 

3.1. Wide receptive field and channel attention 
network (WRCAN) 

Overall Architecture  

The base architecture of the proposed WRCAN follows 
that of the U-Net [35]. Therefore, the WRCAN utilizes a 
significant number of parameters with a reduced number of 
computations thanks to the pooling operation. Moreover, 
the WRCAN can precisely localize the output image by 
capturing the context of a high-resolution input image 
through a skip-connection. Figure 1 shows the proposed 
WRCAN. The WRCAN receives a blurred image (𝐼஻) and 
outputs a sharpened image (𝐼ௌ). Here, 𝐶𝑜𝑛𝑣(𝐶௜௡, 𝐶௢௨௧ , 𝑠 =1, 𝑑 = 1)  represents a convolution layer that receives a 
feature map with 𝐶௜௡ channels and outputs a 𝐶௢௨௧-channel 
feature map. The 𝑠  and 𝑑  denote the size of stride and 
atrous rate [36] of the convolution layer, respectively. The 𝑠  and 𝑑  values are 1, unless explicitly specified. The 𝐸𝑛𝑐𝑜𝑑𝑒𝑟௟(𝐶௜௡ , 𝐶௢௨௧)  and 𝐷𝑒𝑐𝑜𝑑𝑒𝑟௟(𝐶௜௡ , 𝐶௢௨௧)  represent 
the encoder and decoder layers, respectively, with 𝐶௜௡ input 
channels and 𝐶௢௨௧  output channels, respectively. Here, 𝑙 

represents the encoding level of the input feature map, 
which increases as a feature map passes an encoder block. 𝑅𝐺௡(𝐶௜௡) represents the residual group (RG) block, where 𝑛 is its index. It is noteworthy that the RGs have the same 
number of input and output feature map channels. 

The WRCAN uses one convolution layer for the feature 
extraction, i.e., 𝐶𝑜𝑛𝑣(3, 64). Equation (1) expresses the 
feature extraction operation. 

 𝑓ிா = 𝐶𝑜𝑛𝑣(3, 64) ∘ 𝐼஻ (1) 
 
In Equation (1), ∘ represents the operation between an 

operand (𝐼஻ in Equation (1)) and an operator (𝐶𝑜𝑛𝑣(3, 64) 
in Equation (1)). Hereinafter, this is also used for other 
operands and operators as well. Meanwhile, 𝑓ிா, which is 
the feature extracted from 𝐼஻ , passes through two 
consecutive encoder blocks. 

Figure 2(a) shows the architecture of the encoder. The 
encoder receives the input feature map 𝑓ாே஼(𝑙) and outputs 
two types of feature maps, i.e., 𝑓ாே஼(𝑙 + 1) and 𝑓ாே஼↓(𝑙 +1). Equations (2.1) and (2.2) show the operations of the 
encoder. Hereinafter, the 𝐶௜௡ and 𝐶௢௨௧ are omitted from the 
equations and are replaced with ∙ for simplicity. The 𝑠 in 
the 𝐶𝑜𝑛𝑣(∙)  denotes the stride size of the convolution layer, 
and ReLU represents a rectified linear unit [37]. 

 𝑓ாே஼(𝑙 + 1) = 𝑅𝑒𝐿𝑈 ∘ 𝐶𝑜𝑛𝑣(∙) ∘ 𝑓ாே஼(𝑙)  𝑓ாே஼↓(𝑙 + 1) = 𝐶𝑜𝑛𝑣(∙, 𝑠 = 2) ∘ 𝑓ாே஼(𝑙 + 1) 
(2.1) 
(2.2) 

 
In Equation (2.1), 𝑓ாே஼(𝑙 + 1)  is generated by the 

convolution and nonlinear transformation of 𝑓ாே஼(𝑙) . In 
Equation (2.2), 𝑓ாே஼↓(𝑙 + 1)  is generated by a strided 
convolution with 𝑓ாே஼(𝑙 + 1) . 𝑓ாே஼(𝑙 + 1)  and 𝑓ாே஼↓(𝑙 +1) are passed to a decoder with the same encoding level and 
the next encoder, respectively. 

After 𝑓ிா  passes two encoders, 𝑓ாே஼(2)  and 𝑓ாே஼↓(2) 
are generated. 𝑓ாே஼(2)  is passed to 𝐷𝑒𝑐𝑜𝑑𝑒𝑟ଵ , and 

 
Figure 1. The proposed architecture of wide receptive field 
and channel attention network. Here, ⊕ represents element-
wise addition of two feature maps.  



 

 

𝑓ாே஼↓(2)  is passed through a convolution layer. This 
convolution layer expands the number of channels of 𝑓ாே஼↓(2)  before 𝑓ாே஼↓(2)  enters the RGs. Equation (3) 
shows the expansion operation. 

 𝑓ா௑௉ = 𝐶𝑜𝑛𝑣(∙) ∘ 𝑓ாே஼↓(2) (3) 
 𝑓ா௑௉ enters several RGs, which is 𝑅𝐺௡(∙), for nonlinear 

transformations and the following convolution layer. In this 
study, the proposed WRCAN consists of four RGs. 
Equation (4) shows the operation of the RGs. In this 
equation, 𝑓ே௅்  is the nonlinear transformed feature map 
from 𝑓ா௑௉, and + represents the pixel-wise addition of the 
feature maps. 

 𝑓ே௅் = 𝑓ா௑௉ + 𝐶𝑜𝑛𝑣(∙) ∘ 𝑅𝐺ଷ(∙) ∘ 𝑅𝐺ଶ(∙) ∘ 𝑅𝐺ଵ(∙)∘ 𝑅𝐺଴(∙) ∘ 𝑓ா௑௉ (4) 
 
Figure 2(b) shows the architecture of a single RG, which 

basically follows that of a RG in [6]. The proposed RG 
consists of 𝑀 number of the wide receptive residual blocks 
with channel attention (WRCAs) and one convolution layer. 
The WRCA is newly proposed in this paper and its detailed 
architecture is discussed in the next section. Herein, the 
input and the output feature maps of the RG are represented 
as 𝑓ோீ(𝑛)  and 𝑓ோீ(𝑛 + 1) , respectively. In the proposed 
RG architecture, 16 WRCAs constitute one RG (𝑀 = 16). 
After this nonlinear transformation, the 𝑓ே௅் passes through 
two decoder blocks. 

Figure 2(c) shows the architecture of the decoder, where 𝑓஽ா஼(𝑙 + 1)  is upscaled by two to match the spatial 
resolution of 𝑓ாே஼(𝑙 + 1). One convolution layer and one 

pixel shuffle layer [38] double the height and width of the 
input feature map. The doubled 𝑓஽ா஼(𝑙 + 1) , which is 𝑓஽ா஼↑(𝑙 + 1), and 𝑓ாே஼(𝑙 + 1) are concatenated and passed 
to a convolution layer and a ReLU to generate 𝑓஽ா஼(𝑙). 
Equations (5.1) and (5.2) show the operations for 𝑓஽ா஼↑(𝑙) 
and 𝑓஽ா஼(𝑙) , respectively. Here, [∙,∙]  in Equation (5.2) 
represents the concatenation operation of the two feature 
maps. 

  𝑓஽ா஼↑(𝑙) = 𝑃𝑖𝑥𝑒𝑙𝑠ℎ𝑢𝑓𝑓𝑙𝑒(2) ∘ 𝐶𝑜𝑛𝑣(∙) ∘ 𝑓஽ா஼(𝑙) 𝑓஽ா஼(𝑙) = 𝑅𝑒𝐿𝑈 ∘ 𝐶𝑜𝑛𝑣(∙)∘ [𝑓஽ா஼↑(𝑙 + 1), 𝑓ாே஼(𝑙 + 1)] (5.1) 
(5.2) 

 
Through the operations of the two decoder blocks, the 

residual feature 𝑟ௌ , i.e., 𝑓஽ா஼(0) , is generated. The 
sharpened feature 𝑓௦ is generated by adding 𝑓ிா to 𝑟ௌ, and 
the final output 𝐼ௌ  is generated from the 𝑓ௌ  through one 
convolution layer.  

Wide receptive residual block with channel attention 
(WRCA)  

This section discusses the proposed WRCA as a basic 
block that composes the RG of the WRCAN. The purpose 
of the WRCA is to enable the WRCAN to extract features 
from a large receptive field and emphasize important 
channels from the extracted features. A residual block with 
parallel atrous convolution is known to be effective in 
extracting features with various receptive fields [3]. It is 
known that the channel attention mechanism can emphasize 
important channels of a feature map [6]. In this paper, to 
utilize the advantages of both architectures, a residual block 
with parallel atrous convolution and the channel attention 
mechanism are combined for the WRCA. Consequently, a 
series of WRCAs in each RG can extract important features 
in large image areas. In other words, the WRCAN utilizes 
feature maps both within and across the feature map 
channels. The detailed architecture of the WRCA is as 
follows. Figure 3(a) shows the architecture of the proposed 
WRCA. Here, 𝑓ௐோ஼஺(𝑚) is the input feature map of the 𝑚-
th WRCA in each RG, and 𝑓஼஺(𝑚)  represents the input 
feature map of the channel attention module in the 𝑚-th 
WRCA. 𝑓஼஺(𝑚 + 1) represents the output of the channel 
attention module of the 𝑚-th WRCA. 𝑓ௐோ஼஺(𝑚 + 1) is the 
output of the 𝑚-th WRCA, which becomes the input feature 
map of the 𝑚 + 1 -th WRCA. Each WRCA extracts 
features with a large receptive field through multiple rates 
of atrous convolutions and then emphasizes the important 
channels of the atrous convolutions’ outputs using the 
channel attention module.   

The WRCA adopts four parallel convolutions with 
different atrous rates, i.e., 1, 2, 3, and 4, as used in [3]. 
However, the proposed method uses ReLU activation 
instead of a leaky rectified linear unit (LeakyReLU) [39] 
for atrous convolution layers to achieve fast convergence in 

  
(a) (c) 

 
(b) 

Figure 2. Detailed architecture of the wide receptive field and 
channel attention network. (a) Encoder architecture; (b) 
architecture of residual group composed of wide receptive 
residual blocks with channel attention and convolution layer; 
(c) decoder architecture. 



 

 

training. One convolution layer with no activation is added 
after the concatenation of the four atrous convolutions. This 
convolution layer is working as a local feature extraction 
layer. The output of the local feature extraction layer, 𝑓஼஺(𝑚), enters the channel attention module, as shown in 
Figure 3(b). This channel attention module extracts the 
weights of each channel via global average pooling, 
channel squeezing, and expansion; subsequently, it 
multiplies the extracted weights with the input feature map. 
Equation (6) shows the output of the 𝑚 -th WRCA, 𝑓ௐோ஼஺(𝑚 + 1). 

 𝑓ௐோ஼஺(𝑚 + 1) = 𝑓ௐோ஼஺(𝑚) + 𝑓஼஺(𝑚 + 1) (6) 
 
Table 1 shows an investigation into the WRCA 

architecture. In this table, WR represents the wide receptive 
field block with the atrous convolution layers, and CA 
represents the channel attention mechanism. The Case 1 in 
the table represents the residual block of [40]. For this 
investigation, the number of RG is reduced to one, and 300 
epochs are trained with L1 loss. PSNR and SSIM are 
measured on REDS validation set. As shown in the Case 2 
and Case 3, when only one of WR and CA is applied to the 
residual block, PSNR is improved by 0.15dB and 0.11dB, 
respectively. When both WR and CA are applied to the 
residual block, which is the proposed WRCA, PSNR is 
improved by 0.26dB as shown in Case 4. These 
experiments show that the proposed WRCA is an effective 
basic block.  

The WRCA has an architecture similar to that of the 
RCA-ASPP  [41]. However, RCA-ASPP uses a 1 × 1 
convolution and a ReLU after the atrous convolutions to 
fuse the channel-wise feature map information, whereas the 

WRCA adopts a 3×3 convolution layer and no activation 
after atrous convolutions to extract local features. In 
addition, the purpose of RCA-ASPP is different from that 
of the WRCAN in that it is used to resolve the misalignment 
between depth maps and color guidance images.  

3.2. Auto Encoder Loss for JPEG artifacts 

This section discusses the proposed JPEG auto-encoder 
loss, 𝐿஺ாି௃௉ . To effectively reduce JPEG artifacts, the 
WRCAN should be trained with an appropriate loss 
function that represents the characteristics of JPEG-
compressed images. The proposed 𝐿஺ாି௃௉ாீ  utilizes a 
JPEG-compressed ground-truth image, 𝐼௃௉ாீ(ுோ) , 
which can be easily generated by compressing the ground-
truth image in JPEG format. Equation (7) shows the 
proposed 𝐿஺ாି௃௉ாீ , which uses the L2 norm for a stable 
training. The magnitude of the gradient of the L1 norm is 1 
except for zero loss; however, that of the L2 norm decreases 
with 𝐿஺ாି௃௉ாீ .  

 𝐿஺ாି௃௉ாீ(𝐼஺ாି௃௉ாீ , 𝐼ுோ) = |𝐼஺ாି௃௉ாீ , 𝐼ுோ|ଶ (7) 
 

Here, 𝐼ுோ  represents the ground-truth image. 𝐼௃௉ாீ(ுோ) 
and 𝐼஺ாି௃௉ாீ   are the input and output of the auto-encoder, 
respectively. The gray region in Figure 1 represents the 
auto-encoder for the proposed 𝐿஺ாି௃௉ாீ . Therefore, the 
auto-encoder of the proposed WRCAN is the rest part of the 
WRCAN except the RGs and one following convolution 
layer of the RGs. In addition, the auto-encoder includes skip 
connections. Equation (8) shows the procedure for 
obtaining the 𝐼஺ாି௃௉  from a 𝐼௃௉ாீ(ுோ) . In this equation, 
skip connections are excluded for simplicity. 

 𝐼஺ாି௃௉ாீ = 𝐶𝑜𝑛𝑣 ∘ 𝐷𝑒𝑐𝑜𝑑𝑒𝑟଴ ∘ 𝐷𝑒𝑐𝑜𝑑𝑒𝑟ଵ ∘ 𝐶𝑜𝑛𝑣 ∘ 𝐸𝑛𝑐𝑜𝑑𝑒𝑟ଵ ∘ 𝐸𝑛𝑐𝑜𝑑𝑒𝑟଴                    ∘ 𝐶𝑜𝑛𝑣 ∘ 𝐼௃௉ாீ(ுோ) (8) 

 
The auto-encoder loss [42] proposed by Kwak and Son, 

is for image super-resolution, and its purpose is to model 
generalization by inputting the same ground-truth images 
into the encoder and decoder. By contrast, the proposed 𝐿஺ாି௃௉ாீ  is intended for training the WRCAN such that the 
original image can be restored from a JPEG-compressed 

 
(a) 

 

 
(b) 

 
Figure 3. Architecture of basic block of WRCAN. (a) 
Architecture of wide receptive residual block with channel 
attention; (b) architecture of channel attention module. 

Case WR CA PSNR (dB) SSIM 

1   28.45 0.8030 
2   28.60 0.8061 
3   28.56 0.8057 
4   28.71 0.8089 

Table 1. An investigation into the WRCA architecture.  and 
indicate that each method is applied and not applied, 
respectively. 
 



 

 

image. Therefore, the encoders are trained to output 
meaningful features by considering the JPEG compression 
artifacts. The RGs and the decoders are trained to restore 
the original image with the feature map provided by the 
encoders. The proposed 𝐿஺ாି௃௉ாீ  is a computationally 
efficient method for improving the performance of the 
WRCAN without increasing its size. 

4. Experimental Results 

4.1. Dataset and Evaluation method 

The REDS dataset [43], which is the dataset for the 
NTIRE 2021 Image Deblurring Challenge Track 2. JPEG 
Artifacts [9], is used for training and validating of the 
proposed network. The training set of the dataset is 
composed of 240 image sequences. The validation and test 
set consist of 30 sequences of images, respectively. Each 
sequence of the training, validation, and test datasets 
consists of 100 ground-truth images (𝐼ுோ) and 100 blurred 
images (𝐼஻) compressed in JPEG format using a quality 
factor of 25. To evaluate the proposed network, PSNR and 
SSIM between the restored image 𝐼ௌ  and the 𝐼ுோ  are 
measured on RGB channels. 

4.2. Training Details 

Various types of data augmentations are applied to train 
the WRCAN. The training data are augmented with random 
horizontal flips and rotations. The RGB channels of 𝐼஻ and 𝐼ுோ  are randomly permuted with a probability of 0.5. In 
addition, Gaussian random noise with a standard deviation 
of 2 is applied with a probability of 0.5. After these 
augmentations, the pixel values of the training images are 
normalized to the range of [0, 1]. The batch size is set to 16. 
The WRCAN is trained 400 epochs with a patch size of 
256×256 or is trained 375 epochs with a patch size of 
320 × 320. During the training, one patch is randomly 
fetched from each image. Hence, one epoch contains 
24,000 pairs of patches. The Adam optimizer [44] is used 
for training the proposed model. The initial learning rate is 
set to 1 × 10ିସ, and the learning rate is halved at 100, 200, 
250, 300, and 350 epochs during the training. The weight 
decay parameter is set to 10ି଼ when 𝐿஺ாି௃௉  is applied.  

Equation (9) shows the loss function for training the 
proposed network, where both the L1 loss and 𝐿஺ாି௃௉ாீ  are 
used. 

 𝐿(𝐼ௌ, 𝐼஺ாି௃௉ாீ , 𝐼ுோ)= 𝜆଴ ∙ 𝐿1(𝐼ௌ, 𝐼ுோ) + 𝜆ଵ∙ 𝐿஺ாି௃௉ாீ(𝐼஺ாି௃௉ாீ , 𝐼ுோ) 
(9) 

 
In this study, 𝜆଴ and 𝜆ଵ are set to 1 and 0.1, respectively. 

To calculate 𝐿஺ாି௃௉ாீ , 𝐼௃௉ாீ(ுோ)  is generated by a JPEG 

compression of the 𝐼ுோ with a quality factor of 25. After the 
training process, the model with the highest PSNR on the 
sequence 000 in the validation set is selected as the 
parameter of the WRCAN. The proposed WRCAN is 
implemented using PyTorch [38, 45] and trained using four 
NVIDIA RTX 2080Ti GPUs. For the training of the 
WRCAN, 9 days and 12 days are required when the 
network is trained with L1 loss and 𝐿1 + 𝐿஺ாି௃௉ாீ  losses, 
respectively. The number of parameters of the WRCAN is 
156,974,339 including bias.   

4.3. Evaluation of WRCAN 

Quantitative and Qualitative Evaluations  

Table 2 shows the average PSNR and SSIM values of the 
proposed network on the REDS validation set. In the third 
row of this table, the average PSNR value of the WRCAN 
without the channel attention mechanism, which is named 
as wide receptive field network (WRN), is shown. 
Compared with the WRCAN in the fourth row, the channel 
attention mechanism enables the network to achieve a 
PSNR that is higher 0.03dB. In addition, the WRCAN 
trained with the L1 loss and the proposed 𝐿஺ாି௃௉ாீ  
achieves a higher average PSNR than the model trained 
with only the L1 loss by 0.06dB. This shows that 𝐿஺ாି௃௉  
enables the WRCAN to further improve the performance of 
the WRCAN for deblurring the JPEG-compressed image 
without additional computations at the inference time. 
Compared with the single model, the self-ensemble method 
[38] improves the PSNR by 0.13dB. Seven augmented 
input images are generated from the 𝐼஻  via flipping and 
rotation. Eight input images, one 𝐼஻, and seven augmented 
images are input to the WRCAN.  The eight output images 
are aligned to 𝐼஻ and averaged pixel-wise. As shown in the 
last row in Table 2, the WRCAN trained with a patch size 
of 320×320 results in an output that is 0.08dB higher than 
that of the WRCAN trained with a patch size of 256×256 
on validation images of the REDS dataset. This result 
shows that a larger-sized training patch improves the 

Method PSNR (dB) SSIM 𝐼௅ோ   24.91 0.7963 𝑊𝑅𝑁 𝑤𝑖𝑡ℎ 𝐿1  28.90 0.8131 𝑊𝑅𝐶𝐴𝑁 𝑤𝑖𝑡ℎ 𝐿1  28.93 0.8138 𝑊𝑅𝐶𝐴𝑁 𝑤𝑖𝑡ℎ 𝐿1 + 𝐿஺ாି௃௉ாீ  28.99 0.8154 𝑊𝑅𝐶𝐴𝑁 𝑤𝑖𝑡ℎ 𝐿1 * 29.06 0.8160 𝑊𝑅𝐶𝐴𝑁 𝑤𝑖𝑡ℎ 𝐿1 + 𝐿஺ாି௃௉ாீ * 29.12 0.8175 𝑊𝑅𝐶𝐴𝑁 𝑤𝑖𝑡ℎ 𝐿1 + 𝐿஺ாି௃௉ாீ * 𝑝𝑎𝑡𝑐ℎ = 320  
29.20 0.8192 

Table 2. Average PSNR (dB) and SSIM on REDS validation set. 
The 𝑳𝟏 loss and 𝑳𝑨𝑬ି𝑱𝑷𝑬𝑮 represent the loss functions used for 
training WRCAN. Here, * indicates self-ensemble (×8). The 320 
in the last row represents the training patch size is 320×320. 
 



 

 

performance of the WRCAN.  
The qualitative evaluation shows the effect of 𝐿஺ாି௃௉ாீ  

more clearly. Figure 4 shows a comparison of the result 
images of the WRCAN with the input and ground-truth 
images. A self-ensemble is applied to the WRCAN’s results. 
In Figure 4, the “003” and “00000060” represents the 
names of the sequence and frames, respectively, in 
003/00000060. In the case of the result of 003/00000060, 
the WRCAN trained with 𝐿஺ாି௃௉ாீ  recovers the clothes 

and the camera strap, but the network trained with L1 loss 
doesn’t. In addition, the stripe in image 026/00000054 is 
well recovered by the WRCAN trained with 𝐿஺ாି௃௉ாீ , but 
the same position in the result of the WRCAN trained with 
the L1 loss is blurred. The other images indicate the same 
tendency. In the case of 004/00000093, the proposed 
WRCAN trained with 𝐿஺ாି௃௉ாீ  is found to best recover 
details such as characters, and window frames the most 
effectively. In addition, in 010/00000098, the trees and 

    
003/00000060 

    
026/00000054 

    
004/00000093 

    
010/00000098 

(a) (b) (c) (d) 

Figure 4. Examples of input, results, and ground truth sharp images from the REDS validation set. (a) Blurred input images; (b) 
Results of WRCAN with L1 loss; (c) Results of WRCAN with L1 and JPEG auto-encoder losses; (d) Ground truth images. 
 



 

 

window frame of the boat are clearly recovered by the 
WRCAN trained with  𝐿஺ாି௃௉ . Based on the quantitative 
and qualitative evaluations, the proposed 𝐿஺ாି௃௉ாீ  
improves the performance of the WRCAN by enhancing the 
ability to restore the original image from a JPEG-
compressed image without additional computations at the 
inference time.  

Experimental Results on NTIRE 2021 Challenge  

Table 3 shows the results of NTIRE 2021 Image 
Deblurring Challenge Track 2. JPEG artifacts [9], where the 
WRCAN is trained with a patch size of 320×320 and 375 
epochs. The rank is determined based on the PSNR. The 
SSIM and LPIPS, which is learned perceptual image patch 
similarity [46], are considered when the difference in the 
PSNR is not significant. 

The result of the WRCAN trained with the proposed loss 
function is shown as CAPP_OB. The proposed method 
ranked third. In terms of PSNR, the teams ranked from 
second to fourth are similar. However, the SSIM result of 
the WRCAN is the second highest, and it also has a 
significant margin compared with the team ranked in the 
fourth. In addition, the WRCAN demonstrates the second-
best result in terms of the LPIPS. These results show that 
the WRCAN provides state-of-the-art performances in the 
field of deblurring images compressed by JPEG.  

5. Conclusion  

A state-of-the-art CNN architecture for JPEG image 
deblurring is proposed herein. The proposed WRCAN has 
a large receptive field and emphasizes the importance of 
feature map channels. For a large receptive field, the 
residual atrous convolution layer constitutes the basic block. 
In addition, the channel attention mechanism adaptively 
weights the highly informative channels of the feature map 
after the parallel atrous convolution layers. Hence, the 
proposed WRCAN can capture and utilize meaningful 
features from the input image. In addition to the WRCAN, 𝐿஺ாି௃௉ is proposed. 𝐿஺ாି௃௉ாீ  enables the JPEG artifacts 
to be aware of the original image restoration function of the 
auto-encoder. This paper shows that adopting 𝐿஺ாି௃௉ாீ  is 
an effective method to train the WRCAN for deblurring of 
JPEG-compressed images. Experimental results show that 
the proposed network and loss function results in an output 
of 29.60dB on the REDS test set and ranked third on Image 
Deblurring Track 2 of the NTIRE 2021 Challenges. This 
indicates that the proposed methods provide state-of-the-art 
results and are effective for deblurring images compressed 
by JPEG.  
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