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Abstract

Many important yet not fully resolved problems in com-

putational photography and image enhancement, e.g. gen-

erating well-lit images from their low-light counterparts or

producing RGB images from their RAW camera inputs share

a common nature: discovering a color mapping between

input pixels to output pixels based on both global informa-

tion and local details. We propose a novel deep neural net-

work architecture to learn the RAW to RGB mapping based

on this common nature. This architecture consists of both

global and local sub-networks, where the first sub-network

focuses on determining illumination and color mapping, the

second sub-network deals with recovering image details.

The result of the global network serves as a guidance to the

local network to form the final RGB images. Our method

outperforms state-of-the-art with a significantly smaller size

of network features on various image enhancement tasks.

1. Introduction

Modern cameras sequentially perform many signal pro-

cessing steps to reconstruct an RGB image from a RAW

sensor input, which has only 1 color per pixel, either red,

green or blue. This sequential processing pipeline, namely

Image Signal Processing (ISP) is complicated, which con-

sists of various stages, for example, defect pixel removal,

denoising [2], demosaicing [17], gamma correction, white

balancing [13] and so on. Different ISP pipelines have to be

tuned by different groups of well-trained camera experts for

a relatively long time before it can be used in the commer-

cial cameras. Domain knowledge such as optics, mechanics

of the cameras, electronics and human perception of colors

and contrast are necessary in this tuning process. Replac-

ing this highly skilled and tedious tuning process with deep

neural network is a recent research direction in computa-

tional photography [26, 24, 12]. In addition to replacing

the ISP with machine learning models, generating well-lit

images from their low-light version is another interesting

Figure 1. Network architecture

direction in this field [20, 21, 5, 4, 33, 39, 28]. The problem

suffers from low signal-to-noise ratio and lack of seman-

tic content. Since only an extremely low number of photons

can be captured by the camera with low exposure time in al-

ready very dark scenarios, substantial noise contamination

is inevitable. More than 1 type of noise exists in this low

light RAW images, including dark pattern noise, Poisson

noise and scan line noise. In the meantime, color mapping

schema from the RAW image to final RGB channels is hard

to learn because of lack of content.

We propose to solve these two problems with a com-

mon architecture. The network first learns color and illu-

mination mapping in a resized domain, then learns image

detail recovery with the patches cropped from full resolu-
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tions. We name the first part as the global sub-network,

which is a stacked U-net, while the second part as the lo-

cal sub-network, which consists of several residual blocks.

This design enables our network to be used with arbitrary

resolution.

Our main contributions include

• Learning method of replacing the ISP and en-lighting

extreme low light images with a common deep neu-

ral network architecture (Figure 1), which achieves the

state-of-the-art with significantly lower number (about

20%) of features;

• Use stacked U-nets to learn global mappings as the

guidance network, which is then used to guide the local

color mapping in the detail recovery stage, see Section

3.2;

• A new training method for the local sub-network with

introducing intermediate ground truth, see Section 3.3.

This novel training method yields a 0.3db peak signal

to noise ratio increase according to the ablation study

with an exactly same network architecture.

2. Related Work

Computational photography is an active topic across

computer vision, graphics, image processing and machine

learning. Research in this domain is always closer to real

world applications and can be integrated to consumer elec-

tronics more naturally. For example, different to traditional

image processing, i.e. RGB image denoising [34, 16, 35,

31, 15], denoising in the RAW domain [22, 10, 1, 9] has a

wider usage in the current industrial pipeline. We focus on

research works that take RAW as input, generating RGB as

output, and briefly review them in this section.

Difficulties in computational photography research can

be summarized into 2 aspects:

1. ISP tuning requires a lot of domain knowledge, and

different ISPs may produce totally different results. It

is not trivial to reproduce the full ISP pipeline with

a single end-to-end method without understanding the

details inside. Subjective quality metrics and heuristic

rules used during ISP design complicates the algorith-

mic replication even further[26].

2. RAW images always contain different kinds of capture

noise, and which pattern is unknown. Solutions based

presumably specific kind of noise, like Additive White

Gaussian Noise (AGWN), for example methods like

[34] and [35] will fail on real image denoising. This

inability is widely discussed in [10, 1].

Generating well-lit images from their low light counter-

part is a well-studied but yet unresolved topic, many tradi-

tional efforts aim at finding bidirectional correspondences

between them, for example, dual illumination [36] and per-

ceptual similarity [37]. These methods often have many

heuristics and are not applicable to extreme, less than 0.1

second exposure in the dark scene, low light. Learning

based methods [20, 21, 29, 5, 39, 28, 11, 19, 4] are of the

mainstream in low light image recovery. Within these net-

works, only [5, 39, 28, 33, 19, 4] take RAW images cap-

tured with extreme low light scenarios, we focus on them.

Chen et al. [5] release See In the Dark (SID) dataset and

propose a huge u-net to learn the recovering process, later

they extend this work to video [4]. Liba et al. [19] present

an extreme low-light recovery method based on merging a

set of burst images. Zhu et al. [39] propose an edge-aware

model to better learn edge details in the recovery. Zamie et

al. [33] use the exactly same architecture as Chen et al.’s

[5], but adding a perceptual loss based on VGG19 to better

recover the context of the images. Wang et al. [28] adopts

a model similar to Lv et al.’s model [21], which consists of

a set of multi resolution feature extractions and fusions. In

a more recent work, [32] tries to recover image information

according to different frequency components, where the low

frequency information is created via a Gaussian filter. All

these methods report their performance on SID data set [5],

we compare our method with them also in SID data set, de-

tails are shown in Section Evaluation.

Replacing the expert-tuned ISP with a fully automatic

method relies more and more on deep learning, all of the

recent methods approach it by training an end-to-end deep

neural network [26, 24, 12]. Schwartz et al. [26] release

a data set, named Samsung S7 data set, contains RAW and

RGB image pairs with both short and medium exposures.

They design a network that first process the image locally

then globally. Ratnasingam [24] replicates the steps of a full

ISP with a group of sub networks, achieves the-state-of-the-

art by training and testing on a set of synthetic images.

Recently, training a network with 2 stages becomes com-

mon in RAW image to RGB transformation. DeepISP[26],

CameraNet [18] and Decomposition-and-Enhancement

network[32] all adopt this strategy: 1 sub-network for de-

tail recovery (usually just denoising) and 1 sub-network for

color and luminance recovery. Our network also follows

this line of ideas, however, we have very unique design here:

1. Opposite to CameraNet and DeepISP, we perform

color recovery before denoising, which is similar to

Decomposition-and-Enhancement network, learns to

recovery low frequency component before higher fre-

quency component;

2. Our method recovers RGB information in a fixed re-

sized domain, which is distinct to all other state-of-

the-art, and proved to be efficient in Evaluation.

3. Different to Decomposition-and-Enhancement net-

work, we recover the image high frequency details by
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taking both the original raw image and the recovered

low frequency image as inputs to the detail recovery

sub-network. This choice is based on a natural obser-

vation: although contaminated by the noise, the orignal

input contains many useful local details. Furthermore,

by adopting this scheme, we can further take advantage

of progressive training shown later in Section Method-

ology.

3. Methodology

In some commercial ISP, complex algorithms related to

overall color and brightness histograms, type of scene and

light source are performed on full but resized to smaller-

resolution images. On the contrary, some other relatively

simple algorithms, e.g. defect pixel detecting and replacing,

denoising, demosacing and deblurring, are performed on in-

dividual pixels. We named the first ones global operations

and the second ones local operations. These local opera-

tions involve only a limited number of neighboring pixels,

i.e. filters with compact support.

We follow this principle: use a more complex low resolu-

tion guidance network to reconstruct a low resolution target

image; use a high resolution correction network to obtain a

final RGB images from high resolution input RAW images

and up-sampled outputs of the guidance network. This idea

is common to 2 different computational photography tasks:

low-light image recovery and learning the ISP.

There exist several architectures applying similar ap-

proaches [25, 6, 8, 29]. Chen et al. [6] uses target low

resolution image as a guidance to modify input high res-

olution image via bilateral filtering, which speedups slow

algorithms by applying them at a smaller scale. This work

is further extended with deep neural nets by Gharbi et al.

in [8], namely HDRnet, where they use a CNN to generate

a lookup table for different pixels positions and brightness

levels. Wang and Zhang et al. [29] further extends in this

path, by replacing the lookup table learning with illumina-

tion estimation [7] to recover the image from under expo-

sure.

3.1. Network Architecture

We define our network architecture in Figure 1. The

global (left) part takes resized raw images (usually 4 chan-

nels for Bayer pattern) as the input (for low light appli-

cation, we also multiply the input raw with the exposure

time ratio as described by [5]), output also a resized image

with RGB 3 channels. In practice, we set the resize size as

512× 512. With this choice, we can use deeper u-nets than

[5].

Stacked u-nets with the exact same structure are adopted.

Each u-net outputs a resized RGB image, and this interme-

diate output will be used as the input of the next u-net. The

output of the last u-net will be cropped and resized and then

stacked with the local input at exactly the same location.

This pair of stacked images are the inputs of the local sub-

net, as shown in Figure 1. Each level of encoder reduces

both the height and the width by a factor of 2 and each level

of decoder increases them in an opposite way. In the bot-

tleneck of each u-net, we stack the features with the tiled

properties (exposure rate for low light image recovery; lens

position, digital gain, analogue gain and exposure time for

ISP learning). Then, we feed the stacked features into a set

of residual blocks. This design is based on observations:

properties affect the global image quality, e.g. shorter expo-

sure time or lower digital gain often leads to larger amount

of noise; lens position affects the vignette effect.

The local sub-net is simply a group of residual blocks.

This sub network takes the guidance–color corrected image

patches, learnt from the global part to guide the process of

local input patches. As shown in Figure 2, the learnt global

patch, cropped and resized from the smaller resolution full

image, has better color, but looks blurry, since the local in-

formation is missing, while in the meantime, the local input

patch has more details around edges, but the color is incor-

rect and also noisy.

(a) (b)

(c) (d)

Figure 2. Local learning: by stacking (a) input patch with (b)

cropped patch from the result image of the global guidance net-

work, we learn a (c) more detailed output patch; (d) is the ground

truth patch.

3.2. Training global network with staged learning

Our purpose of adopting a stacked u-net in the global

learning is to let the network gradually learn the color map-

ping. Each u-net in the global network produces an inter-
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mediate result of the resized RGB image. Here, we adopt

the summation of l1 distance and multi-scale structure sim-

ilarity (MS-SSIM) [30] as the loss function of each u-net,

suggested by [38]. We simply aggregate the loss of each

stage to form the global loss Lg as:

Li(Îi, I) = ||Îi − I||+ 0.5× (1−MSSSIM(Îi, I)),

Lg =
∑

i

Li,

(1)

where Îi is the estimated resized RGB image from u-net

i, I is the resized ground truth image.

The apparent visual improvement through the stacked u-

nets is shown in Figure 3. This learning schema reduces

the harder problem into several simpler problems, which is

originated from [23, 3]. With this global training schema,

we do not need to put all pixels from the original image into

the network in the training time, or crop a relatively large

patch (1024 × 1024 in [26]) to let the network be able to

learn the global transformation in ISP.

3.3. Progressive train local network with resized gt

The local sub-network takes 2 inputs, RAW input and

RGB from the global guidance, outputs the final recovered

image. We hope the final result gets as close as possible to

the ground truth RGB image with the training process. In

addition, this sub-network has a fully-convolutional style,

therefore, our network can be applied on images with arbi-

trary sizes. To achieve these goals, we adopt 2 novel train-

ing methods:

1. As shown in Figure 1, we crop and resize the result

from the output of the guidance network to the orig-

inal size. Then we stack this crop and resized result

with the RAW input. The benefits of performing this

training is that we save a lot of GPU memory during

the training. This idea is originated from Gharbi et al.

[8]. However, instead of directly fusing global features

and local features in [8] by a slicing layer, we use crop

and resize to perform the global guidance.

2. To better utilize global guidance, we train this local

sub-network by alternating the guidance input with

cropped resized ground truth. We use the same weight

of the local sub-network, while working in tandem on

resized truth and the current guidance image. As the

guidance image gets closer and closer to the ground

truth, the training of the local network will be con-

verge. This idea is similar to progressive growing of

GANs [14]. The effectiveness of this training is shown

in the ablation study.

We define the loss function of the local training as

Ll =||Îp − Ip||+ 0.5× (1−MSSSIM(Îp, Ip))+

||Îp −Gp||+ 0.5× (1−MSSSIM(Îp, Gp)),
(2)

where Îp is the estimated image patch, Ip is the ground truth

image patch and Gp is the image patch from the global re-

sult, which is the last u-net output.

3.4. Final loss function

We train the full network shown in Figure 1 together with

a combined loss function:

L = Lg + Ll,

where Lg and Ll are defined in Equation (1) and (2), re-

spectively.

4. Evaluation

4.1. Data set and training setup

We evaluate our method on 3 different data sets:

• See-In-the-Dark (SID): proposed by [5], is a Raw-

RGB dataset captured in extreme low-light conditions,

where each short-exposure raw image is paired with its

long-exposure RGB counterpart for training and test-

ing [33]. Images in this dataset were captured using

two cameras: Sony α7SII (raw: GRBG 4-channel

Bayer) and Fujifilm X-T2 (raw: 9-channel XTrans),

each subset contains about 2500 images, with about

20% of them are test images. Besides RAW and RGB

data, their exposure times are provided alongside.

• Samsung S7: captured by [26], contains 110 differ-

ent RAW-RGB pairs, with train/test/validation split as

90/10/10. Different to SID, this one does not provide

related camera properties.

• ImagePairs: captured by [27]. For each image, the

meta data such as gain, exposure, lens position and

scene categories were stored. The data set is divided

into train and test sets including 8591 (75%) and 2830

(25%) image, respectively. The ISP used to process the

RAW input is named ARC, which contains more than

20 steps, including both global steps like lens shad-

ing correction and auto white balancing and local steps

like denoising and defect pixel repairing. In this exper-

iment instead of using LR/HR pair we use LR and its

raw information in order to train an ISP.

For all these 3 data set, we train our model with 2 pairs of

inputs and outputs: resized RAW/RGB and cropped patches

of RAW/RGB, using above-mentioned loss function. We
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input u-net 1 u-net 2 u-net 3 u-net 4 gt

Figure 3. Global learning: stacked u-nets gradually refine the output resized image to make it approach the ground truth (gt).

choose Adam as the optimizer with an exponetially decay

learning rate, defined as:

lr = 0.001× 0.5
iter

10000 ,

where iter is the number of iterations. Batch size is usu-

ally set to 6 or 8 (almost no difference on the final result

after the convergence in practice), depends on the memory

limit. The training is conducted on a workstation with GPU

Titan RTX 24G. For the sake of comparison, we also imple-

mented Schwartz et al.’s DeepISP method [26] and Chen et

al.’s SID method [5] with smallest necessary changes.

4.2. Comparisons

Peak Signal to Noise Ratio (PSNR) and Structural SIM-

ilarity (SSIM) index are used as quantitative performance

criteria. In addition, we also compare the model size, i.e.

the amount of features.

4.2.1 SID data set

Detailed performance comparisons on SID [5] data set can

be found in Table 1. Although each sub data set (Sony and

Fuji) contains about 1800 training images, the data size is

still very limited. Since many training images are captured

under burst mode, there are only about 180 different scenes.

As noted by Chen et al. [5], it is very easy to run into over-

fitting. To alleviate this problem, we also adopted data aug-

mentations used by Chen et al. [5]: flip horizontally and

flip vertically. However, we did not use rotation by 90 de-

grees since there exist apparent horizontal noise patterns in

the RAW inputs.

Our method generates vivid and also closer color (Fig-

ure 4(i)) to the ground truth then [26] and [5]. In addition,

results produced by our model do not have unpleasant color

artifact, e.g. 4(c) and (h).

Implementation details of other methods:

1. We implemented and trained DeepISP[26] with 2

small changes: 1) multiply the exposure ratio rate upon

the 4-channel RAW input; 2) use this 4-channel RAW

images as inputs to the network, add a deconvolution

layer before their local branch, since their local branch

only takes 3-channel input. We also randomly crop

1024 × 1024 patches to train, as same as their paper

suggested [26]. The number of residual blocks is set to

16 with the feature size of each convolution layer set

to 64.

2. Results from [5, 33, 39] are reported in their papers

and related github pages. Results from DeepUPE and

EEMEFN and reported in [32].

3. Wang et al. [28] achieves similar performance (29.79
on Sony subset) in PSNR by first training their model

on a large set of synthetic images (more than 10k pairs)

produced by [21] and then fine tune on SID data set,

which avoids the over-fitting problem. In addition,

we failed to find the implementation details of their

method in [28], therefore, we do not list this method in

Table 1.

4.2.2 Samsung S7 data set

We train both our network and the DeepISP network [26]

on the training set (first 90 image pairs) of Samsung S7 data

set. We train DeepISP network strictly following the set-

tings in [26] with randomly cropping 1024 × 1024 patches

from the images. The number of residual blocks is set to

16 with the feature size of each convolution layer set to 64.

The input is a short exposure RAW image, the output is a

well-lit medium exposure RGB image. The exposure time

ratio is 4. We use this ratio as the property input to our

network. We perform 3 different kinds data augmentations:

flip horizontally, flip vertically and rotation by 90 degrees,

since no apparent noise shown in this data set, see the left
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(a) RAW (b) DeepISP (c) SIDnet (d) ours (e) GT

(f) RAW (g) DeepISP (h) SIDnet (i) ours (j) GT

Figure 4. Qualitative comparisons on SID: red and blue boxes are magnified in the bottom of their corresponding images.

Table 1. Comparisons on SID data set. Best in red and the second best in blue.

Model # parameters Size% Sony Fuji

PSNR (db) SSIM PSNR (db) SSIM

SIDnet[5] 7724748 100% 29.18 0.79 27.34 0.68

PerNet[33] 7724748 100% 29.43 N/A 27.63 N/A

DeepISP[26] 668560 8.65% 26.20 0.85 22.29 0.78

DeepUPE[29] N/A N/A 29.13 0.79 N/A N/A

EEMEFN[39] N/A N/A 29.60 0.80 27.38 0.72

Decomposition-and-Enhancement[32] N/A N/A 29.56 0.80 N/A N/A

Our method 3329333 43.09% 29.73 0.89 28.11 0.85

most column in Figure 5. As shown in Table 2, we achieve a

1.64db gain on PSNR and 0.01 gain on SSIM over DeepISP

network on this data set.

Table 2. Comparisons on Samsung S7 data set.

Model # parameters PSNR (db) SSIM

DeepISP 668560 26.38 0.91

Our method 3329333 28.02 0.92

Figure 5 illustrates the visual comparisons between our

results and results of DeepISP network [26], here both im-

ages are chosen from the test set. The results of our method

show closer colors to the ground truth.

4.2.3 ImagePairs data set

We trained DeepISP net [26], SID net [5] and our base-

line network on ImagePairs data set, which contains about

11000 image pairs. All networks read RAW images and as-

sociated 4 camera properties: analogue gain, digital gain,

exposure time and lens position. Here, the exposure time

is in micosecond; the lens position is the distance between

the camera and the scene, in centimeters. When modifying

DeepISP net [26] for this task, we tile and concatenate these

4 features with the output of their local sub-network and

feed it to the global sub-network to estimate the quadratic

transformation coefficients. For SID net [5], we simply tile

and concatenate 4 features with the input image, since SID

net is just a huge U-net.

Table 3. Comparisons on ImagePairs data set. Best in red, the

second best in blue.
Model # parameters PSNR (db) SSIM

DeepISP 668560 20.30 0.89

SIDnet 7724748 23.08 0.90

Our method 3329333 29.22 0.96

Table 3 illustrates the metrics of three models. Our base-

line model outperforms at least 6db on the average of more

than 2500 real images.

6



Figure 5. Visual comparisons on Samsung S7 data set between DeepISP network [26] and our method. Sub images in the red box are

zoomed in for a more detailed comparison.

Figure 6 shows the visual comparisons of these methods

on various image categories. DeepISP net [26] has a hard

time to learn the color mapping, since they confine this map-

ping into a quadratic function. Results of SID net [5] con-

tains block-wise visual artifacts that are similar to results in

SID data set shown in Figure 4.

4.3. Ablation study

We conduct an ablation study on our baseline model by

removing different parts of it, including using less stacked

u-nets in the global sub-network and removing the progres-

sive local training.

Table 4. Ablation study on SID data set. Best in red and the second

best in blue, PSNR (db)/SSIM are shown.

Model # param Sony Fuji

4 u-nets 3.3M (43.09%) 29.72/0.89 28.11 /0.85

no local gt 3.3M (43.09%) 29.43/0.89 28.06/0.85

3 u-nets 2.5M (32.76%) 29.56/0.89 28.00/0.85

2 u-nets 1.7M (22.43%) 29.43/0.89 27.90/0.85

1 u-net 0.9M (12.09%) 29.07/0.88 27.78/0.85

Here, all comparisons are performed on both subsets of

SID data set [5] with exactly the same training settings de-

scribed before. 100% of Column Size% is defined in Ta-

ble 1. According to Table 4, our baseline achieves the best

performance on both subsets. For Sony subset, removing

1 u-net will reduce PSNR by 0.2db in average; while for

Fuji subset, this amount is about 0.1db. On the local part,

the progressive training schema gives the model a boost of

0.3db on Sony subset and 0.05db boost on Fuji set.

If we compare the results in Table 4 and those in Table 1,

our smallest model (1 u-net) has a relative same size of the

DeepISP model [26], but achieves way better performances

on both subset, i.e. 3db increase on Sony, 5db increase on

Fuji.

To further investigate the effectiveness of different com-

ponents and the choice of the loss functions, we conduct

another set of ablation studies on Sony subset in SID data

set, as shown in Table 5. Note that our baseline model uses 4

unets in the global guidance sub network, 8 residual blocks

in the local refinement sub network; the basic loss function

is the addition of L1 loss and ssim loss, as shown in Eq.

1 and Eq. 2. Terms “resized from global” in Table 5 are

the metrics of results generated by the guidance networks

(usually blurry). Each row in Table 5 denotes a model that

changes at most 1 component to the baseline model.

We conduct 2 ablation studies on the guidance network,

2 studies on the local refinement network and other 2 studies

7



(a) RAW (b) DeepISP (c) SIDnet (d) ours (e) GT

(f) RAW (g) DeepISP (h) SIDnet (i) ours (j) GT

(k) RAW (l) DeepISP (m) SIDnet (n) ours (o) GT

(p) RAW (q) DeepISP (r) SIDnet (s) ours (t) GT

Figure 6. Qualitative comparisons on 4 images with different categories: Tree, Document, Office and Cafeteria, chosen from the test set of

ImagePairs data set.

Table 5. Further ablation study on SID data Sony subset.

Model PSNR/SSIM PSNR/SSIM

resized global

Baseline 29.73/0.89 28.60/0.87

4 unets → 5 u-nets 29.76/0.89 28.64/0.87

remove property layer 28.92/0.88 27.93/0.86

loss → L1 29.33/0.88 28.29/0.87

loss → L2 29.08/0.88 28.13/0.87

8 → 4 resblocks 29.44/0.89 28.39/0.87

8 → 2 resblocks 29.48/0.89 28.50/0.87

on the loss functions. On the guidance part, we observe that

using 1 more unet in the guidance sub network will slightly

increase the performance comparing to the baseline; by re-

moving the property tiling layer from the bottlenecks of the

unets, we see a large drop on performances. On the local

part, By switching the current choice of the loss function to

some other forms (L1 solely, L2 solely) will decrease the

performance. This observation tells us the current form of

the loss function is effective.

5. Conclusion

The common architecture proposed for transforming

RAW to RGB images takes advantage of the ideas and ex-

periences from the traditional camera ISP pipeline: grad-

ually learning mappings in the global domain and then fix

the local features with fine tuning. This architecture con-

sists of both global and local sub-networks, where the first

sub-network focuses on determining illumination and color

mapping, the second sub-network deals with recovering im-

age details. The result of the global network serves as a

guidance to the local network to form the final RGB im-

ages. Evaluations prove the effectiveness of this idea along-

side with our training methods. Our method outperforms

state-of-the-art with a significantly smaller size of network

features on various image enhancement tasks.
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Hasinoff, and Frédo Durand. Deep bilateral learning for real-

time image enhancement. ACM Transactions on Graphics

(TOG), 36(4), 2017. 3, 4

[9] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte.

Self-guided network for fast image denoising. In The IEEE

International Conference on Computer Vision (ICCV), Octo-

ber 2019. 2

[10] Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei

Zhang. Toward convolutional blind denoising of real pho-

tographs. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019. 2

[11] X. Guo, Y. Li, and H. Ling. Lime: Low-light image enhance-

ment via illumination map estimation. IEEE Transactions on

Image Processing, 26(2):982–993, Feb 2017. 2

[12] Andrey Ignatov, Luc Van Gool, and Radu Timofte. Replac-

ing mobile camera isp with a single deep learning model.

arXiv preprint arXiv:2002.05509, 2020. 1, 2

[13] Hamid Reza Vaezi Joze and Mark S Drew. Exemplar-

based color constancy and multiple illumination. IEEE

transactions on pattern analysis and machine intelligence,

36(5):860–873, 2013. 1

[14] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. In International Conference on Learning Rep-

resentations (ICLR), April 2018. 4

[15] Yuma Kinoshita and Hitoshi Kiya. Convolutional neural net-

works considering local and global features for image en-

hancement. In 2019 IEEE International Conference on Im-

age Processing (ICIP), pages 2110–2114, 2019. 2

[16] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli

Laine, Tero Karras, Miika Aittala, and Timo Aila.

Noise2noise: Learning image restoration without clean data.

In International Conference on Machine Learning (ICML)

2018, pages 2971–2980, 2018. 2

[17] Xin Li, Bahadir Gunturk, and Lei Zhang. Image demosaic-

ing: A systematic survey. In Visual Communications and

Image Processing 2008, volume 6822, page 68221J. Interna-

tional Society for Optics and Photonics, 2008. 1

[18] Zhetong Liang, Jianrui Cai, Zisheng Cao, and Lei Zhang.

Cameranet: A two-stage framework for effective camera isp

learning, 2019. 2

[19] Orly Liba, Kiran Murthy, Yun-Ta Tsai, Tim Brooks, Tian-

fan Xue, Nikhil Karnad, Qiurui He, Jonathan T. Barron, Dil-

lon Sharlet, Ryan Geiss, Samuel W. Hasinoff, Yael Pritch,

and Marc Levoy. Handheld mobile photography in very low

light. ACM Trans. Graph., 38(6):164:1–164:16, 2019. 2

[20] Kin Gwn Lore, Adedotun Akintayo, and Soumik Sarkar. Ll-

net: A deep autoencoder approach to natural low-light image

enhancement. Pattern Recognition, 61:650–662, 2017. 1, 2

[21] Feifan Lv, Feng Lu, Jianhua Wu, and Chongsoon Lim.

Mbllen: Low-light image/video enhancement using cnns. In

British Machine Vision Conference (BMVC), 2018. 1, 2, 5

[22] Ben Mildenhall, Jonathan T Barron, Jiawen Chen, Dillon

Sharlet, Ren Ng, and Robert Carroll. Burst denoising with

kernel prediction networks. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018. 2

[23] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In European

Conference on Computer Vision (ECCV), pages 483–499,

September 2016. 4

[24] Sivalogeswaran Ratnasingam. Deep camera: A fully convo-

lutional neural network for image signal processing. In In-

ternational Conference on Computer Vision Workshops (IC-

CVW), August 2019. 1, 2

[25] Yaniv Romano, John Isidoro, and Peyman Milanfar. Raisr:

Rapid and accurate image super resolution, 2016. 3

[26] Eli Schwartz, Raja Giryes, and Alexander M. Bronstein.

Deepisp: Toward learning an end-to-end image processing

pipeline. IEEE Transactions on Image Processing, 28:912–

923, 2019. 1, 2, 4, 5, 6, 7

[27] H. R. Vaezi Joze, I. Zharkov, K. Powell, C. Ringler, L. Liang,

A. Roulston, M. Lutz, and V. Pradeep. Imagepairs: Realis-

tic super resolution dataset via beam splitter camera rig. In

2020 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition Workshops (CVPRW), pages 2190–2200,

2020. 4

[28] Lei Wang, Guangtao Fu, Zhuqing Jiang, Guodong Ju, and

Aidong Men. Low-light image enhancement with attention

and multi-level feature fusion. In IEEE International Con-

ference on Multimedia Expo Workshops (ICMEW), pages

276–281, July 2019. 1, 2, 5

[29] Ruixing Wang, Qing Zhang, Chi-Wing Fu, Xiaoyong Shen,

Wei-Shi Zheng, and Jiaya Jia. Underexposed photo enhance-

ment using deep illumination estimation. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2019. 2, 3, 6

9



[30] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.

Simoncelli. Image quality assessment: From error visibility

to structural similarity. IEEE Transactions on Image Pro-

cessing, 13(4):600–612, 2004. 4

[31] Chao Dong Xintao Wang, Ke Yu and Chen Change Loy. Re-

covering realistic texture in image super-resolution by deep

spatial feature transform. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 2

[32] Ke Xu, Xin Yang, Baocai Yin, and Rynson W.H. Lau.

Learning to restore low-light images via decomposition-and-

enhancement. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2020. 2, 5, 6

[33] Syed Waqas Zamir, Aditya Arora, Salman Khan, Fa-

had Shahbaz Khan, and Ling Shao. Learning digital cam-

era pipeline for extreme low-light imaging. Technical report,

ArXiV, 2019. 1, 2, 4, 5, 6

[34] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: Residual learning

of deep CNN for image denoising. IEEE Transactions on

Image Processing, 26(7):3142–3155, 2017. 2

[35] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward

a fast and flexible solution for CNN based image denoising.

IEEE Transactions on Image Processing, 2018. 2

[36] Qing Zhang, Yongwei Nie, , and Wei-Shi Zheng. Dual illu-

mination estimation for robust exposure correction. Com-

puter Graphics Forum (Proceedings of Pacific Graphics

2019), 2019. 2

[37] Qing Zhang, Yongwei Nie, Lei Zhu, Chunxia Xiao, and Wei-

Shi Zheng. Enhancing underexposed photos using percep-

tually bidirectional similarity. Tech report, arXiv, October

2019. 2

[38] Hang Zhao and Orazio Gallo ans Iuri Frosio ans Jan Kautz.

Loss functions for image restoration with neural networks.

IEEE Transactions on Computational Imaging, 3:47–57,

2017. 4

[39] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Eemefn:

Low-light image enhancement via edge-enhanced multi-

exposure fusion network. In Proceedings of the 34th AAAI

Conference on Artificial Intelligence, 2019. 1, 2, 5, 6

10


