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Abstract

Deep-learning based generative models are proven to be

capable for achieving excellent results in numerous image

processing tasks with a wide range of applications. One

significant improvement of deep-learning approaches com-

pared to traditional approaches is their ability to regen-

erate semantically coherent images by only relying on an

input with limited information. This advantage becomes

even more crucial when the input size is only a very mi-

nor proportion of the output size. Such image expansion

tasks can be more challenging as the missing area may orig-

inally contain many semantic features that are critical in

judging the quality of an image. In this paper we propose

an edge-guided generative network model for producing se-

mantically consistent output from a small image input. Our

experiments show the proposed network is able to regener-

ate high quality images even when some structural features

are missing in the input.

1. Introduction

Image repair is an important task within image pro-

cessing with a wide range of applications including image

super-resolution, image inpainting, noise reduction and im-

age expansion. Among them, image expansion and image

inpainting tasks are the most challenging due to the require-

ment to regenerate missing content from a restricted input.

While traditional patch-based methods [2, 8] and diffusion

based methods [4] have been proposed to solve this prob-

lem, the quality of the output is often questionable due to

the heavy reliance on existing information in the input im-

age. So these methods would not be able to repair features

that are not present in the input. Hence traditional methods

are generally more suitable for background repairing, as the

entire background is usually a repeating pattern of a smaller

region. On the contrary, human face image reconstruction

is more difficult, which usually requires the generation of

features that do not exist in the input image while keeping

the output semantically accurate.

To tackle the weaknesses of traditional methods, deep

Figure 1. Illustration of the outputs from our proposed network.

Images from left to right are: (1) Input images with missing con-

tent. (2) Coarse outputs from the first stage network. (3) Edge

maps from the second stage network generated based on the coarse

output. (4) Final outputs from the third stage network.

learning approaches are recently becoming the dominant

approach for image repairing. The Generative Adversarial

Network (GAN) [6] was firstly proposed to generate images

from random one-dimensional input. Recent developments

of GAN variants have been widely applied to different areas

including style-transfer [33], image synthesis [3], text-to-

image generation [21] and image inpainting [31, 18]. Other

techniques such as WGAN [1] have also been proposed to

improve the stability of training to prevent model collapse.

Inspired by the well-known autoencoder network struc-

ture, recent image inpainting networks often adopt an

encoder-decoder convolutional network structure [31] to

improve performance. In contrast, a simple Convolutional

Neural Network (CNN) [14] would often result in blurry

outputs which are much more inferior to the ground truth.

To improve this, as neighbouring pixels around the missing

area typically sit in the middle of the input and prediction,

attention based techniques [11] are often used to improve

the semantic coherence of the output. In addition, while

image-inpainting tasks often assume the missing regions

are much smaller than the input information, more recent

neural network structures [24] have been proposed attempt-

ing to regenerate images under more challenging conditions

where the input is a minor proportion of the missing region,
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as illustrated in Figure 1. This problem is often referred

to as image outpainting or image extrapolation. For such

image outpainting tasks, the network has to predict and re-

fill the missing region with features totally absent from the

input. This raises two main challenges for the outpainting

network:

• The network needs to know which features are missing

and how they should be located in the output relative

to the spatial location of other features.

• The conditional input can be spatially distant from the

missing regions to be predicted. It is difficult to make

predictions for them due to the lack of neighbouring

ground truths.

To solve the above issues, we propose a three-stage image

outpainting neural network inspired by the recent work of

EdgeConnect [18], Lafin [28] and Semantic Regeneration

Network (SRN) [24] to generate semantically coherent im-

ages with clear boundaries between the main object and

background. The network consists of three stages where

the first stage is a coarse generator, the second stage is an

edge image generator and the last stage is a refinement gen-

erator which combines the output from previous stages to

create the final output. Each of the generators follows an

encoder-decoder structure with dilation blocks and adver-

sarial learning in the latter two generators. We evaluated

our model quantitatively and qualitatively on the CelebA-

HQ [13] and Oxford flower102 [19] datasets with 256x256

resolution. Our experimental results show that the proposed

approach is able to achieve more stable and visually con-

vincing outputs against other state-of-the-art models.

Our main methodological contributions are:

• We propose a 3-stage deep learning model that con-

tains a dedicated edge-generator to improve the sharp-

ness and boundary of objects in the final output. Dif-

ferent from EdgeConnect that trains the edge generator

using ground truth images for image inpainting, we in-

troduce edge information into image outpainting and

use our edge generator as the second step by using the

coarse result as input.

• Our method achieves improved performance and sta-

bility with a lower reconstruction loss. Specifically,

this is achieved by calculating losses from a pre-trained

VGG network at both coarse and refinement stages,

whereas the EdgeConnect and SRN only evaluate re-

construction losses at the last stage. Bringing the re-

construction loss forward to the first stage reduces the

blurriness on the coarse output which in turn improves

the edge output and the final image outpainting result.

2. Related Work

2.1. Image Inpainting

The current mainstream image inpainting methods can

be classified into two categories: traditional algorithm

based methods and learning-based methods with generative

models. Diffusion based methods [4] take local features

and fill the missing region from its neighbouring informa-

tion. Patch-based algorithms [2] would instead complete

the missing part by looking for input regions that are sim-

ilar to the missing region. Despite the differences between

the two methods, they both lack the capability to regenerate

structures that are not present in the corrupted input. We

often see poor performance of inpainting human faces be-

cause it usually fails to regenerate semantic structures that

are expected to exist. This property makes traditional meth-

ods most suitable for images with repeating patterns such

as natural scenes or object textures, but a poor choice for

human image regeneration tasks.

Recent learning-based methods often carry an encoder-

coder structure to predict high-level features with incom-

plete input. However, the simple autoencoder structure of-

ten causes the output to be blurry. Since GAN-based meth-

ods were first introduced in [20], various techniques have

been proposed to solve this problem. More than one dis-

criminator can be used in the network as proposed in [9]

to improve both the local and global image quality. Partial

Convolution [16] was proposed to enhance the output qual-

ity with irregular shaped masks. Contextual Attention Net-

work [31] and Gated Convolution Network [30] also uses an

attention-based coarse-to-fine network structure with global

and local critics to produce less blurry images while pre-

venting semantic distortion around the boundary of the

missing region. In addition to static image inpainting, an

extension on repairing video sequences [27] also achieves

good results using coherent features between two frames.

EdgeConnect [18] predicts a Canny edge map of the en-

tire image as part of the input to the second-stage generator

to provide auxiliary guidance for image inpainting. The step

of converting input to a Canny-edge image can also been

seen as similar to the image-to-image translation networks

represented by pix2pix [10] and CycleGAN [33]. However,

our experiments show that the edge generator lacks the abil-

ity to predict an edge map for large missing blocks, which

implies the limitation of applying EdgeConnect to image

outpainting tasks.

2.2. Image Extrapolation and Outpainting

Image outpainting or extrapolation is considered a more

challenging task than image inpainting as the input is even

smaller. For example, with a 256x256 pixel image, only

a small region of 64x64 pixels is given while the rest is

masked. Therefore, the challenge is that the network has to
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predict semantic structures with very limited input. While

similar tasks have been explored in earlier studies of photo

uncropping [32, 23], traditional methods often fail to re-

generate high-level features of human faces despite the

models being able to blend images with different view an-

gles and appearances. Learning-based approaches on the

other hand would not rely on external image-sets to expand

from the input. Earlier work [29] demonstrates the pos-

sibility to complete images irrespective of the input mask

shape by progressively blending similar images into the in-

put. The Recurrent Feature Reasoning (RFR) network [15]

also achieves outstanding results by progressively repairing

missing regions through multiple stages of the neural net-

work.

Furthermore, due to the one-sided property of image out-

painting (i.e., the prediction only expands outwards from

the cropped input), weight masks are often used to indicate

lower confidence on pixels further away from the input. In

SRN [24], the Relative Spatial Variant (RSV) loss was pro-

posed to describe different levels of confidence by assigning

weights based on Gaussian filtering. The second stage re-

finement network in SRN further refines the output from the

first stage network to reduce blurriness and improve texture

details. Intuitively, the SRN network is similar to the Con-

textual Attention Network [31] but with improved stage-one

and stage-two networks to cope with the more restricted in-

put. Our proposed model uses an extra edge network be-

tween the two stages to provide the refinement stage with

extra guidance on the shape and location of features.

3. Our Proposed Network

We propose a three-stage image outpainting network that

consists of three neural network modules: a coarse genera-

tor, an edge generator and a refinement network. Figure 1

shows examples of the expected input and output from the

proposed network. Stage one network adopts an autoen-

coder structure whereas both stage two and stage three net-

works are based on the GAN architecture. Hence the entire

network architecture would have one autoencoder generator

A1 for the stage-one coarse network, one pair of generator

G2 and discriminator D2 for stage-two and another pair G3

and D3 for stage-three. An overview of the architecture of

the network is shown in Figure 2.

The autoencoder in our stage one coarse generator uses

two down-sampling layers and four dilation blocks with a

factor of two. The generators G2 and G3 also use a similar

encoder-decoder structure with eight dilation blocks. The

technique of using dilation blocks was introduced in [9] to

replace the fully connected layer in order to promote a larger

receptive field at the output neuron. The two discriminators

D2 and D3 follow the structure of PatchGAN [10] which

treats the image as a Markov Random Field (MRF) and then

classifies whether the image is real or fake by averaging re-

sults from several smaller patches. Each discriminator has

five convolutional layers with a stride of two for the first

three layers and stride of one for all the other layers.

3.1. Coarse Generator

The stage one coarse generator is to produce an out-

painted output from the corrupted input, aiming to achieve

an overall semantically coherent visual appearance in the

output without emphasising the structural details. For-

mally, denote the original RGB image as Igt and the two-

dimensional mask as M. Then the cropped input is Ĩ =
Igt ◦ (1 − M) where ◦ is the Hadamard product operator.

Denoting the coarse output as Ocoarse, the goal of the coarse

generator A1 can then be formulated as:

Ocoarse = Ī ◦M + Igt ◦ (1−M) (1)

where Ī is the predicted image from A1. For training A1, we

explicitly use reconstruction loss consisting of ℓ1 loss, RSV

loss and perceptual loss from a pre-trained VGG network

on ImageNet.

Our coarse network adopts an autoencoder structure sim-

ilar to the Feature Expansion Network (FEN) proposed in

SRN [24]. Different from FEN which only uses the RSV

loss and ℓ1 loss for training, we also include the perceptual

loss using a pre-trained VGG-19 network to further improve

the performance. Adding a discriminator would not be help-

ful for this stage as there is still distinct difference between

the coarse image and ground truth image. The output from

this coarse generator will then be processed by the next two

stages to create better texture and details.

RSV Loss. The Relative Spatial Variant (RSV) loss was

first proposed in [24] to overcome the common issue of

lacking information for outpainting tasks. As the input

patch is only the minority of the whole ground truth image,

pixels that are far away from the input are more difficult to

predict than neighbouring pixels of the input. This is differ-

ent from other image-inpainting tasks where the prediction

area usually sits close to the input. To intuitively illustrate

this, imagine if half of a person’s nose is given as input, it is

relatively easy to predict the other half of the nose but will

be more difficult to predict the person’s hairstyle. In order

to cope with such input constraints, a Gaussian filter is ap-

plied to assign descending weights to all predicted pixels

around the input. The formula for RSV loss is thus defined

as:

Lrsv = ||(Igt − Ī) ◦Mw|| (2)

where the confidence weighted mask Mw is

Mw =
(g ∗ M̄ c−1

w ) ◦M

max((g ∗ M̄ c
w) ◦M, ǫ)

(3)

where g is the Gaussian filter and:
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Figure 2. Illustration of the proposed network structure. The entire network contains three modules: (1) Stage one: a coarse generator with

an encoder-decoder structure. (2) Stage two: the edge map generator following a GAN structure. It takes the stage-one output as input and

returns a predicted edge map. (3) Stage three: the refinement network which also follows a GAN structure. It takes the output from the

previous two stages and processes them into a single output image.

M̄ i
w = 1−M + M̄ i−1

w (4)

The constant parameter c specifies the number of iterations

required to calculate the mask, which is set to 9 in our study.

Perceptual Loss. The perceptual loss [12] is computed by

computing the difference in VGG-19 activation maps be-

tween the ground truth image Igt and predicted image I.

Our experiments show that adding perceptual loss for train-

ing the coarse generator would improve both the quality and

stability of the coarse output. Formally, the perceptual loss

is defined as:

Lperc,1 = E

[

∑

i

1

Ni

||φi(Igt)− φi(Ī)||
]

(5)

where φi is the activation map of the ith layer and Ni is the

number of elements in that layer.

By combining the L
1

loss, RSV loss and perceptual loss,

the total loss for the stage-one coarse network is:

L = λℓ1L1 + λpercLperc + λrsvLrsv (6)

3.2. Edge Generator

The edge generator stage is to generate edge images from

the coarse output with a GAN generator. The goal for this

stage is to predict the edge map as similar as possible to the

ground truth edge map. We would then use this generated

edge map for stage three to provide guidance on the shape

of generated features and improve image sharpness. The

grayscale coarse output Ogray converted from Ocoarse is

used as the input for this stage. For training the edge gener-

ator, we obtain the ground truth by creating edge maps using

standard edge detectors on the ground truth (original com-

plete) images. We have experimented using the Sobel filter

and Canny edge detector and we found that the Canny edge

detector gives more realistic output, as will be shown in the

later section. Nevertheless, regardless the type of edge de-

tector we adopt, the edge generator G2 is an image-to-image

translation network to convert the coarse output to the de-

sired edge map. This process is formulated as:

Oedge = G2(Ogray, Iedge,M) (7)

where Iedge is the ground truth edge map and M is the same

mask as in stage one to merge the predicted edge map with

ground truth.

Layer Layer type Hyperparameter

1 LayerA k = (7, 7), s = 1, p = 0, CIn = 4, COut = 64
2 LayerA k = (4, 4), s = 2, p = 1, CIn = 64, COut = 128
3 LayerA k = (4, 4), s = 2, p = 1, CIn = 128, COut = 256

4-11 ResNet k = (3, 3), s = 1, d = 2, CIn = 256, COut = 256
12 LayerB k = (4, 4), s = 2, p = 1, CIn = 256, COut = 128
13 LayerB k = (4, 4), s = 2, p = 1, CIn = 128, COut = 64
14 LayerB k = (7, 7), s = 1, p = 0, CIn = 64, COut = 1

Table 1. Generator architecture.

Layer Layer type Hyperparameter

1 LayerC k = (4, 4), s = 2, p = 1, CIn = 2, COut = 64
2 LayerC k = (4, 4), s = 2, p = 1, CIn = 64, COut = 128
3 LayerC k = (4, 4), s = 2, p = 1, CIn = 128, COut = 256
4 LayerC k = (4, 4), s = 1, p = 1, CIn = 256, COut = 512
5 LayerC k = (4, 4), s = 1, p = 1, CIn = 512, COut = 1

Table 2. Discriminator architecture.

The generator has 14 layers in total including 3 encoder

layers, 3 decoder layers and 8 residual blocks between the

encoder and decoder. The encoder has 2 downsampling lay-

ers with stride 2 and kernel size 4. Similarly the decoder has
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its 2 upsampling layers with same stride and kernel size.

Hence the number of filters for each layer of encoder is 64,

128 and 256; and, 256, 128 and 64 for the decoder layers.

Spectral normalisation [17], InstanceNorm and ReLU are

also applied to the encoder and decoder preventing sudden

change in parameter values. Denoting the encoder layers

as LayerA and the decoder layers as LayerB which uses

transposed convolution, the generator architecture is pre-

sented in Table 1. The discriminator layer is similar but

uses LeakyRelu to replace InstanceNorm and ReLU. De-

noting discriminator layers as LayerC, Table 2 shows the

network architecture of the discriminator.

Adversarial Loss and Feature Matching Loss. The total

loss for training the GAN model is the weighted sum of the

standard adversarial loss Ladv and a feature-matching (FM)

loss LFM :

Ledge = λFMLFM + λadvLadv (8)

where λFM and λadv are the weight parameters for each of

the two losses and

Ladv = E(Iedge,Ogray)

[

logD2(Iedge, Ogray)
]

+EOgray
log

[

1−D2(Oedge, Ogray)
]

(9)

LFM = E
[

L
∑

i

1

Ni

||Di
2(Iedge)−Di

2(Oedge)||
]

(10)

where Di
2 is the activation map for the ith layer of D2.

Here the FM loss shares the same concept as the perceptual

loss where it computes the distance between two activation

maps of the ground truth and edge output. However, FM

loss compares the difference on the discriminators’ activa-

tion maps between the ground truth and predicted image. A

larger FM loss means the features on the predicted image

are not so similar to the ground truth.

3.3. Refinement Network

The third stage refinement network generates the final

output image by integrating the coarse output and edge

map into a single image. Since the coarse output obtained

from stage one is often blurry, we incorporate the predicted

edge map from stage two to guide the network generating

more detailed features, such as textures and shapes of fa-

cial structures. By combining the outputs from the previ-

ous two stages, the coarse output provides an approximate

shape and colour of the image, and the edge map plots out

a more precise spatial structure for each feature. We de-

sign another GAN model including a discriminator D3 to

determine whether the refined output is real or fake. For

this refinement stage, while G3 and D3 have similar struc-

tures to G2 and D2, the generator G3 requires 4 input chan-

nels in order to include the extra dimension from the edge

map. Denoting the merged four dimensional input (Oedge,

Ocoarse) as Omerged, the objective of generator G3 can be

formulated as:

Ofine = G3(Omerged,M) (11)

We use total loss with formula:

Lfine = λadvLadv + λpercLperc + λstyleLstyle + λℓ1Lℓ1

(12)

which combines the adversarial loss, perceptual loss, style

loss and L1 loss. As the main objective of this stage is to

refine the coarse content rather than making prediction from

ground up, these losses can help refine the details to make

the output more natural and crisp.

Adversarial Loss and Perceptual Loss. We use adversar-

ial loss for training the generator using the critics received

from the discriminator, ideally we want our final output to

not be distinguishable by discriminator for whether it is

real or fake. Perceptual loss on the other hand compares

the ground truth against our projected output by comparing

their activation map under a pre-trained VGG-19 network.

We aim to make the projected output looking similar to the

real image by including both losses. The perceptual and

adversarial losses for the refinement network are computed

similarly to the previous stages, where:

Ladv = E(Igt,Omerged)

[

logD3(Igt, Omerged)
]

+EOmerged
log

[

1−D3(Ofine, Omerged)
]

(13)

Lperc,2 = E
[

∑

i

1

Ni

||φi(Igt)− φi(Ofine)||
]

(14)

Style Loss. The style loss proposed in [22, 5] is the squared

Frobenius norm of Gram matrix on the pre-trained VGG

network to enhance image quality by reducing the checker-

board artifact in the output. Denoting φ as the Gram matrix

of activation map, the loss is computed as:

Lstyle = E
[

||Gφ
2 (Ofine)−G

φ
2 (Igt)||

]

(15)

4. Experiments

4.1. Experimental Setup

The proposed model is evaluated on the CelebA-HQ [13]

and Oxford Flower102 [19] datasets. For each dataset, we

first resize the original images to 256 × 256 pixels as our

ground truth. We then randomly crop the ground truth im-

ages to 128×128 pixels to allow the network making predic-

tion based on the cropped area. This means our input is 1/4

of the size of the original ground truth. For each dataset, we

use a train/val/test ratio of 0.8/0.1/0.1 with randomly shuf-

fled data.
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We train each stage of the proposed model separately and

sequentially. We have obtained similar results to [18] where

training all 3 stages simultaneously does not improve the

performance. Therefore, we prefer to train our networks

individually for simplicity.

We use the Adam optimiser for our training with β1 = 0
and β2 = 0.9. The learning rate is 0.0001 for generators

and 0.00001 for discriminators. We compare our results

both qualitatively and quantitatively against other state-of-

the-art image inpainting and outpainting models including

EdgeConnect and SRN.

4.2. Qualitative Results

The comparison of our model against other state-of-the-

art models is shown in Figure 3. We can see that our model

has better performance than EdgeConnect which is primar-

ily used for small area image inpainting. Our model can

also achieve better results than SRN given its finer detail

in topological features. There is also less blurriness in the

background with a clear boundary between the main object

and background. Our proposed model also produces better

symmetry for the eyes compared to SRN and hence largely

improves the overall quality of images.

Figure 4 shows the comparison between the coarse out-

put and refined output. It can be seen that the coarse stage

helps predict the overall shapes and colours of the missing

features, whereas the refinement stage focuses on improv-

ing the detailed structure and textures.

4.3. Quantitative Results

CelebA-HQ

Network PSNR SSIM FID

EdgeConnect[18] 12.88 0.5776 32.43

SRN[24] 15.56 0.6345 34.89

Ours 14.53 0.6022 28.48

Table 3. Comparison between EdgeConnect, SRN and our model

on the CelebA-HQ dataset.

4.3.1 Reconstruction-based Evaluation

In our experiment, we use peak signal-to-noise ratio

(PSNR), structural similarity index measure (SSIM) [25]

and Fréchet inception distance (FID) [7] as our evaluation

metrics to be compared against other models. The results

are shown in Table 3. While the quantitative results do not

show a significant difference among the compared models,

our model achieves a better FID score than SRN and Edge-

Connect. On the other hand, our model has slightly un-

derperformed SRN on both SSIM and PSNR. However, as

mentioned in [31] and [24], these metrics are not ideal for

precisely evaluating image inpainting or outpainting tasks

as they fail to reflect the actual quality of textures and struc-

tural details in the generated images. Therefore, such quan-

titative results should be used as a reference only to show

our model performance when most scores only fluctuates

within a small range among different models.

4.3.2 Classification-based Evaluation

For the Oxford Flower dataset, we evaluate the quality of

our outpainting results by classification accuracy using the

open-sourced VGG-S1 model. Our intuition is: given a

classification model trained on the original Oxford Flower

dataset with high accuracy, the classification model should

also obtain high accuracy on our outpainted images if the

quality of the output is good enough to replicate the origi-

nal flower type. Therefore, to conduct the experiment: 1)

we need to first train the classification model with the origi-

nal Flower dataset; 2) test the trained model using the origi-

nal data; and, 3) test the trained model using the outpainted

images. Table 4 shows the classification results using both

sets of data.

Original Regenerated

Accuracy (%) 93.15 82.34

Table 4. Classification accuracy of original and regenerated Ox-

ford Flower data using VGG-S.

We can see from the results that the regenerated data still

maintains a relatively good classification accuracy com-

pared to the original data. This means the VGG-S network

has good robustness, but more importantly, our outpainting

network is able to generate images similar to its original la-

bel. This can be attributed to the fact that our outpainting

output has a good colour consistency similar to the original

image and it is able to replicate the shape and details of the

original image in order to make the generated images cor-

rectly classified. We also note that this experiment might

have a big variation depending on the classification model.

As part of the future work, to make this evaluation more per-

suasive, ideally the experiment should be conducted with

several other different classification models to eliminate the

model variations.

4.4. Ablation Studies

4.4.1 Edge Detector

In addition to the Canny Edge detector, we have experi-

mented using the Sobel filter for edge map generation. One

potential advantage of using Sobel filter over Canny edge is

that it allows for different pixel intensities (gradients) to be

1https://github.com/jimgoo/caffe-oxford102
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Figure 3. Comparison between different image inpainting and outpainting models. From left to right: 1) ground truth; 2) input; 3)

EdgeConnect[18] output; 4) SRN[24] output; 5) our result.

Figure 4. Comparison between coarse output and refined output.

shown on the edge maps. Ideally, such variation should of-

fer extra guidance to the stage three network when predict-

ing missing features. However, our experiment shows the

Sobel filter usually fails to provide enough information on

the overall structure and shape of the object as we expected.

With Figure 5, we observe that the Sobel edge generator is

mainly handling an image-to-image translation task similar

to CycleGAN instead of predicting the ground truth edge

map. In addition, an image-translation network for Sobel

filtering would be more difficult to train as even the ground

truth edge can be blurry when the object has low contrast

with the background. On the other hand, with Canny edge

detector, all edges are sketched with the same intensity and

this enforces the network to perform prediction using coarse

images.

Based on the quantitative results in Table 5 for final-

stage output, Sobel filter actually shows a better the

reconstruction-based metrics score than Canny edge be-

cause, again, the quantitative metrics are not the best for

evaluating image outpainting performance. In addition,

the Canny edge detector gives lower FID scores, which is

consistent with our qualitative evaluation, and this further

demonstrates that FID is a more reliable metric for the im-

age outpainting task.

4.4.2 Loss Function for Coarse Network

The performance of the coarse network output is crucial to

the quality of the final output. Different from EdgeConnect
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Figure 5. Comparison between the Sobel filter and Canny edge de-

tector. From left to right: the predicted coarse output; output using

Sobel filter; output using Canny edge detector. We see the shape

of faces are not clearly depicted by the Sobel-based generator.

CelebA-HQ Flower102

Network PSNR SSIM FID PSNR SSIM FID

Sobel 14.59 0.5615 34.73 14.25 0.6412 63.15

Canny 14.53 0.6022 29.48 13.98 0.5731 58.35

Table 5. Quantitative results comparing the Sobel filter and Canny

edge detector.

and SRN, we introduced perceptual loss as part of the loss

function for the coarse generator. As image outpainting net-

works are generally difficult to train due to the large missing

areas, using the pre-trained VGG network’s activation map

to compute the loss can help improve the coarse generator.

As a comparison, Figure 6 shows samples of coarse output

without using perceptual loss. We can see that the coarse

image is more blurry with jagged edges as the vanilla L1

loss does not preserve fine textures very well [10]. Hence

by incorporating the pre-trained VGG-19, we add the per-

ceptual loss to help the network learn semantic features and

details in order to provide better inputs for the later two

stages.

4.4.3 Additional Results and Discussion

One limitation of our model would be its inferior perfor-

mance on predicting small objects. Figure 7 shows a few

results using the CUB200 [26] dataset with our proposed

model. From the outputs we can see our model is not well

predicting the structure of birds with significant artifacts.

Due to the different shapes and sizes of birds even of the

same species, the edge generator is unable to delineate the

shape of features such as eyes and beaks precisely enough.

We would like to improve our coarse and edge generator

to better handle small object regeneration. Furthermore,

CUB200’s small dataset size may also not be sufficient to

Figure 6. Sample coarse outputs with and without perceptual loss.

Top: without perceptual loss; Bottom: with perceptual loss. The

performance of the coarse network without perceptual loss is much

worse, represented by the jagged edges and inconsistent colours.

Figure 7. Sample outputs using CUB200, showing the limitation

of our model for small object structures.

train our model. Hence how to effectively address small

training data with large variation would be a good future

direction for our research.

In addition, the proposed model currently only accepts

a square-shaped image patch as input. We will investigate

generalising our model to accept irregular shaped input as

our future work.

5. Conclusions

We propose a three-stage image-outpainting network to

regenerate images from small cropped inputs. The proposed

model is able to correctly recreate semantic structures with

coherent details by employing a three-stage network struc-

ture containing a coarse generator, an edge map generator

and a refinement generator. We have evaluated our model

against other image inpainting and outpainting models and

demonstrated better performance using our method. As part

of future work, we will explore new metrics for quantitative

evaluation to better reflect the quality of image outpainting.
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Darrell, and Alexei A. Efros. Context encoders: Feature

learning by inpainting. CVPR, pages 2536–2544, 2016. 2

[21] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-

geswaran, Bernt Schiele, and Honglak Lee. Generative ad-

versarial text to image synthesis. In ICML, pages 1060–1069,

2016. 1

[22] M. S. M. Sajjadi, B. Schölkopf, and M. Hirsch. EnhanceNet:

Single image super-resolution through automated texture

synthesis. In ICCV, pages 4501–4510, 2017. 5

[23] Qi Shan, Brian Curless, Yasutaka Furukawa, Carlos

Hernández, and Steven M. Seitz. Photo uncrop. In ECCV,

volume 8694 of Lecture Notes in Computer Science, pages

16–31, 2014. 3

[24] Yi Wang, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Wide-

context semantic image extrapolation. In CVPR, pages

1399–1408, 2019. 1, 2, 3, 6, 7

[25] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.

Simoncelli. Image quality assessment: From error visibility

to structural similarity. IEEE Transactions on Image Pro-

cessing, 13(4):600–612, 2004. 6

[26] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-ucsd birds 200. Technical

Report CNS-TR-2010-001, California Institute of Technol-

ogy, 2010. 8

[27] Rui Xu, Xiaoxiao Li, Bolei Zhou, and Chen Change Loy.

Deep flow-guided video inpainting. CVPR, pages 3723–

3732, 2019. 2

[28] Yang Yang, Xiaojie Guo, Jiayi Ma, Lin Ma, and Haibin Ling.

LaFIn: generative landmark guided face inpainting. arXiv

preprint, 2019. 2

[29] Raymond A. Yeh, Chen Chen, Teck-Yian Lim, Mark

Hasegawa-Johnson, and Minh N. Do. Semantic image in-

painting with perceptual and contextual losses. CVPR, pages

5505–5514. 3

[30] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and

Thomas S Huang. Free-form image inpainting with gated

convolution. arXiv preprint arXiv:1806.03589, 2018. 2

[31] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and

Thomas S. Huang. Generative image inpainting with con-

9



textual attention. CVPR, pages 5505–5514, 2018. 1, 2, 3,

6

[32] Y. Zhang, J. Xiao, J. Hays, and P. Tan. Framebreak: Dra-

matic image extrapolation by guided shift-maps. CVPR,

pages 1171–1178, 2013. 3

[33] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. ICCV, pages 2223–2232,

2017. 1, 2

10


