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Abstract

In this paper, we propose a novel reference based im-

age super-resolution approach via Variational AutoEncoder

(RefVAE). Existing state-of-the-art methods mainly focus

on single image super-resolution which cannot perform well

on large upsampling factors, e.g., 8×. We propose a refer-

ence based image super-resolution, for which any arbitrary

image can act as a reference for super-resolution. Even

using random map or low-resolution image itself, the pro-

posed RefVAE can transfer the knowledge from the refer-

ence to the super-resolved images. Depending upon dif-

ferent references, the proposed method can generate differ-

ent versions of super-resolved images from a hidden super-

resolution space. Besides using different datasets for some

standard evaluations with PSNR and SSIM, we also took

part in the NTIRE2021 SR Space challenge [29] and have

provided results of the randomness evaluation of our ap-

proach. Compared to other state-of-the-art methods, our

approach achieves higher diverse scores.

1. Introduction

Image Super-Resolution (SR) is a fundamental problem

in image processing. Given a low-resolution (LR) image, the

objective is to upsample the LR image by U× to obtain the

SR image. In other words, each LR pixel is used for predict-

ing U×U HR pixels. In real applications, super-resolution is

useful for images/videos display, storage, broadcasting and

transmission. In particular, it can provide better visual expe-

rience for watching movies and playing video games. [2, 3]

Most works for image super-resolution are limited as they

focus on single image super-resolution by optimizing the

mean squared errors (MSE) between HR and SR pixels. Due

to the ill-posed nature of super-resolution, using MSE usu-

ally leads to the blurry effect on edges [6, 20]. One solution

is to use Generative Adversarial Network to implicitly align

the distribution between SR and HR images. Despite recent

development on GAN based image SR [20, 39, 33], they

usually focus on smaller upsampling factors, like 4× [39].

For larger upsampling factors, like 16× SR, researchers ei-

LR image Four 8 SR images by using arbitrary references

Figure 1: Visualization of 8× SR using our proposed RefVAE.

The visualization of the SR images given different references (right

upper corner of the SR images), like random noise, random images

or LR image itself.

ther use 4× SR model twice, or use simple interpolation to

upsample the LR image by 4× first and then use SR model

for another 4× upsampling [21]. Our concern is that the

single image super-resolution has reached its limit on large

upsampling factors even with most advanced deep learning

techniques. Hence, we propose a reference based image

super-resolution (RefVAE), which can search similar pat-

terns from the reference to guide the super-resolution. It

is an online searching but fast processing because of the

propsoed Conditional Variational Inference (CVAE). It is

not an uncommon procedure in image SR using online ap-

proach to search similar patches from external [12] or inter-

nal [45] datasets for SR. The difference is that we compress

various reference images into a compact hidden space by

CVAE. Instead of learning complex regression models [15],

we propose to use CVAE to learn explicit distribution from

reference images, then we sample the patterns from the dis-



tribution as a condition or prior to super-resolve LR image.

Different from reference based image super-resolution,hence

it is fast for real-time applications. Our proposed method

is also different from single image SR. Once the training is

done, we can use different “references” to generate different

SR candidates, hence, we can expand the SR space to allow

users to pick one of the SR candidates for applications. As

shown in Figure 1, the “reference” (right-hand upper sub-

images) can be any images, even a random Gaussian map or

the LR image itself. Our approach can generate a SR image

with good visual quality but with different perceptual details

around the edges and textures (The differences are marked

in boxes with different colors).

To sum up, our contributions include:

• We propose RefVAE to explicitly discover image dis-

tribution using the proposed Conditional Variational

AutoEncoder for image super-resolution.

• Instead of learning directly the data distribution, we

introduce references as a condition to guide super-

resolution. To transfer the features from style images,

we propose to combine both pixel loss and style loss

for training. (See Section )

• We provide experimental results on different datasets

and show analysis and comparison on both single image

SR and reference based image SR results.

2. Related work

In this section, we give a brief review on related previous

works on single image super-resolution. To introduce our

proposed RefVAE method, we also revisit some representa-

tive works on generative learning approaches for image SR.

Finally, we also introduce related works on reference based

image super-resolution.

2.1. Single image super­resolution

Single image super-resolution uses one single LR image

to produce the corresponding SR image. It is a classic topic

in image processing and a lot of works have been proposed

to resolve it. With the development of learning approaches,

learning based image SR dominates this field. We can cat-

egorize learning based SR into two groups: conventional

learning based approaches [36, 23, 22] and deep learning

based approaches [28, 43, 21, 27, 18].

Let us focus on some representative deep learning based

approaches. Dong et al. [9] proposed the first CNN based

image SR using only three layers of convolutions to learn the

mapping relations between LR and HR images. Later on,

VDSR [18], LapSRN [19], SRResNet [20], EDSR [21] and

many other works [43, 44] use a deeper and wider (number of

filters) CNN model to learn the mapping functions for super-

resolution. Back projection in CNN [13, 27] also sets a new

path for image SR for which iterative residual update can

minimize the feature distance for super-resolution. Recent

studies [28, 8, 31] show that attention can learn non-local

features for super-resolution, especially useful for larger im-

ages. Liu et al. [28] proposed an attention based back projec-

tion network for large-scale super-resolution. Dai et al. [8]

proposed higher-order attention using channel and spatial

attention for image. To fully explore the correlations in

the channel dimension, Niu et al. [31] proposed a holistic

attention network for image super-resolution. The above

mentioned approaches train different convolutional neural

network end-to-end to optimize mean squared errors be-

tween SR and HR pixels. The problem is that using MSE

to give equal weights to different pixels can cause blurry

effect. To address this problem, many researchers have pro-

posed generative learning approaches for image SR.

2.2. Generative learning approaches for SR

Using generative learning approaches for image SR is a

popular topic. We can consider using a single CNN model

for SR as discriminative learning that does not explore the

data distribution for modelling. On the other hand, gen-

erative learning approaches explicitly or implicitly study

the data distribution for modelling. Generative Adversar-

ial Network [11] is one of the popular implicit generative

approaches. It is also used in image SR. For example, SR-

GAN [20] uses GAN to train 4× SR. In order to generate

more photo-realistic features, VGG based feature loss is used

to minimize the deep feature distances between SR and HR

images. ESRGAN [39] proposes to use relativistic GAN [17]

to let the discriminator predict relative realness instead of the

absolute value. ESRGAN+ [33] further improves ESRGAN

by introducing noise for to explore stochastic variations.

Vartiaonal AutoEncoder is another choice for SR.

Different from GAN, VAE explicitly explores the data

distribution for modelling. Liu et al. [25] first proposed

VAE for image super-resolution that achieves comparable

performance as CNN based approaches. Furthermore, [24]

introduces a reference based face SR that uses the condi-

tional VAE to achieve domain-specific super-resolution. A

sampling generator is proposed to constraint the choice of

samples for better face reconstruction. To avoid the blurry

effect [10] caused by the sampling process in VAE, [26]

uses VAE for both image super-resolution and denoising

by combining GAN and VAE together so that it can use

adversarial loss to encourage photo-realistic feature recon-

struction. Most recently, Lugmayr et al. [30] proposed to

use conditional normalizing flow to model image distribu-

tion for super-resolution and achieved good performance in

both quantitative and qualitative results. Normalizing flow

based approaches can also be extended to image manipula-

tion [4, 7]. However, the whole normalizing flow structure is

over-complex (approx. 50,000,000 parameters) which could



be difficult for training.

2.3. Reference based Super­Resolution (RefSR)

The development of reference based image super-

resolution (RefSR) is not a surprise to researchers. Orig-

inally, it comes from the non-local filtering. The conven-

tional learning based approaches are patch based process. In

other words, the LR patches can be reconstructed by learn-

ing the mapping models from images/videos with similar

contents [12, 46, 35, 45, 15]. For example, k Nearest Neigh-

bor (kNN) [15] can be used for online search so it limits the

big data search. Random Forests [22] is a fast algorithm that

can classify training patches into different groups for diverse

regression modelling.

Reference based SR can also be achieved by using deep

learning. [12] proposes to use an extra HR reference to

guide SR. The idea is to use CNN to extract multi-scale

HR features to fill the missing information for LR images.

Similarly, Zheng et al. [46, 35] proposed a similar reference

based SR approach using CNN. The difference is that it uses

flow warping operation to align LR and reference features

for super-resolution. However, it still requires a pre-aligned

reference for SR, or the warping operation cannot well match

the feature maps. Most recently, Tan et al. [35] proposed

a reference pool to expand the searching region for multi-

reference based super-resolution. Not only CNN can be

used for RefSR, Liu et al. [24] proposed a face SR that

uses an image from the same identity as reference. The

idea is to train a conditional Variational AutoEncoder to

learn conditional distribution between the reference and LR

image. The limitation is that it only investigates the facial

image SR and the reference image has to be the face with

the same identity. It is not suitable for general image SR.

The study of RefSR also reveals the ill-posed nature of

SR that more than one SR image can be formed from a

LR image. Depending on different external or internal im-

ages as reference, we can transfer reference features to fill

out the missing information for LR image enlargement. As

described in the Learning the Super-Resolution Space Chal-

lenge [29], we can formulate the SR problem as learning

a stochastic mapping, capable of sampling from the space

of plausible high-resolution images given a low-resolution

image. By using an arbitrary reference image to expand

data diversity, RefSR is one way to resolve SR space. The

advantage is that 1) multiple predictions can be generated

and compared and 2) we allow users to choose references

with desired patterns for interactive SR.

3. Method

In this section, we will give detailed introduction on the

proposed Reference based image super-resolution approach

via Variational AutoEncoder (RefVAE). Let us formally

define the image SR. Mathematically, given a LR image

X ∈ Rm×n×3 which has been down-sampled from the cor-

responding HR image Y ∈ RUm×Un×3, where (m, n) is the

dimension the image and U is the up-sampling factor. They

are related by the following degradation model,

X = D ⊗ Y + ` (1)

where ⊗ represents the down-sampling convolution, ` is

the additive white Gaussian noise and D denotes the down-

sampling kernel. The goal of image SR is to resolve Equa-

tion 1 as the Maximum A Posterior (MAP) problem as,

Ŷ = arg max
Y

;>6%(X|Y) + ;>6%(Y) (2)

where Ŷ is the predicted SR image. log%(X|Y) repre-

sents the log-likelihood of LR images given HR images

and log%(Y) is the prior of HR images that is used for model

optimization. Note that Equation 2 generally describes the

optimization process that multiple SR Ŷ can be found. We

can rewrite Equation 2 as Reference based SR,

Ŷi = arg max
Y

;>6%(X,R8 |Y) + ;>6%(Y)

Fℎ4A4 R8 ∈ SR 0=3 Ŷi ∈ SY

(3)

and we define the SR space as SY and the reference space as

SR. The desired SR image can be randomly sampled from

SR space given arbitrary reference image.

The complete architecture of the proposed RefVAE is

shown in Figure 2, which includes the training (upper half

of the figure) and testing (lower half of the figure) stages.

Our proposed RefVAE takes arbitrary references R8 and LR

images X for training and testing. It includes three compo-

nents: 1) VGG Encoder, 2) CVAE (in the pink box), and

3) Image Decoder. The VGG Encoder is used to extract

feature maps from LR and reference images. CVAE is used

to transfer reference features to a hidden space for condi-

tional feature sampling. In other words, CVAE generates

a candidate feature pool where random feature vectors can

be sampled as conditional features. The LR feature maps

are split into mean and variance maps, then they compute

with the conditional features to obtain the estimated features.

Finally, the Image Decoder takes the estimated features for

image reconstruction.

3.1. VGG Encoder

The VGG Encoder follows the structure of VGG-19 by

keeping all convolution layers and discarding the fully con-

nection layers. We directly use pre-trained VGG19 [34]

to extract feature maps from references (�R = � (R)) and

the bicubic upsampled LR images (�X = � (X)), where G

stands for the process of VGG feature extraction. Inside the

VGG Encoder, there are three maxpooling layers to down-

sample the input image by 8×. Note that we resize arbitrary

reference images to 256 × 256 before passing it through the
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Figure 2: The training and testing processes of the proposed RefVAE. It consists of 1) VGG Encoder (the green box), 2) Conditional

Variational Variational AutoEncoder (CVAE) (the pink box), 3) Image Decoder (the dark green box), and Discriminator (Discrim.) for loss

computation. Detailed structures of the Image Decoder and Feature Encoder/Decoder are also shown on the right bottom corner.

VGG Encoder. Hence we have fixed reference feature maps

as �R ∈ R32×32×512. For LR images, we initially upsample

them by Bicubic interpolation to the desired size. The rea-

son of using pre-trained VGG Encoder is that: 1) VGG was

trained for general image classification that the extracted fea-

ture maps are generalized to images with different contents

and 2) we want to project the LR and reference images to

a same feature domain such that we can fuse their features

together for super-resolution.

3.2. Conditional Variational AutoEncoder

We have the Conditional Variational AutoEncoder

(CVAE) that projects the reference feature maps to a latent

space to learn the hidden distribution via Feature Encoder.

The Feature Decoder learns to transfer the reference features

as conditions �' for LR feature maps. The combination of

Feature Encoder and Decoder (for detailed structures: see

the right of Figure 2) forms the Variational Inference process.

The idea of Variational Inference is to learn the generative

model for the reference images that can be represented by a

Gaussian model as %(I |R) = # ∼ (I; `(R),Σ(R)), where

` and Σ = 3806(f2
1
, ..., f2

=) are the mean and variance of

the learned Gaussian model. In other words, we learn the

pixel inter-correlations and represent them as a probability

model. We introduce randomness by the sampling process.

As the Gaussian curve shown in Figure 2, we use a normal

distribution &(I) = # ∼ (0, �) to sample from the reference

model as I = ` + n · f. To ensure the learned probability

model close to a normal distribution, we use KL divergence

to optimize the model as,

� ! (%(I |R) | |&(I)) = � [;>6%(I |R) −&(I)]

=
1

2

(

−
∑

8

(;>6f2
8 + 1) +

∑

8

f2
8 +

∑

8

`2
8

)

(4)

During the testing, we can discard the Feature Encoder

as many existing VAE based image reconstruction [32, 16].

We can use vectors sampled from the normal distribution

as conditional priors for super-resolution. We can also keep

the Feature Encoder to allow user to define their own ref-

erence image for customized super-resolution. That is, we

keep the Feature Encoder to extract specific prior distribu-

tion %(I |R) = # ∼ (I; `(R),Σ(R)) as prior conditions

for super-resolution. Next, to obtain the conditional fea-

ture maps �R, we use one convolution block to project the

learned distribution back to the spacial domain (we also re-

size it to the same size as the LR feature map via simple

interpolation).

In order to transfer the conditional features to the LR

feature map, we use a convolution block to learn the mean

and variance (note that the mean and variance are the spatial

statistics of the feature maps, rather than the variables of the

Gaussian distribution) for the LR feature maps as �` and �Σ.

We then have the fused features as �- |' = �' · (1+�Σ) +�`.

3.3. Image Decoder

Finally, the Image Decoder learns to reconstruct the SR

image from the fused feature maps Ŷ. The structure of

Image Decoder (dark green boxes in Figure 2) has a similar



structure as the VGG Encoder stacking three convolution

layers followed by a simple bilinear interpolation.

3.4. Training losses

To train the proposed RefVAE to generate SR results with

photo-realistic visual quality, we suggest to use a discrim-

inator to reduce the perceptual distance between SR and

ground truth images. We design the same discriminator as

PatchGAN [38] and the adversarial loss is defined as,

!03E = ;>6[1 − � (Ŷ)] (5)

The idea of using style and content losses for style trans-

fer [32, 16] is an efficient approach to transfer the reference

style to the target image while preserving the content infor-

mation. It is also suitable for reference based SR. We not

only want the SR image close to the ground truth, but we

also want it close to the reference image in terms of style

similarity. In other words, we want to ensure the reference

features to be transferred to the LR images.

Content loss For content loss, we extract features for the

HR image Y and the SR Ŷ using VGG-19 [34] (we take

the feature map at relu4_1 layer). We refer these features

to as ,Y and ,Ŷ, respectively. For pixel-wised difference,

we also have the !1 loss between SR and HR and their

down-sampled versions. Totally, we have the content loss

as,

!content =




,Y −,
Ŷ







1
+




Y − Ŷ






1
+




�>F=(Y) − �>F=(Ŷ)






1
.

(6)

where Down is the U× bicubic down-sampling operator.

Style loss. To measure the style similarity, we use VGG-19

to extract feature maps (relu1_2, relu2_2, relu3_4, relu4_1)

for the reference image R and the SR image Ŷ as +R and

+Ŷ. Similar to [32], we measure their mean and variance to

align the SR features close to the reference features as:

!style =

∑

8

‖<40=(+ 8Y −+ 8
Ŷ
)‖1 + ‖E0A (+ 8Y −+ 8

Ŷ
)‖1 . (7)

where mean and std are the operations for calculating the

mean and variance of the feature maps. In order to have SR

images visually close to the HR image, the LPIPS loss [42]

is used to measure perceptual differences as !!%� %( (Ŷ,Y).

The Total Variation loss !)+ (Ŷ) is used to encourage

smooth quality, for which we calculate the first-order hori-

zontal and vertical pixel gradients as

!)+ =

∑

8, 9

(

(Ŷ8, 9−1 − Ŷ8, 9 )
2 + (Ŷ8−1, 9 − Ŷ8, 9 )

2
)V

. (8)

Total loss. We have the total loss as,

!style =_2>=C4=C !content + _BC H;4!style + _!%� %(!LPIPS

+ _)+ !TV + _ !!KL .
(9)
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Figure 3: Training Losses in the proposed RefVAE. It consists

of 1) Content loss, 2) Style loss, 3) KL loss, 4) TV loss, 5) LPIPS

loss and 6) Adversarial loss.

where _2>=C4=C , _BC H;4, _!%� %( , _)+ and _ ! are the

weighting parameters for content loss, style loss, LPIPS

loss, TV loss and KL loss. Figure 3 shows a summary of all

the loss terms for readers’ reference.

4. Experiments

4.1. Data Preparation and Network Details

We trained our model on DIV2K [37] and Flickr2K [21]

datasets. They both contain images with resolution larger

than 1000×1000. We extracted LR and HR patches from

the training dataset with the size of 32×32 and 32U×32U,

respectively, whereU=8 is the upsampling factor. The down-

sampling process is done by bicubic interpolation. For the

reference image, we used Wikiart [1] that is widely used

in style transfer. The testing datasets included Set5 [5],

Set14 [41], Urban100 [14] and DIV2K validation [37].

We conducted our experiments using Pytorch 1.7 on a PC

with one NVIDIA GTX1080Ti GPU. During the training,

we set the learning rate to 0.0001 for all layers. The batch

size was set to 16 and we trained it for 5×104 iterations. For

optimization, we used Adam with the momentum equal to

0.9 and the weight decay of 0.0001. During the training, we

set _2>=C4=C = 1, _BC H;4 = 10, _!%� %( = 1, _)+ = 1 and

_ ! = 1, which are the weighting parameters for content

loss, style loss, LPIPS loss, TV loss and KL loss. The

executive codes and more experimental results can be found

in: https://github.com/Holmes-Alan/RefVAE

Metrics. For evaluation, we have used several metrics:

PSNR measures the average pixel differences between

ground truth and estimation. SSIM [40] measures the

structural similarity between ground truth and estimation.

1 LPIPS [42] measures the perceptual similarity between

ground truth and estimation. Diverse score measures the

1To calculate PSNR and SSIM, we first convert the SR and ground truth

images from RGB to YCbCr and take the Y channel for computation.
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Figure 4: Visualization of 8× SR on different datasets using different SR methods. (a) is from Set14, (b) is from Urban100, (c) and

(d) are from DIV2K validation.

Table 1: Comparison with state-of-the-art methods. We compare with SRNTT and SRFlow on 8× super-resolution on PSNR (dB),

SSIM and LPIPS.

Methods
Set5 Set14 BSD100 Urban100 DIV2K validation

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic 24.39 0.657 0.537 23.19 0.568 0.630 23.67 0.547 0.713 21.24 0.516 0.686 25.17 0.664 0.584

SRNTT(HR) 24.69 0.674 0.492 23.16 0.564 0.613 23.63 0.542 0.687 - - - - - -

SRNTT(LR) 24.36 0.655 0.522 23.16 0.564 0.613 23.65 0.543 0.691 - - - - - -

SRFlow 24.18 0.650 0.237 22.13 0.513 0.331 22.96 0.499 0.425 20.676 0.531 0.300 24.53 0.616 0.272

Our(LR) 25.87 0.723 0.214 24.15 0.598 0.323 24.15 0.558 0.376 21.74 0.575 0.334 24.75 0.641 0.232

Our(HR) 25.92 0.724 0.218 24.20 0.601 0.327 24.18 0.561 0.386 21.80 0.575 0.332 24.94 0.650 0.201

Our(random) 25.94 0.721 0.224 24.28 0.601 0.328 24.25 0.561 0.384 21.85 0.576 0.358 25.00 0.650 0.202

spanning of the SR space. We follow the same measure-

ment defined by NTIRE2021 SR space challenge [29]. We

sampled 10 images, and densely calculated a metric between

the samples and the ground truth. To obtain the local best

we pixel-wisely selected the best score out of the 10 samples

and took the full image’s average. The global best was ob-

tained by averaging the whole image’s score and selecting

the best. Finally, we calculated the score as: (global best -

local best)/(global best) × 100.

4.2. Compare with state­of­the­art methods

Our proposed RefVAE is for diverse image super-

resolution that is able to generate many SR results. We

consider two types of related SR methods for comparison:

reference based image SR and generative model based image

SR. The SR approaches we compare with are: SRNTT [45],

reference based SR using similar image as reference for on-

line warping, and SRFlow [30], normalizing flow based SR
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of using LR and HR images as references for SR. The significant differences are marked in yellow circles.

that predicts multiple SR results. 2

In Table 1, we show the overall comparison with SRNTT

and SRFlow on 8× image super-resolution on Set5, Set14,

BSD100, Urban100 and DIV2K validation datasets. It is

seen that our proposed RefVAE can achieve the best PSNR,

SSIM and LPIPS by about 2 dB, 0.1 and 0.01, respectively.

Note that SRNTT [45] was originally trained and tested on

specific CUFED5 dataset [45] for which each image has five

images with similar contents. For a fair comparison, we

tested SRNTT by using LR and HR images as reference for

SR, which are SRNTT(LR) and SRNTT(HR). 3 Similarly,

we also tested our proposed RefVAE by using LR and HR

images as Our(LR) and Our(HR), respectively. Visually, we

show four examples in Figure 4. It can be seen that our

proposed method can restore the details better than others.

Especially, it is seen that SRFlow collapses on several cases.

2Note that since most of state-of-the-art SR approaches are dedicated

for producing one prediction with high PSNR and do not consider the

possibility of multiple SR results, it is not our intention to compete with

those approaches in terms of PSNR and SSIM.

3Note also that SRNTT requires a lot of memory for online warping.

Larger image SR cannot be done on one GPU, hence we did not have the

results for Urban100 and DIV2K.

For example, SRFlow generated a large black region on

ppt3. It also produces holes on img076, 0816 and 0897

with noises. For SRNTT, it generated blurry results without

restoring sharp edges. On the other hand, our proposed

RefVAE can generate plausible SR results with sharp edges

and textures.

More importantly, we are interested in the ability of ex-

pansion of SR space. Since our proposed RefVAE can take

arbitrary references for super-resolution, we can measure the

diversity by using Diverse score defined in NTIRE2021 SR

space challenge [29].

As discussed in Section III, our proposed RefVAE can take

random noise or external images as references. In Table 2,

we randomly chose 10 images from WikiArt as references for

SR. We also use LR image itself and HR image as references.

We list the results on SR estimation as SR PSNR, SR SSIM

and SR LPIPS. It can be seen that the proposed RefVAE can

generate different SR images (different PSNR and SSIM)

given different references. It demonstrates that the proposed

RefVAE can expand the SR space by a large margin. In the

meantime, we do not want to distort SR images to be far

away from the ground truth LR images. Hence, we down-



Table 2: Analysis on SR space of RefVAE on DIV2K dataset.

The PSNR, SSIM and LPIPS on SR estimation are indicated as

SR PSNR, SR SSIM and SR LPIPS, while for LR estimation they

are respectively indicated as LR PSNR and LR SSIM. The overall

estimation using SRFlow and our methods are shown in the 2nd

half of the table.

Reference SR PSNR ↑ SR SSIM ↑ SR LPIPS ↓ LR PSNR ↑ LR SSIM ↑

Ref. 1 24.27 0.616 0.310 42.90 0.996

Ref. 2 25.18 0.661 0.306 44.55 0.997

Ref. 3 25.03 0.654 0.304 44.37 0.997

Ref. 4 24.76 0.644 0.302 43.93 0.997

Ref. 5 25.28 0.664 0.314 44.80 0.997

Ref. 6 25.17 0.662 0.306 44.81 0.997

Ref. 7 24.62 0.627 0.298 43.43 0.996

Ref. 8 25.04 0.659 0.307 44.26 0.997

Ref. 9 24.27 0.611 0.320 42.86 0.996

Ref. 10 24.42 0.615 0.310 42.30 0.996

LR 25.31 0.664 0.306 46.21 0.997

HR 25.40 0.665 0.308 45.63 0.997

Overall Estimation

SRFlow

Div. score: 10.07
24.46 0.615 0.328 51.18 0.996

Our (Reference)

Div. score: 14.80
24.89 0.641 0.308 44.17 0.997

Our (Random)

Div. score: 14.91
24.91 0.642 0.321 44.77 0.997

Table 3: Ablation study of RefVAE on DIV2K dataset on 8×

super-resolution. We report the average across datasets.

Model
Components Eval.

CVAE SC Dicri. PSNR ↑ SSIM ↑ LPIPS ↓ Div. ↑

Our

- - - 25.23 0.650 0.412 0

X - - 24.82 0.641 0.338 12.326

X X - 24.84 0.643 0.400 14.142

Final X X X 24.75 0.640 0.272 14.992

sample SR images by bicubic to estimate PSNR and SSIM

on the LR space as LR PSNR and LR SSIM, respectively. It

can be seen that different SR estimation can well preserve

LR information with PSNR over 40 dB.

Overall, we have calculated the Diverse score of SR-

Flow and our approach in Table 2. Given different refer-

ences, we have two results as entitled Our(Reference) and

Our(Random). It can be seen that our approach can outper-

form SRFlow in terms of PSNR, SSIM and Diverse score.

We also show SR results of using 12 different references

in Figure 5. To visualize the differences among multiple

SR images, we subtracted the SR by the ground truth HR

images to obtain the residual maps, then we multiplied the

residual values by 5 to show the differences. We can observe

the differences around the edge and texture regions from the

residual maps (marked in yellow circles), e.g., the patterns

of the T-shirt and the roof of the building. In the meantime,

we also visualize the SR results using LR and HR images.

It can be seen that using LR or HR as references can better

reduce the residues.

4.3. Ablation study

Let us evaluate various key components of the RefVAE:

(1) the Conditional Variational AutoEncoder (CVAE), (2)

LR Our results HR LR Our results HR

Figure 6: Weak cases of using proposed RefVAE. We show two

8× SR examples from BSD100 dataset. It can be found that the

facial details cannot be preserved.

the use of style and content losses (SC loss), (3) the use of

discriminator (Discri.), To examine their impact, we started

with a simple network structure consisting Image Encoder

and Decoder only, and we progressively added all compo-

nents. Table 3 reports the results of 8× SR on DIV2K vali-

dation datasets. We have included PSNR, SSIM, LPIPS and

Div. (Diverse score) in the table. From the values of Div.,

we can find that using CVAE module can introduce random-

ness into the network to generate multiple SR results. When

the style and content losses were used for training, we can

further maximize the Diverse score to expand the SR space.

From the values of PSNR, SSIM and LPIPS, using CVAE,

SC loss and Discri can reduce the PSNR and SSIM, but they

can improve the LPIPS value, which indicates better quality.

4.4. Weak cases

In terms of perceptual quality, our proposed method does

not perform too well on images with smaller size. We show

two examples in Figure 6. It can be seen that the fine facial

expression cannot be ideally restored by our approach. To

resolve this problem, we could further study in depth of the

latent representation of the Variational AUtoEncoder. One

other solution is to use hierarchical latent space manipula-

tion. This is really a fruitful direction for research.

5. Conclusion

In this paper, we introduce a novel approach for refer-

ence based image super-resolution RefVAE. Unlike other

reference based SR approaches, our proposed method can

take any image with arbitrary content or even random noise

as reference for image super-resolution. It is also unlike

other generative model based SR approaches, RefVAE can

expand the SR space, so that multiple unique SR images can

be generated. Furthermore, RefVAE does not suffer from

the model collapse or generate bizarre patterns like other

generative model based approaches (examples are shown in

Figure 4). Our analysis shows that RefVAE can better pre-

serve the LR information and generate SR image with better

perceptual quality. Possible future work includes the super-

resolution space exploration by probing the latent vector or

by image quantization.
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