
NTIRE 2021 Learning the Super-Resolution Space Challenge

Andreas Lugmayr∗ Martin Danelljan∗ Radu Timofte∗ Christoph Busch Yang Chen

Jian Cheng Vishal Chudasama Ruipeng Gang Shangqi Gao Kun Gao

Laiyun Gong Zhejiang University Qingrui Han NetEaseYunXin Chao Huang Zhi Jin

Younghyun Jo Seon Joo Kim Younggeun Kim Seungjun Lee Yuchen Lei

Chu-Tak Li Chenghua Li Ke Li Zhi-Song Liu Youming Liu Nan Nan

Seung-Ho Park Heena Patel Shichong Peng Kalpesh Prajapati Haoran Qi

Kiran Raja Raghavendra Ramachandra Wan-Chi Siu Donghee Son Ruixia Song

Kishor Upla Li-Wen Wang Yatian Wang Junwei Wang Qianyu Wu Xinhua Xu

Sejong Yang Zhen Yuan NetEaseYunXin Liting Zhang Huanrong Zhang

Junkai Zhang Yifan Zhang Zhenzhou Zhang Hangqi Zhou Aichun Zhu

Xiahai Zhuang Jiaxin Zou

Abstract

This paper reviews the NTIRE 2021 challenge on learn-

ing the super-Resolution space. It focuses on the partici-

pating methods and final results. The challenge addresses

the problem of learning a model capable of predicting the

space of plausible super-resolution (SR) images, from a sin-

gle low-resolution image. The model must thus be capa-

ble of sampling diverse outputs, rather than just generating

a single SR image. The goal of the challenge is to spur

research into developing learning formulations and mod-

els better suited for the highly ill-posed SR problem. And

thereby advance the state-of-the-art in the broader SR field.

In order to evaluate the quality of the predicted SR space,

we propose a new evaluation metric and perform a com-

prehensive analysis of the participating methods. The chal-

lenge contains two tracks: 4× and 8× scale factor. In total,

11 teams competed in the final testing phase.

1. Introduction

Single image Super-Resolution (SR) is the task of in-

creasing the resolution of a given image by filling in ad-

ditional high-frequency content. It has been a popular re-

search topic for decades [27, 19, 44, 54, 52, 57, 58, 59, 51,

12, 24, 53, 15, 16, 32, 34, 36, 18, 4, 5, 22, 26, 21] due to

its many applications. The current trend addresses the ill-
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Figure 1. Many High Resolution Images can be downsampled to a

single low-resolution image. Super-resolution is thus an ill-posed

problem. In this challenge the goal is to take this property into

account by promoting methods with a stochastic output.

posed SR problem using deep Convolutional Neural Net-

works (CNNs). While initial methods focused on achieving

high fidelity in terms of PSNR [15, 16, 32, 34, 36]. Recent

work has put further emphasis on generating perceptually

more appealing predictions using for instance adversarial

losses [61, 35, 56].

Usually, super-resolution (SR) is trained using pairs of

high- and low-resolution images. Infinitely many high-

resolution images can be downsampled to the same low-

resolution image. That means that the problem is ill-posed

and cannot be inverted with a deterministic mapping. In-

stead, one can frame the SR problem as learning a stochastic

mapping, capable of sampling from the space of plausible

high-resolution images given a low-resolution image. This

problem has been addressed in recent works [40, 8, 11]. The

one-to-many stochastic formulation of the SR problem al-



lows for a few potential advantages. First, it can be used

to develop more robust learning formulations that better ac-

counts for the ill-posed nature of the SR problem. Second,

multiple predictions can be sampled and compared. Third,

it opens the potential for controllable exploration and edit-

ing in the space of SR predictions.

The goal of the NTIRE 2021 Learning the Super-

resolution Space challenge is to spur new research in the

direction of stochastic super-resolution and to improve the

state-of-the-art of SR in general. The participants are eval-

uated in terms of three criteria: photo-realism, consistency

with the LR image, and how well the SR space is spanned.

For the latter, we develop a new metric, based on the rel-

ative improvement of a given distance metric when using

additional samples.

This challenge is one of the NTIRE 2021 associated

challenges: nonhomogeneous dehazing [6], defocus de-

blurring using dual-pixel [1], depth guided image relight-

ing [17], image deblurring [42], multi-modal aerial view

imagery classification [37], learning the super-resolution

space [39], quality enhancement of heavily compressed

videos [60], video super-resolution [50], perceptual image

quality assessment [20], burst super-resolution [9], high dy-

namic range [45].

2. NTIRE 2021 Challenge

The goals of the NTIRE 2021 Learning the Super-

Resolution Space Challenge is to (i) stimulate research into

learning the full space of plausible super-resolutions; (ii)

develop benchmark protocols and metrics; (iii) probe the

state-of-the-art in super-resolution in general. The aim of

the challenge is to develop an SR method, capable of sam-

pling diverse predictions. Each individual prediction should

achieve the highest possible photo-realism, as perceived by

humans. The predictions should also be consistent with the

underlying LR image. Hence, content that cannot be ex-

plained from the observed LR image should not be halluci-

nated.

2.1. Overview

The challenge contains two tracks, targeting 4× and 8×
super-resolution respectively. Evaluation code and informa-

tion about the challenge were provided at a public GitHub

page http://git.io/SRSpace. The challenge em-

ploys the DIV2k [2] splits for validation and testing. As the

final result, the participants in the challenge were asked to

submit 10 random SR predictions for each given LR image.

2.2. Rules

To guide the research towards useful and generalizable

techniques, submissions needed to adhere to the following

rules.

Generative formulation Additional

Team Flow GAN VAE IMLE Data

BeWater X

CIPLAB X X

Deepest X X

FudanZmic21 X X

FutureReference X X

SR DL X X

SSS X X

SYSU-FVL X X

nanbeihuishi X X

njtech& seu X

svnit ntnu X

Table 1. Information about the participating teams in the challenge.

• The method must be able to generate an arbitrary num-

ber of diverse samples. That is, the method cannot be

limited to a maximum number of different SR sam-

ples (corresponding to e.g. a certain number of differ-

ent output network heads).

• All SR samples must be generated by a single model.

That is, no ensembles are allowed.

• No self-ensembles or test-time data augmentation

(flipping, rotation, etc.).

• All SR samples must be generated using the same

hyper-parameters. That is, the generated SR samples

shall not be the result of different choices of hyper-

parameters during inference.

• Submissions of deterministic methods were allowed.

However, they will naturally score zero in the diversity

measure and therefore not be able to win the challenge.

• Other than the validation and test split of the DIV2k

dataset, any training data or pre-training is allowed.

Furthermore, all participants were asked to submit the code

of their solution along with the final results.

2.3. Challenge phases

The challenge had two phases: (1) Development phase:

the participants got training and validation images as well

as the tools to evaluate the results. (2) Test phase: the par-

ticipants got access to the LR test images and had to submit

their super-resolved images along with the description, code

and model weights for their methods.

2.4. Data

We provide the standard DIV2K dataset for 4× and 8×
for training and validation. For testing, we only provide the

LR images of the test set for both Tracks.



3. Evaluation Protocol

A method is evaluated by first predicting a set of 10 ran-

domly sampled SR images for each low-resolution image

in the dataset. From this set of images, evaluation metrics

corresponding to the three criteria above will be considered.

The participating methods will be ranked according to each

metric. These ranks will then be combined into a final score.

The three evaluation metrics are described next.

3.1. Photorealism

Automatically assessing photo-realism and image qual-

ity is an extremely difficult task. All existing methods have

severe shortcomings. As a very rough guide, the partici-

pants were asked to use the LPIPS distance [62]. However,

the participants were notified that a human study will be

conducted to finally evaluate photo-realism on the test set,

and thus beware of overfitting to the LPIPS metric, as that

can lead to worse results.

User Study To assess the photo-realism, a human study is

performed on the test set for the final submission. The user

is asked to rank crops according to how photo-realistic they

seem for them. As a reference, the user is shown the region

around this crop. To obtain an unbiased opinion, we sample

the crop coordinates uniformly within the images. In total,

we evaluate three crops of size 80×80 per image of the 100

DIV2K test set images. Every task is done by five different

users, resulting in 1500 completed tasks in total. We report

the Mean Opinion Rank (MOR) for the user study,

3.2. The spanning of the SR Space

The goal is to generate SR samples that provide mean-

ingful diversity. While, for instance, the pixel-wise stan-

dard deviation within the set of generated SR samples mea-

sures variations, this variation is not necessarily meaning-

ful. For example, an SR method should be able to easily

super-resolve a uniform patch of sky with high accuracy.

Since all surrounding pixels in the LR image have very sim-

ilar color, the SR method can confidently predict the corre-

sponding pixels of the underlying HR image. Hence, the

SR model should generate low diversity in this case. On

the other hand, such confidence cannot be achieved when

super-resolving e.g. the fine structures in a patch of fo-

liage. The LR image does not contain all information for re-

constructing the exact arrangement of leaves and branches.

Even when leveraging learned priors, there are thus multi-

ple plausible predictions of the foliage texture. In this case,

we want the network to span the space of possibilities.

From the aforementioned discussion, it is clear that di-

versity is not a quantity that should be simply maximized

(or minimized). Instead, the model should learn meaningful

diversity, corresponding to the uncertainty in the SR predic-

tion. Simple metrics, such as pixel-wise standard deviation,

are therefore not suitable. Instead, we propose a new metric,

aiming to measure how well the network spans the space of

possibilities.

The challenge in measuring the aforementioned ability

lies in that we only have access to a single ground-truth

HR sample for every LR image. However, this single sam-

ple should lie inside the solution space spanned by the SR

model. The proposed metric aims at measuring how well

the ground-truth SR image is represented in the predicted

space. When following this strategy, the main challenge

arises from the high dimensionality of the HR image space.

Our key observation is that this can be mitigated by per-

forming the analysis on smaller patches. That is, a single

HR image is decomposed into multiple smaller (potentially

overlapping) patches. This effectively reduces the dimen-

sionality of the output space, allowing us to evaluate the

quality of the predicted SR space from a very limited num-

ber of random samples.

Let yk ∈ R
N×N×3 be the k-th patch in the original

HR ground-truth image y. We denote the M number of

predictions generated by the SR model as {ŷi}Mi=1 and let

ŷik ∈ R
N×N×3 be the corresponding decomposition into

patches. We measure the similarity between two image

patches with a distance metric d. To obtain the meaningful

diversity that the samples represent, we calculate how much

the minimum distance to the ground-truth patch decreases

when using M samples,

SM =
1

d̄M

(

d̄M −
1

K

K
∑

k=1

min
{

d(yk, ŷ
i
k)
}M

i=1

)

. (1)

Note that the right term evaluates the average distance to the

closest of the M patches. To obtain a relative improvement

measure, we normalize it w.r.t. to a base distance d̄M com-

puted over the M samples. One alternative is to set the base

distance to simply the average d̄M = 1
KM

∑

k,i d(yk, ŷ
i
k).

However, such a reference distance is sensitive to outliers.

We therefore compute d̄M by finding the minimum distance

on a global sample level,

d̄M = min

{

1

K

K
∑

k=1

d(yk, ŷ
i
k)

}M

i=1

. (2)

This choice still yields a score in the range SM ∈ [0, 1],
where SM = 0 means no diversity and SM = 1 means

that the ground-truth HR image was exactly captured by one

of the generated samples. In the tables, we report SM in

percent.

To compute the final diversity score, we average the rela-

tive score (1) over all images in the dataset. For the distance

metric d, we experimented with both L2 (i.e. mean squared

error) and LPIPS [62]. We found the latter to be a more well

suited metric for image patches, and therefore use it for our
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Figure 2. Qualitative comparison between the participating approaches for 4× super-resolution

final score. In particular, we compute the LPIPS in a fully

convolutional manner over the full images y and ŷi. Instead

of performing the final spatial averaging of the metric, as

done for the standard case, we directly use the resulting dis-

tance map as our patch-wise distances d(yk, ŷ
i
k).

3.3. Low Resolution Consistency

To measure how much information is preserved in the

super-resolved image from the low-resolution image, we

measure the LR-PSNR. It is computed as the PSNR be-

tween the input LR image and the predicted sample down-

sampled with the given bicubic kernel. The goal of this

challenge is to obtain an LR-PSNR of at least 45dB.

4. Challenge Results

Before the end of the final test phase, participating teams

were required to submit results, code/executables, and fact-

sheets for their approaches. From 112 registered partici-

pants, 11 valid methods were submitted. The methods of

the teams that entered the final phase are described in Sec-

tion 5 and the teams’ members and affiliations are shown in

Section Appendix A.

4.1. Baselines

We compare methods participating in the challenge with

the following baseline approaches.

ESRGAN A common baseline for photo-realistic super-

resolution is the ESRGAN [56]. Since it is not a stochastic

method, the diversity is zero.

SRFlow The method SRFlow [40] uses image condi-

tional normalizing flow to super-resolve images. This

method inherently provides stochastic, photo-realistic and

Team LPIPS LR-PSNR Div. Score MOR Final

S10 [%] Rank

svnit ntnu 0.355 27.52 1.871(11) - -

SYSU-FVL 0.244 49.33 8.735(10) - -

nanbeihuishi 0.161 50.46 12.447(9) - -

FudanZmic21 0.273 47.20 16.450(7) - -

FutureReference 0.165 37.51 19.636(6) - -

SR DL 0.234 39.80 20.508(5) - -

SSS 0.110 44.70 13.285(8) 4.530(3) 5.5

BeWater 0.137 49.59 23.948(3) 4.720(4) 3.5

CIPLAB 0.121 50.70 23.091(4) 4.478(2) 3.0

njtech&seu 0.149 46.74 26.924(1) 4.977(5) 3.0

Deepest 0.117 50.54 26.041(2) 4.372(1) 1.5

SRFlow 0.122 49.86 25.008 4.410 -

ESRGAN 0.124 38.74 0.000 4.467 -

GT 0 ∞ - 3.728 -

Table 2. Quantitative comparison of participating teams. (4×)
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Figure 3. Qualitative comparison between the participating approaches for 8× super-resolution

low-resolution consistent super-resolutions.

4.2. Architectures and Main Ideas

In this section, we discuss the four directions that meth-

ods submitted to this challenge are based on. An overview

of the participating teams is shown in Table 1.

Flow-Based Inspired by the baseline SRFlow [40]

the teams BeWater, CIPLAB, Deepest, nanbeihuishi and

njtech&seu submitted Flow-Based approaches. This ap-

proach aims to learn the conditional probability distribu-

Team LPIPS LR-PSNR Div. Score MOR Final

S10 [%] Rank

svnit ntnu 0.481 25.55 4.516(10) - -

SYSU-FVL 0.415 47.27 8.778(9) - -

FudanZmic21 0.496 46.78 14.287(7) - -

FutureReference 0.291 36.51 17.985(5) - -

njtech&seu 0.366 29.65 28.193(1) - -

SSS 0.237 37.43 13.548(8) 4.692(3) 5.5

SR DL 0.311 42.28 14.817(6) 4.738(4) 5.0

BeWater 0.297 49.63 23.700(3) 5.133(5) 4.0

CIPLAB 0.266 50.86 23.320(4) 4.637(2) 3.0

Deepest 0.259 48.64 26.941(2) 4.630(1) 1.5

SRFlow 0.282 47.72 25.582 4.635 -

ESRGAN 0.284 30.65 0 4.323 -

GT 0 ∞ - 2.613 -

Table 3. Quantitative comparison of participating teams. (8×)

tion of HR images given an LR image. The flow network

learns to map an HR-LR pair into a latent space, where the

probability density can be evaluated. Since the network is

invertible [14], it can be driven in the reverse direction to

generate images by sampling a latent vector. Hence, this

approach is an inherent stochastic method that draws sam-

ples from the space of plausible SR images. Another ben-

efit is that the outputted SR images are highly consistent

with the LR images. This was observed by measuring the

PSNR of the downsampled SR image compared to the input

LR image [40]. The team Deepest worked on the informa-

tion content gap between the HR image and the latent space.

The method submitted by njtech&seu achieved the highest

Diversity Score in both 4× and 8× using their multi-head

attention module and the normalization flow module. How-

ever, this method did not reach the quality in terms of MOR

of the baseline SRFlow. The teams BeWater, CIPLAB and

nanbeihuishi focused on improving parts of the original SR-

Flow architecture.

GAN-Based The teams SR DL, SSS, svnit ntnu and

SYSU-FVL submitted GAN-Based approaches. The team

svnit ntnu is based on the MUNIT [25] approach and sam-

ples the style control signal. With this approach, they did

not reach the required LR PSNR or reached the baseline in

diversity score. The two teams SSS and SYSU-FVL are us-
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Figure 4. Visualization of improvement in LPIPS for 4× by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle
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Figure 5. Visualization of improvement in MSE for 4× by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle

ing a purely GAN-based approach. Since such approaches

are commonly deterministic and have a low LR-PSNR, they

add modules to make it stochastic and LR consistent. To

enable sampling for the network, they both add layers that

inject randomness. The LR consistency is encouraged using

the CEM module described in [8].

VAE-Based The teams FudanZmic21 and SR DL used a

VAE-Based approach. Similar to flow models, these ap-

proaches are inherently able to sample output images. Us-

ing VAE-Based method has the advantage over Flow-Based

methods that the network components are not restricted to

be bijective and having a tractable determinant of the Jaco-

bian.

IMLE-based The team FutureReference is based on the

implicit generative model [41] (IMLE). This method ex-

plicitly aims to cover all modes by reversing the direction

in which generated samples are matched to real data.

4.3. Discussion

Here we present the results for both 4× and 8× super-

resolution. All experiments were conducted on the DIV2k

test set. The numerical results are shown in Tables 2 and 3

for 4× and 8× respectively. The user study is conducted

for the 5 teams with the highest photorealism according to

an initial analysis. The final ranking score (right column) is

computed as the average of the team’s rank in the diversity

measure S10 and the MOR. For the team Deepest, which

scored highest in the final ranking, we additionally show all

ten submitted samples of a crop of a test image in Figure 19

and 20 for 4× and 8× respectively.

The team that performs best in the user study (MOR) in

both tracks is Deepest. They improve SRFlow, by using the

SoftFlow approach to mitigate the problems arising from

the unbalanced information content in HR image and latent

space. The better photo-realism is confirmed by the visual

examples shown in Figures 2 and 3, where it has the highest

level of details among the participating methods.

The team that performs best in Diversity Score in both
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Figure 6. Visualization of improvement in LPIPS for 8× by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle
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Figure 7. Visualization of improvement in MSE for 8× by number of samples. Flow: Circle, VAE: Square, IMLE: Plus, GAN: Triangle

tracks is njtech&seu. This can be attributed to their multi-

head attention module. However, for 8× it fails to reach the

LR-PSNR threshold set in the challenge description. For

4×, this method scores significantly worse in the user study

compared to Deepest, which has the second rank in terms of

Diversity Score. Notably, Deepest is the only method that

outperforms the baseline SRFlow in terms of photo-realism

and diversity on both scale levels. For 8× SR, Deepest,

CIPLAB, and SRFlow achieve very similar user scores.

While lagging behind in the 4× case, ESRGAN inter-

estingly achieves the best MOR for 8× SR. On the other

hand, ESRGAN only obtains an LR-PSNR of 30.65dB in

this setting, which is far lower than the challenge goal of

45dB. Regarding LR-PSNR 7 of 11 methods in Track 4×
and 5 of 10 methods for 8× reached the 45dB threshold.

All methods that used the CEM [8] module or that are

based on SRFlow [40] satisfied this criterion. In general,

the VAE-based methods FudanZmic21 and SR DL do not

reach the SRFlow [40] baseline in terms of LPIPS and Di-

versity Score. Moreover, the GAN-based methods SR DL,

SSS, svnit ntnu and SYSU-FVL obtain substantially lower

diversity scores compared to the Flow-based competitors.

This can indicate a higher susceptibility to mode collapse,

which is a well-known problem in conditional GANs.

Under the assumption that the GT image is only one

plausible HR image that corresponds to an LR image, ideal

stochastic SR methods could come arbitrarily close to the

GT for a sufficiently large number of samples. To visual-

ize this effect for the participating methods, we show how

close the SR images comes to the GT when increasing the

number of samples. In Figures 4 and 6 we show this effect

using LPIPS as the distance metric d. In Figures 5 and 7

we use MSE as the distance metric d. Each figure contains

three plots to present the following aspects of the diversity.

The plot on the right side depicts the locally best LPIPS

or MSE, i.e. the right term in (1). To remove effects from

the ordering of the submitted samples we first sort the sam-

ples corresponding to one GT image according to their best

global LPIPS or MSE. For the LPIPS setting we calculate

the local metric by using the dense pixel-wise distance and

for MSE we use a patch size of N = 16.

To better visualize how much the method improves by



sampling more images, we show the absolute improvement

compared to the reference distance (2) when using M sam-

ples in the middle figure. Since it is much more difficult

to improve a method that already has a low LPIPS or MSE,

they would be disadvantaged in this setting. To mitigate this

unfair advantage, compute the final diversity score (1) rel-

ative to the reference distance (2) by dividing with it. The

final diversity score (1) for different number of samples M

are shown in the plots on the left.

The methods based on SRFlow, marked with a circle,

are in a distinct group on top of the Diversity Score for both

scale factors and metrics. The IMLE based method Futur-

eReference, marked with a plus, is in the middle field for all

scales and metrics. Methods that are based on VAEs are in

the middle field as well, marked with a square. The GAN-

Based methods are based on deterministic approaches that

were made stochastic by injecting randomness. They are in

the lower Diversity Score section, marked with a triangle.

The baseline ESRGAN has diversity zero since it is deter-

ministic.

5. Teams

5.1. Deepest: Noise Conditioned Flow Model for
Learning the SuperResolution Space

This method is based on SoftFlow [31] and SRFlow [40].

With the use of SoftFlow they alleviate the the problem

of unbalanced information content in HR image and latent

space. The key idea of SoftFlow is to add noise that is ob-

tained from randomly selected distribution and to use these

distribution parameters as conditions. [31] has shown that

these methods can experimentally succeed in capturing the

innate structure of manifold data. They show that in this

same principle, they can increase performance on SR tasks

using Flow models through adding noise and noise (distri-

bution parameters) condition training. The difference from

SRFlow [40] is that the proposed model adds the Noise

Conditional Layer (NCL) to the flow step. The NCL is

added to all levels in SRFlow, except the finest level, where

the NCL tended to generate artifacts. They add noise to
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the data, i.e. the high-resolution image, and create a con-

ditional layer for this noise distribution as depicted in Fig-

ure 8. They conducted noise condition training in two ways,

one for noise itself and one for standard deviation for noise

distribution. They proceed both methods in a similar way to

the conditional affine coupling of [40]. Although standard

deviation conditional training, such as those used in [31],

improved diversity and LPIPS, it tended to create artifact

from the generated images. In contrast, with noise con-

ditional training, the numerical performance was slightly

lower, but the number of artifacts occurring in the generated

images was reduced and they finally applied noise condi-

tion training. Only the negative log-likelihood was used for

loss, as in [40]. 498 additional images was used for training.

Their method is as follows. Initially, random value c is ob-

tained from uniform distribution U(0,M) as [31] did. Next,

set noise distribution N(0,Σ), where Σ = c2I . Then, we

sample noise vector v from N(0,Σ) and add noise to the

original high resolution image x to obtain perturbed data

x+. Finally, resize these vector v to get noise vector w for

low-resolution images and obtain y+ by adding w to the

original low resolution image y. During inference, we add

a zero vector instead of noise. Thus, the approach learns

a flow network f(z|y, v) that, given the noise vector v and

LR image y predicts an HR image x = f(z|y, v) from a

random latent variable z. Details about this method can be

found in [33]

5.2. CIPLAB: SRFlowDA

This method is based on SRFlow [40]. To increase

the receptive field, this method increases the depth of the

non-invertible networks that calculate the mappings for the

affine couplings as shown in Figure 9. They stack six 3×3

convolutional layers followed by ReLU activation except

for the last convolutional layer, and its receptive field is

13×13.

SRFlow uses 3 and 4 levels multi-scale architecture with

16 flow steps for each scale, for ×4 and ×8 SR respectively.

From the default SRFlow setting, they reduce the multi-

scale levels to 2 and 3, for ×4 and ×8 SR respectively. In

addition, they reduce the number of flow steps from 16 to

6. The proposed method SRFlow-DA (Deep convolutional

block in the Affine layers) reduces the total number of pa-

rameters of the original SRFlow model and can be trained

on a single GPU (<11GB). Details about this method can

be found in [28]

5.3. BeWater: SRFlow with Respective Field Block

This method is based on SRFlow [40] and improves

the LR encoding and the affine couplings. First, they re-

places the RRDB LR encoding network with the RRFDB

encoder [47]. The overall structure is shown in Figure 10.

Secondly, in SRFlow, the scale and shift used in Affine In-



jector and Affine Coupling are predicted in one network. By

contrast, they use two separate networks for more precise

predictions. This method uses the additional 2650 images

from Flickr2K [3].

5.4. njtech&seu: Learning Spatial Attention
with Normalization Flow for Image Super
Resolution

This method proposes a Flow-based Pixel Attention Net-

work to establish the spatial relationships between pixels,

thereby increasing the realism of super-resolution images.

As shown in Figure 11, the proposed network consists of

three parts: the RRDB block, the multi-head attention mod-

ule and the normalization flow module.

First, they employ a CNN-based architecture named

Residual-in-Residual Dense Blocks (RRDB) [56] to extract

the rich information in the low-resolution image. The in-

troduced RRDB block has a series of convolutions with the
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Figure 10. Method of Team BeWater.
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same kernel size, and residual connections are adopt to fuse

the features of different convolutional layers.

Second, a multi-head attention module is proposed to

learn the spatial pixel-level relations of the low-resolution

image. Since the real-world images have many areas with

rich texture details, the deep network may lose subtle clues

when extracting features. Therefore, some super-resolution

images tend to be blurred, distorted, etc. To generate more

realistic image, they establish the spatial relationships be-

tween pixels. Specifically, each width×height×channel

patch is compressed into 1×(width*height)×channel, and

the module learns the relation between pixels across chan-

nels.

Third, to tackle the ill-posed problem of super-

resolution, they adopt the SRFlow network [40] as the nor-

malization flow module in Figure 11. It can learn to predict

diverse photo-realistic high-resolution images.

5.5. SSS: Flexible SR using Conditional Objective

The generator of this method consists of two streams,

an SR branch and a condition branch as shown in Fig-

ure 12. The SR branch is built with basic blocks con-

sisting of Residual in Residual Dense Block (RRDB) [56]

equipped with the SFT layers [55]. Since most of the exist-

ing methods calculate perceptual losses on an entire image

in the same feature space, the results tend to be monotonous

and unnatural. For this reason, they define a style control

map that is fed to the SR network at the inference phase to

explore various pixel-wise HR solutions. During training,

they optimize an SR model with a conditional objective,

which is a weighted sum of multiple perceptual losses at

different feature levels. During inference the style control

map is used to generate a stochastic output.

5.6. SR DL: Variational AutoEncoder for Image
SuperResolution

This method proposes a reference based image super-

resolution model. As shown in Figure 13, the approach

takes arbitrary references R and LR images X for train-

ing and testing. It consists of three components the VGG

Encoder, the CVAE, and the image decoder. The VGG



Figure 12. Method of Team SSS.

Enocder is based on the fully convolutional part of the

VGG-16 network. They directly use pre-trained VGG-16

to extract feature maps for references (FR) and bicubic up-

sampled LR images (FX ). A Conditional Variational Au-

toEncoder (CVAE) then encodes the reference feature maps

to a latent space to learn the hidden distribution. The Fea-

ture Decoder learns to transfer the reference features as con-

ditions CR for LR feature maps. In order to have a flexible

control over the LR feature maps, they use a convolution

block to learn the mean and variance for the LR feature

maps as Fµ and Fσ . They then have the conditioned feature

maps as FX|R = CR · (1 + Fσ) + Fµ. Finally, the Image

Decoder learns to reconstruct the conditioned feature maps

to the SR image Y′. The image decoder is similar to the

VGG Encoder which followed by 3 layers of convolution

with simple bilinear interpolation.

During training, they encourage the model to use ref-

erence features for super-resolution. They adopt the style

and content losses from style transfer [29, 43] to align the

statistics of feature maps between SR Y′ and HR Y images.

They use pretrained VGG-19 to extract intermediate feature

maps for content loss as,

Lcontent =
∥

∥φ4 1
Y

− φ4 1
Y′

∥

∥

1
+ ‖X−D(Y′, α)‖

1
+

‖Y −Y′‖
1
+ ‖Lap(Y)− Lap(Y′)‖

1
.

(1)

where φ(·)4 1 is the feature map on relu4 1 layer. They also

include L1 loss between SR and HR image pairs. For α×
super-resolution, after upsampling, they also include the

downsampling loss D(·, α) to calculate the loss between

original and estimated LR images. Meanwhile, they also

use Laplacian loss [10] to calculate the structural loss be-

tween HR and SR image to pursue structural similarity.

The style loss is calculated by using relu1 2, relu2 2,

relu3 4, relu4 1-th feature maps from VGG-19 network.

Similarly to [29, 43], they align the statistics between SR

and HR feature maps using mean and variance as,

Lstyle =
∑

i

∥

∥µ(φi(R))− µ(φi(Y′))
∥

∥

1
+

∥

∥σ(φi(R))− σ(φi(Y′))
∥

∥

1
.

(2)

For the KL divergence, they learn the lower

bound of the hidden distribution N (µ, σ)) as
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LKL = KL (N(0, I)||N(µ, σ)). They also has a dis-

criminator to supervise the spatial correlation between HR

and SR images. The GAN loss is defined as log(1−D(Y′))
During inference, the reference image is optional. It can be

any external images or the bicubic upsampled LR itself. If

no reference is used, a random map R ∼ N(0, I) will be

computed for super-resolution. Details about this method

can be found in [38]

5.7. FutureReference: Generating Unobserved Al
ternatives

The FutureReference team formulate the one-to-many

SR problem as training an implicit generative model [41].

More precisely, the predicted SR image is given by y =
Tθ(x, z), where x is the input LR image and z ∼ N (0, I)
is a random latent variable. Such a model can be trained as

a conditional GAN, where Tθ(·, ·) is interpreted as the gen-

erator. In practice, due to mode collapse, some valid pre-

dictions cannot be produced by the generator. This problem

is exacerbated in the presently considered setting with one-

to-one supervision, which leads to all samples of the gen-

erator conditioned on the same input x being identical and

the random variable z is effectively ignored. To obtain non-

deterministic predictions y despite the availability of only

a single observation, we propose training the model using

Implicit Maximum Likelihood Estimation (IMLE), which

avoids mode collapse.

Compared to GANs, IMLE explicitly aims to cover all



modes by reversing the direction in which generated sam-

ples are matched to real data. Rather than making each gen-

erated sample similar to some real data point, it makes sure

each real data point has a similar generated sample. IMLE

can be further extended to model conditional distributions

by separately applying IMLE to each member of a family

of distributions {p(y|xi)}
n
i=1. The denote the generator as

Tθ(·, ·), which takes in an input xi and a random code zi,j
and outputs a sample from p(·|xi), the method optimizes

the following objective:

min
θ

Ez1,1,...,zn,m∼N (0,I)

[

n
∑

i=1

min
j∈{1,...,m}

d(Tθ(xi, zi,j),yi)

]

,

where yi is the observed output that corresponds to xi,

d(·, ·) is a distance metric and m is a hyperparameter. They

use LPIPS perceptual distance [62] as the distance metric.

The proposed architecture relies on a backbone consist-

ing of two branches. The first branch mainly consists of a

sequence of residual-in-residual dense blocks (RRDB) [56],

which is a sequence of three dense blocks connected by

residual connections. The number of RRDB blocks are re-

duced by a factor of 4 and substantially expanded the num-

ber of channels compared to ESRGAN [56]. The second

branch consists of a mapping network [30] produces a scal-

ing factor and an offset for each of the feature channels af-

ter each RRDB in the first branch. Additionally they added

weight normalization [46] to all convolution layers.

They adopt an approach of progressive upscaling, where

they upscale the image by 2 times at a time. They chain

together several backbone architectures which become sub-

networks in a larger architecture, as shown in Figure 14.

Each sub-network takes a latent code and the output of

the previous sub-network, or if there is no previous sub-

network, the input image. They add intermediate super-

vision to the output of each sub-network, so that the dis-

tance metric in IMLE is chosen to be the sum over LPIPS

distances between the output of each sub-network and the

original image downsampled to the same resolution.

5.8. FudanZmic21: VSpSR: Explorable Super
Resolution via Variational Sparse Represen
tation

This method combines a deterministic and a stochas-

tic model inspired by Conditional Variational AutoEncoder

(CVAE) [49]. Their stochastic model, called variational

sparse representation guided explorable module VSPM, has

a basis and a coefficient branch as shown in Figure 15. To

improve the LR-consistency they employ a Consistency En-

forcing Module (CEM) similar to [7]. Details about this

method can be found in [48]

Figure 15. Method of Team FudanZmic21.

 

Figure 16. Method of Team nanbeihuishi.

5.9. nanbeihuishi: Modified Encoder in SRFlow via
Asymmetric Convolution Blocks

This method is based on SRFlow [40] and replaces the

filters in the RRDB network with Asymmetric Convolution

Block (ACB) [13]. Their method is depicted in Figure 16

This method only took part in the 4× Track.

5.10. SYSUFVL

This method uses the enforcing module (CEM) [8] with

LPIPS [62] loss and Quality Network loss that estimates the

MOS during training. The generative network is based on

the hierarchical ResNet structure [23].

The proposed generator, as shown in Figure 17, consists



of a series of residual blocks with upsampling layers. In the

residual blocks of the generator, they inject noise and in-

formation through multiple normalization layers. The gen-

erator is then wrapped by CEM module to enforce low-

resolution consistency. The adversarial loss follows the

patch GAN approach with Hinge loss. Architecturally, there

are 4 convolutional and spectral instance normalization lay-

ers process the input, with leaky ReLU as the activation

function, which is the same as in the DeepSEE [11].

5.11. svnit ntnu: Learning Multiple Solutions for
SuperResolution based on AutoEncoder
and Generative Adversarial Network

The proposed AEGAN method, is a modification of the

MUNIT [25] approach for generating stochastic SR solu-

tions. This method first extracts a content and style encod-

ing of the LR image using two separate encoders. Those

generated features are then decoded to generate SR images.

The network architecture of the encoder and decoder are de-

picted in Figure 18. To encourage the decoder to invert the

encoder network, the generated SR image is passed through

the encoder by applying down-scaling operator. To make

the method stochastic, they sample randomly drawn style

features.
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Figure 19. Visual example of diversity in super-resolution samples. The top left image is the input LR image, to the right is the ground

truth and the ten remaining the samples from Deepest. (4×)
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Figure 20. Visual example of diversity in super-resolution samples. The top left image is the input LR image, to the right is the ground

truth and the ten remaining the samples from Deepest. (8×)
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