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Abstract

We propose a novel architecture to handle the prob-

lem of multi-frame super-resolution (MFSR). The proposed

framework is known as Enhanced Burst Super-Resolution

(EBSR), which divides the MFSR problem into three parts:

alignment, fusion, and reconstruction. We propose a Fea-

ture Enhanced Pyramid Cascading and Deformable con-

volution (FEPCD) module to align multiple low-resolution

burst images in the feature level. And then the aligned fea-

tures are fused by a Cross Non-Local Fusion (CNLF) mod-

ule. Finally, the SR image is reconstructed by the Long

Range Concatenation Network (LRCN). In addition, we

build a cascading residual pathway structure (CR) to im-

prove the performance. We conduct several experiments to

analyze and demonstrate these modules. Our EBSR model

won the champion in the real track and second place in

the synthetic track in the NTIRE21 Burst Super-Resolution

Challenge.

1. Introduction

Super-resolution (SR) is a widely studied problem [14,

10, 13, 28, 22, 1, 29], and the task of SR is generating

high-resolution (HR) images reference given low-resolution

(LR) images. According to the form of LR input, super-

resolution can be divided into two categories: single image

super-resolution (SISR) and multi-frame super-resolution

(MFSR). Single image super-resolution is a task to gener-

ate high-resolution (HR) image with a single low-resolution

image. Various methods focus on solving the problem of

SISR [14, 10, 29, 22]. The main challenge is how to synthe-

size high-frequency details from an single LR input. The ill-

posed problem makes it difficult to generate suitable high-

frequencies details similar to ground-truth HR image.

On the other hand, the multi-frame super-resolution aims
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Figure 1. The comparison between our method EBSR and other

representative methods, EDSR [10], RCAN [29], and EDVR [19]

to reconstruct the original HR image using multiple LR im-

ages. The LR images are captured by a hand-held smart-

phone under the burst mode, where LR images contain

shifts due to the camera motion. The shifts between the

burst LR images, which called sub-pixel shifts [24], can

provide different LR samplings of the underlying scene.

Therefore, relative to SISR, MFSR approaches can obtain

additional images signal information from the burst images

obtained by natural hand tremors [24]. In general, MFSR

approaches can exhibit better super-resolution performance

relative to SISR.

The NTIRE 2021 Burst Super-Resolution Challenge [2]

uses a new dataset and has 2 tracks, namely Track 1: Syn-

thetic and Track 2: Real-world. Given multiple noisy RAW

images of a scene, the goal of the challenge is to predict

a denoised higher-resolution RGB image by combining in-

formation from the multiple input frames. A burst sequence

containing 14 images, where each image contains the RAW

sensor data from a bayer filter (RGGB) mosaic, are pro-

vided as inputs.

Our Enhanced Burst Super-Resolution (EBSR) for

multi-frame super-resolution is based on the convolutional

neural network. Our proposed framework demonstrates su-

perior performance in the NTIRE 2021 challenges as shown

in Fig. 1. We compared different methods with our EBSR,
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Figure 2. An overview of the proposed method Enhanced Burst Super-Resolution (EBSR). The EBSR can be divided into three parts:

feature alignment, fusion and reconstruction. It contains four modules: Feature Enhanced Pyramid Cascading and Deformable convolution

(FEPCD) module for alignment, Cross Non-Local Fusion (CNLF) module for fusion and Long-Range concatenation network (LRCN) for

reconstruction. Further, we utilize the cascaded residual pathway structure (CR) to improve the performance.

including EDSR [12], RCAN [29] and EDVR [19]. Note

that in the zoom area, our method can restore richer tex-

ture details than other methods. The main reason it achieves

good results can be attributed as that we use effective mod-

ules to utilize the extra images signal information between

the set of burst LR images. In addition, we design a re-

constructed network with strong capability of learning rich

features. In particular, our network directly operates on

noisy RAW bursts captured from a hand-held camera, and

the goal is to exploit the information from the multiple in-

put images to generate a denoised, demosaicked, and super-

resolved image as output. Compared with RGB images,

Raw images have more original and rich signal information.

Choosing RAW as the network input can provide richer in-

formation to the network in order to restore better quality

super-resolution images.

We achieve this goal by our framework in three steps: 1)

align, 2) fusion and 3) reconstruction. We extract the fea-

tures of burst RAW images and align them by our Feature

Enhanced Pyramid Cascading and Deformable convolution

(FEPCD) module. We use multi-scale features extracted by

Feature pyramid networks (FPN) [11] to enhance the fea-

ture representation ability of Pyramid Cascading and a De-

formable convolution (PCD) [19]. This alignment step is to

facilitate the fusion of different RAW image features in fu-

sion module. We utilize a Cross Non-Local Fusion (CNLF)

module as our fusion module. When we determine the ref-

erence image, each of the other image features are sent into

CNLF with the reference image features. Then, the CNLF

can computes the response at a position as a weighted sum

of the features at all positions in the input feature maps.

The CNLF allows the features of other images to be

weighted with reference to the features of the reference im-

age, so as to better integrate the useful images signal in-

formation of other images for reconstruction module. The

Long-Range concatenation network (LRCN), which pro-

posed for reconstruction, utilizes long range features in-

formation by concatenating the feature at different levels.

Therefore, LRCN have better feature representation capa-

bilities for the reconstruction of super-resolved RGB im-

ages. Furthermore, we use the cascaded residual pathway

structure (CR), which can improve the performance of the

model for the noise suppression. Thanks to the above mod-

ules, our framework can combine the image contents be-

tween burst LR RAW images in a reasonable way, produc-

ing RGB prediction with natural textures and more high-

frequency details that similar to the ground-truth HR im-

ages.

Contribution In this work, our main contributions are

summarized as follows.

• We propose a Feature Enhanced PCD (FEPCD) mod-

ule to improve the performance of features alignment.

• We propose a Cross Non-Local Fusion (CNLF) mod-

ule for combining signal information from aligned fea-

tures of multiple images.

• We propose a Long-Range concatenation network

(LRCN) for better reconstruction of super-resolved im-

ages.

• We use a cascaded residual pathway (CR) structure to

improve the performance for the noise suppression of

our method.

2. Related Work

Single Image Super-Resolution. Single Image Super

Resolution (SISR) is a long standing research topic due to
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Figure 3. Feature Enhanced PCD convolution alignment.

its importance and ill-posed nature. Traditional learning-

based methods adopts sparse coding [5, 15, 26] or lo-

cal linear regression [17, 16, 25]. Deep learning (DL)-

based method is first proposed by SRCNN [14] that em-

ploys a relatively shallow network and adopts the bicubic

degradation for HR and LR pairs. Following which, vari-

ous SISR approaches have been proposed, such as VDSR

that adopts very deep network [14]; EDSR that modifies

the ResNet for enhancement [10]; DnCNN that predicts

high frequency details [28]; ESPCN that uses efficient sub-

pixel CNN [13]; CDC that divides images into multiple

regions [22], CARN that adopts cascading residual net-

work [1]; and VGG loss [14], GAN loss [6] that improve

the perceptual visual quality [9, 12, 21].

Alignment. How to solve the misaligned between multi-

ple frames is always the focus of multi-frame super reso-

lution. Optical flow is used in [4] to estimate the motion

between frames. Another branch of studies achieve implicit

motion compensation by dynamic filtering or deformable

convolution. In EDVR [19], which won the champion of

NTIRE19, proposed a block called PCD to solve this prob-

lem. In this work, we used the feature pyramid to enhance

PCD and got good results.

Attention Mechanism. In many published works [18, 23,

29], attention has mentioned as a useful method to improve

the final result. In EDVR [19], attention is used to fuse in-

formation between frames.And non-local Operation [20] is

a commonly way to calculate the interrelationship between

frames. Inspired by these works, we use non-local operation

to compute the weight map between reference frame and the

others, after that we use these maps to fuse the frames.

Upsampling. Image interpolation, a.k.a. image scaling,

refers to resizing digital images and is widely used by

image-related applica- tions. The traditional interpolation

methods include nearestneighbor interpolation, bilinear and

bicubic interpolation. Since these methods are interpretable

and easy to implement, some of them are still widely used

in CNN-based SR mode. In recent year, learning-based up-

sampling methods are introduced into SR field. Transposed

convolution layer tries to perform transformation opposite a

normal convolution. Pixelshuffle [7] is another end-to-end

learnable upsampling layer, which generating a plurality of

channels by convolution at first and then reshaping them. In

this work, we proposed a cascaded residual pathway struc-

ture to improve the pixelshuffle.

3. Method

Given a RAW burst low-resolution sequence {bi}Mi=1
and

upscaling factor γ, the goal of EBSR is to reconstruct a

high-resolution image by taking advantage of the shifted

complementary information from different images. Each

image bi ∈ R
C×H×W is obtained from the RAW sensor

camera. In this work, we take the first image as base frame

and align the rest neighboring images to it in the feature

level by using a Feature Enhanced, Pyramid, Cascading and

Deformable convolution (FEPCD) module. And we pro-

pose to use a Cross Non-Local Fusion (CNLF) module to

fuse the aligned features. The details of FEPCD and CNLF

are described in Sec. 3.1 and Sec. 3.2. The fused features

are then passed to the long-range concatenation network

(LRCN) to obtain a high-resolution RGB output. In addi-

tion, we take a two stage upsampling strategy to protect the

network from raw noises. The overview of the proposed

framework is shown in Figure 2.

3.1. Feature Alignment

One big challenge of burst SR is that the input consists

of multiple noisy, disordered and shifted RAW images with

unknown displacements which stem from both global cam-

era motion and scene variations. To tackle this problem we

adopt the modulated deformable modules [30] to perform

feature level alignment between RAW images inspired by

PCD [19]. However, PCD is inefficient in RAW images

alignment since it didn’t take the noises from input into ac-

count. Therefore, we propose the FEPCD module with fea-

ture pyramid extraction to eliminate the effect of noises.

The overall FEPCD module is shown in Figure 3. It

is a double pyramid structure, in which the first pyramid

is responsible for denoising and feature enhancement, and

the second pyramid is responsible for features alignment

3
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Figure 4. Cross Non-Local Fusion Module.

and refinement. To achieve a high performance alignment,

we map each input image bi to a deep feature represen-

tation Fi using a set of Wide Activation Residual Block

(WARB) as introduced in [27]. And then the features are

enhanced through a top-down, bottom-up pathway and im-

plicitly aligned. Specifically, the top-down pathway pro-

duce pyramid levels of feature with different resolutions and

channels, and laterally connects to corresponding bottom-

up pathway to hallucinate cleaner and semantically stronger

features. PCD module requires using same channels for dif-

ferent level of features. To start alignment, we simply at-

tach a 1×1 convolution to obtain the final pyramid features.

The noises are removed in the pyramid feature enhancement

process. We take the first feature of input images as base

frame and align other neighboring features to the base.

3.2. Fusion

The temporal relation between multiple frames plays

a vital role in feature fusion, due to the blurry frames

from camera perturbation and misalignment from preceding

alignment module. To aggregate the aligned features dy-

namically, we propose a Cross Non-Local Fusion (CNLF)

module by considering the non local relation between base

frame and neighboring frames. The cross non-local opera-

tion is defined as follows:

yi =
1

C(x)

∑

∀j

f(refi, otherj)g(otherj), (1)

where ref and other are the base frame and other input

frames, respectively. Function f produce the adaptive pixel-

level weight vectors between two frames and function g pro-

duce a feature representation of the input frame. We con-
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sider the normalization factor C(x) =
∑

∀j

f(refi, otherj).

To avoid introducing too many additional parameters, the

Gaussian function is used as the choice of f :

f(refi, otherj) = erefi
T
·otherj (2)

where refi
T · otherj is dot-product similarity, which is

more convenient in deep learning platforms. As shown in

Figure 4, we design the CNLF module to measure the sim-

ilarity between every two pixels in multi-frames features.

Different from the original non-local structure, we use ref
and other as the inputs of the network. Firstly, we change

the dimension of the inputs ref and other by 1 × 1 con-

volution, respectively. Then we implement the matrix mul-

tiplication for those two branches and the results are oper-

ating by the softmax function. By that means, the shape

of feature map F becomes HW/r2 × HW/r2 that is ir-

relevant of N , where r represents the reduction factor and

N represents the number of batchsize. Finally, The feature

map F and the result of g branch are matrix multiplied to

obtain a correlation feature map yi. The output of CNLF

is defined as Wyi + otheri, where W is implemented by

1×1 convolution, and otheri denotes the residual learning.

Generally, CNLF is an application of self-attention mecha-

nism, the more similar the feature representations between

two locations, the higher the correlation between them. Ac-

cording to this property, we enhance the regions in other

frames which are similar to the reference frame. It should

be noted that the matching between two features requires a

large amount of computation and memory, so we performed

these operations on the downsampled features.

3.3. Reconstruction

We reconstruct the RGB image by utilizing a Long-

Range Concatenation Network (LRCN) as shown in Fig-

ure 5. The LRCN module is composed of G Long-Range

Concatenation Groups (LRCG), and each LRCG contains

B Residual Blocks with wide activation (WARB) which is

inspired by WDSR [27]. Both the LRCG and WARB re-

ceives a multi-level feature that is obtained by concatenating

4



Method Strategy
Track 1 Track 2

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
EDSR[10]

No

Alignment

37.020 0.925 0.101 44.921 0.971 0.067

RRDB [21] 37.740 0.926 0.098 45.313 0.974 0.053

WDSR [27] 37.702 0.925 0.096 45.435 0.974 0.057

RCAN [29] 37.872 0.928 0.091 45.436 0.974 0.064

LRCN(Ours) 38.099 0.930 0.088 45.607 0.976 0.053

EDVR [19]
Deformable

Alignment

42.268 0.969 0.035 46.168 0.977 0.047

EBSR(Ours) 43.350 0.973 0.029 46.586 0.979 0.041

EBSR∗(Ours) - - - 48.221 0.985 0.024

Table 1. The table shows a comparison between our methods and the other teams. The best one marks in red and the second best are in

blue. ‘∗’ means the model is pretrained on synthetic dataset.

Name Baseline Feature Alignment Fusion Reconstruction

EDSR
√ √ √ √ √ √

WARB
√ √ √ √ √

PCD
√ √ √ √

FEPCD
√ √ √

CNLF
√ √

LRCN
√

Track 1 37.020 37.702 42.77 42.915 43.272 43.35

Track 2 44.921 45.435 46.098 46.247 46.408 46.586

Table 2. In this table, we directly use RAW images to produce

RGB results and shows the PSNR of the both tracks. It also prove

the benefits of adding different modules to the network. The base-

line fusion model is a 1× 1 Conv layer.

all previous features followed by a 1×1 Conv layer. More-

over, we introduce a progressively upsampling strategy that

uses pixelshuffle [7] and a cascading residual pathway (CR)

structure to reconstruct the final SR image. Different from

EDVR, in which the base frame is upscaled ×4 with bilin-

ear interpolation directly, our method learns two cascaded

pixelshuffle(×2) layers and adds the outputs to the predicted

image residual as shown in Figure 2(c). More specifically,

after each upsampling, we add these two outputs to the cor-

responding ×2 and ×4 reconstructed high-resolution fea-

tures. We observe that employing this two-stage progres-

sively upsample technique, the noise in the upsampling pro-

cess can be greatly reduced.

3.4. Loss Function

In the training of real and synthetic track models, we

use L1 loss to evaluate model prediction errors. We use

charbonnier loss for Fine-tune training, proposed by Lap-

SRN [8], which is defined as:

Losscharbonnier =

S
∑

i=1

√

(E(IiIN )− IiHR)
2 + ǫ2, (3)

where S is the number of training samples, and ǫ is 10−3. E
is our EBSR model. IIN and IHR are the input and HR im-

age. This loss function not only improves the performance

of our model, but also improve the convergence speed.

Track 1 Track 2
Team

PSNR SSIM LPIPS PSNR

raoumer 37.618 0.895 0.166 41.395

TakahiroMaeda 44.399 0.973 0.038 44.153

JohnDoe4598 44.762 0.969 0.034 x

chowy333 39.221 0.918 0.104 x

Noah TerminalVision 46.855 0.983 0.018 45.36

Ours 46.723 0.983 0.02 45.454

Table 3. The table shows a comparison between our methods and

the other teams. The best one marks in red and the second best are

in blue.

4. Experiment

4.1. Dataset and Implementation Details

Our method is evaluated on two datasets provided by the

Burst Super-Resolution Challenge1: synthetic RAW burst

dataset and real-world BurstSR dataset [3]. We flatten the

RAW burst images from four channel (RGGB) to single

channel so as to perform super-resolution with a scaling fac-

tor of times4. We notice that it is better to incorporate the

task of demosaic within the network than to use the non-

parametric post-processing demosaic outside the network.

In other words, we learn a NN demosaic by ourselves. This

is important for the performance improvements.

In the training phase, we use Adam optimizer and set ex-

ponential decay rates as 0.9 and 0.999. The initial learning

rate is set to 4 × 10−4 and then reduced to half every 200
epochs. For each training data, we randomly crop 14 RAW

burst image patches with the size of 64 × 64. The batch-

size is set to 16. We implement the proposed EBSR using

Pytorch framework with 4 NVIDIA 2080Ti GPUs.

Though the single EBSR model could achieve impres-

sive results, we also observe that we can further improve the

performance by employing a multi-model ensemble train-

ing strategy. We load three training completed models with

frozen weights, and add few convolution layers to fusion

their outputs.

1The challenge website is here: https://data.vision.ee.

ethz.ch/cvl/ntire21/
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Figure 6. Qualitative results of a comparison between our method and other classical methods in Track 1.

4.2. Ablation Studies

In this section, we mainly compared the effectiveness of

each module. We chose the EDSR as the baseline which

using 1× 1 Conv layer as fusion module.

FEPCD As mentioned in Sec. 3.1, the FPCD is used to

align images from different frames. We further exam the

effectiveness of our FPCD block on EDSR by removing the

Feature Ehance block. As show in Table 2, it can be proved

that introducing multi-scale features improve the perfor-

mance of PCD module.

CNLF The CNLF module can better tell the network how

to fuse multiple frames of data. In order to prove its effec-

tiveness, we replace this module with a simple 1 × 1 Conv

layer as our baseline fusion module as shown in Table 2.

PSNR scores in different tracks are all decreased, especially

in track 1, the PSNR decreased 0.357 dB.

LRCN We introduced the structure of LRCN in Sec. 3.3.

In order to prove its effectiveness, we removed the structure

of LRCN, and the results are shown in Table 2. It can be

seen that the LRCN module is of great help to the improve-

ment of PSNR.

Pretrain Module In the competition, we found that fine-

tuning the real data using the trained model of the synthetic

dataset will get a higher PSNR, as shown in Table 1.

4.3. Comparisons with Existing Methods

In Table 3, we show the results compared to the other

teams on the two tracks. In addition, we also selected some

classical algorithms for qualitative and quantitative compar-

ison on the two tracks. Note that we implement these single

6
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Figure 7. Qualitative results of a comparison between our method and other classical methods in Track 2.

image SR methods to deal with the RAW burst images by

directly concatenating multiple images on the channel axis

as their input without any alignment. We also modified the

EDVR to use the first LR RAW image as reference. For

a fair comparison, all models are trained from scratch ex-

cept our final finetuned EBSR model in Track 2 (EBSR∗).

Among them, the results of track 1 are shown in Table 1 and

Figure 6, and the results of track 2 are shown in Table 1 and

Figure 7. As you can see from the last case in Figure 6, our

method restores the details of the license plate very well,

while other methods fail to do so.Similarly, in the last case

in Figure 7, our method restores the edge of the tile better.

5. Conclusion

Quantitative and qualitative results prove that, EBSR can

accomplish the burst image super-resolution task very well.

Compared with the original alignment module (PCD), our

FEPCD can greatly reduce the alignment failure caused by

large motion between frames. The CNLF module has a

dependable multi-frame images fusing performance, since

we taking the similarity between feature representations

in to the calculation of correlation. The long-range con-

catenation groups and progressively up-sampling module in

LRCN, help the model to obtain clearer, high-fidelity super-

resolution results. By combining and training these models,

EBSR not only wins 1st and 2st places in NTIRE21 Chal-

lenges on real and synthetic burst image super-resolution

track, but also demonstrates superior performance to most

of the existing methods on burst image super-resolution.
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