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Abstract

Motion blur is a common photography artifact in dy-

namic environments that typically comes jointly with the

other types of degradation. This paper reviews the NTIRE

2021 Challenge on Image Deblurring. In this challenge re-

port, we describe the challenge specifics and the evalua-

tion results from the 2 competition tracks with the proposed

solutions. While both the tracks aim to recover a high-

quality clean image from a blurry image, different artifacts

are jointly involved. In track 1, the blurry images are in

a low resolution while track 2 images are compressed in

JPEG format. In each competition, there were 338 and 238

registered participants and in the final testing phase, 18 and

17 teams competed. The winning methods demonstrate the

state-of-the-art performance on the image deblurring task

with the jointly combined artifacts.
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1. Introduction

Motion blur is a prevalent artifact in dynamic scene pho-

tography. Hand-held cameras are prone to shake while the

objects in the scene can move during the exposure. More-

over, images are typically degraded from joint visual arti-

facts including motion blur, low resolution, compression ar-

tifacts, noise, etc. Image deblurring aims to recover a clean

image from such a degraded blurry image.

Most modern image restoration techniques including im-

age deblurring adopt machine-learning approaches that de-

rive knowledge from training data. For deblurring problem,

the pairs of blurry and sharp images could be obtained by

synthesizing blur from high-speed videos [60, 73, 64, 69,

59]. Especially, REDS dataset [59] is designed to generate

high-quality images as well as realistic image degradation.

Recently, there were attempts to construct datasets with real

blurry images by using a beam splitter [67, 111] and 2 cam-

eras. For such hardware-based approaches, evenly splitting

the brightness and precisely aligning the image pair remains

an issue.

To develop and benchmark deblurring algorithms, image

and video deblurring challenges were hosted in the NTIRE

2019 and 2020 workshops. In the NTIRE 2019 Challenge,



video deblurring [62] and super-resolution methods under

low-resolution [63] were developed. In the NTIRE 2020

Challenge, single image deblurring methods [61] are bench-

marked.

Succeeding the prior challenges, NTIRE 2021 Challenge

on Image Deblurring considers image deblurring problem

under additional artifacts. In track 1, the blurry images

are in a lower resolution than the target resolution. Thus,

high-frequency information is more scarce in the input. In

track 2, the blurry image suffers from JPEG compression

artifacts. In constrast to most deblurring methods that only

consider pure motion blur, the joint image restoration tasks

pose more challenging and practical scenario.

This challenge is one of the NTIRE 2021 associated

challenges: nonhomogeneous dehazing [3], defocus de-

blurring using dual-pixel [1], depth guided image re-

lighting [18], image deblurring, multi-modal aerial view

imagery classification [47], learning the super-resolution

space [55], quality enhancement of heavily compressed

videos [92], video super-resolution [72], perceptual image

quality assessment [21], burst super-resolution [6], high dy-

namic range [66].

2. Related Works

We describe the deep learning based image deblurring

methods as well as the super-resolution and image deblock-

ing (decompression).

2.1. Image Deblurring

Deep learning was applied to dynamic scene deblurring

by constructing datasets with high-speed cameras [60, 73,

64]. Multi-scale networks [60, 76, 20] followed the coarse-

to-fine approaches in optimization based frameworks [40,

12, 89, 32, 33]. Motivated that motion blur is spatially

varying, spatially non-uniform operations as well as convo-

lution were adopted. Spatially variant RNN was proposed

as a deconvolution operator [103] and deformable convolu-

tion [114] was used to approximate the shape of blur ker-

nel [99]. In contrast to the single feed-forward computa-

tion, MTRNN [65] proposed to remove partial blur multi-

ple times with a small module. In [69], more attention was

paid to human bodies as they tend to be the main objects in

photography.

On the other hand, there were efforts to optimize such

models with focus on perceptual quality. Adversarial

loss [60, 34, 34], perceptual loss [34, 35] were used. Also,

unsupervised training with cycle-consistency [54] was at-

tempted in domain-specific deblurring.

Specific to face and text images, [91] proposed a joint

deblurring and super-resolution model with deep learning.

To cope with the ill-posedness of the joint task, adversarial

training framework is employed to learn a category-specific

prior. Later, dual branch architectures were proposed [106,

107]. In [106], the features from deblurring module and

the super-resolution feature extraction module are fused by

gate module to obtain high-resolution reconstruction result.

In contrast, [107] uses a feature extraction module followed

by the deblurring module and the high-resolution prediction

module. The auxiliary deblurring branch is used to aid train

the feature extraction module.

On the other hand, little attempts were made to handle

compression artifacts in deblurring task. In case of video

deblurring, MPEG compression was considered in NTIRE

2019 Challenge on Video Deblurring [62].

2.2. Image Super­Resolution

From the the early CNNs for super-resolution [16, 31],

many model architectures were proposed. Faster mod-

els were developed using sub-pixel convolutions [17, 70].

Later, residual networks [27] were widely adopted in the

later methods [38, 45, 28] as well as dense connections [79,

109]. Multi-scale models were also proposed to handle in-

formation in different frequency bands [37, 8] Back pro-

jection networks were developed to provide iterative feed-

back mechanism [26, 43]. In order to focus on relatively

more useful features, attention modules were applied to the

channels [108, 13] and spatial location [57] on feature maps.

Also, high-level information were jointly used to aid super-

resolution performance [83].

In contrast to conventional super-resolution methods

considering bicubic downsampling, kernel-based methods

tried to handle general downsampling methods [22, 104,

112]. To make deployed super-resolution model adapt to

the test image, meta-learning was applied [29].

2.3. Image Deblocking

Early JPEG artifacts reduction mainly relied on image

filtering [46, 95], transformed domain [44] or via opti-

mization [93, 42]. Sparsity was exploited for regulariza-

tion [9, 53, 52]. More recent deep learning methods learn

to suppress the artifacts by minimizing reconstruction error

on training set [15, 75, 98, 19]. To reflect the compression

model of JPEG compression, the loss function were calcu-

lated on the frequency domain [23, 24, 94]. The traditional

sparse coding schele was reflected in neural networks [19].

3. NTIRE 2021 Challenge

We hosted the NTIRE 2021 Challenge on Image De-

blurring in order to encourage the community to develop

the state-of-the-art algorithms for dynamic image deblur-

ring in the wild condition. The main objective of the chal-

lenge is to handle motion blur under additional joint degra-

dation artifacts. Following the NTIRE 2019 and 2020 chal-

lenges [62, 61], we use the REDS dataset [59] to measure

the performance of the results.



Team PSNR↑ SSIM↑ LPIPS↓ Runtime

VIDAR 29.04 0.8416 0.2397 1.0

netai 28.91 0.8246 0.2569 12.4

NJUST-IMAG 28.51 0.8172 0.2547 6.4

SRC-B 28.44 0.8158 0.2531 0.9

Baidu 28.44 0.8135 0.2704 40.8

MMM 28.42 0.8132 0.2685 14.3

Imagination 28.36 0.8130 0.2666 7.3

Noah CVlab 28.33 0.8132 0.2606 24.5

TeamInception 28.28 0.8110 0.2651 0.9

ZOCS Team 28.25 0.8108 0.2636 2.2

Mier 28.21 0.8109 0.2646 17.3

INFINITY 28.11 0.8064 0.2734 2.7

DMLAB 27.87 0.8009 0.2830 2.3

RTQSA-Lab 27.78 0.7960 0.2830 6.5

Yonsei-MCML 27.64 0.7956 0.2730 1.6

SCUT-ZS 27.61 0.7936 0.2885 0.3

withdrawn team 27.55 0.7935 0.2785 0.3

Expasoft team 27.44 0.7902 0.2850 1.0

bicubic upsampling 24.06 0.6817 0.5120 -

(a) Track 1. Low Resolution

Team PSNR↑ SSIM↑ LPIPS↓ Runtime

The Fat, The Thin
29.70 0.8403 0.2319 464.8

and The Strong

Noah CVlab 29.62 0.8397 0.2304 76.1

CAPP OB 29.60 0.8398 0.2302 12.7

Baidu 29.59 0.8381 0.2340 71.0

SRC-B 29.56 0.8385 0.2322 0.8

Mier 29.34 0.8355 0.2546 17.3

VIDAR 29.33 0.8565 0.2222 5.3

DuLang∗ 29.17 0.8325 0.2411 -

TeamInception 29.11 0.8292 0.2449 10.1

GiantPandaCV 29.07 0.8286 0.2499 2.4

Maradona 28.96 0.8264 0.2506 21.4

LAB FUD∗ 28.92 0.8259 0.2424 -

SYJ 28.81 0.8222 0.2546 1.4

Dseny 28.26 0.8081 0.2603 0.6

IPCV IITM 27.91 0.8028 0.2947 6.4

DMLAB 27.84 0.8013 0.2934 33.2

Blur Attack 27.41 0.7887 0.3124 1.7

no processing 24.94 0.7199 0.3265 -

(b) Track 2. JPEG artifacts

Table 1: NTIRE 2021 Image Deblurring Challenge results measured on the REDS [59] test dataset. Teams are ordered

by ranks in terms of PSNR(dB). The running time is the average test time (sec) taken to generate a single output image in

reproduction process using 1 Quadro RTX 8000 GPU with 48GB VRAM. We note that the reported timing includes I/O and

initialization overhead due to the difficulty in measuring pure model inference time by modifying each implementation.

3.1. Tracks and Competitions

In this challenge, we considered commonly witnessed

visual artifacts, low-resolution and the JPEG compression

as well as the motion blur. Both the degradations make the

removal of motion blur to be more difficult. The compe-

tition consists of 2 tracks: (1) Low Resolution (2) JPEG

Artifacts.

Image Deblurring Track 1. Low Resolution aims to de-

velop single-image deblurring methods under ×4 low reso-

lution image than the target resolution. A joint deblurring

and super-resolution task is posed.

Image Deblurring Track 2. JPEG Artifacts provides the

blurry images under JPEG compression. The images are

compressed by ×4 ratio to keep a similar degree of infor-

mation loss as Track 1.

Competitions Both the tracks are hosted on the CodaLab

competition platform. Each participant is required to reg-

ister to the CodaLab challenge tracks to access the data

and submit their deblurred results. During the development

phase, the participants use their training set to develop so-

lutions. The online feedback on part (every 10th) of the

validation data was available. Due to the large size of the

∗ Solutions from DuLang and LAB FUD teams were not reproducible

from the submitted code.

validation set, the participants were provided with the vali-

dation data ground truth for local evaluation. At the testing

phase, each team were required to submit part of the testing

set results to the CodaLab server. Parallel with the online

submission, all the deblurred images and the inference code

was submitted via email.

Evaluation The primary evaluation metric in this challenge

is PSNR. To supplement and provide additional informa-

tion, SSIM [87] and LPIPS [105] is also measured. The

running time was measured by the organizers with the code

provided by the participants, checking the reproducibility of

each solution.

4. Challenge Results

Each challenge track had 338 and 238 registered partici-

pants. In each track, 18 and 17 teams submitted the results

in the final testing phase. The deblurred images were sub-

mitted along with the inference code and the trained weights

for the organizers to check the reproducibility.

Table 1 shows the measured performance of each team’s

solution as well as their inference speed. The inference

speed was measured by the organizers in a single platform.

We used Intel Xeon Gold 6248 CPU and NVIDIA Quadro

RTX 8000 GPU, Samsung 860 EVO 4TB SSD.



(a) Input (b) (c) (d) (e) (f) (g) GT

Figure 1: Comparison between top-ranked results in Track 1. (b) VIDAR team (c) netai team (d) NJUST-IMAG team.

(e) SRC-B team. (f) Baidu team. Patches are cropped from REDS (test) ‘013/00000013’ and ‘014/00000002’, respectively.

(a) Input (b) (c) (d) (e) (f) (g) GT

Figure 2: Comparison between top-ranked results in Track 2. (b) The Fat, The Thin and The Strong team. (c)

Noah CVLab team. (d) CAPP OB team. (e) Baidu team. (f) SRC-B team. Patches are cropped from REDS (test)

‘004/00000067’ and ‘008/00000097’, respectively.

4.1. Architectures and Main Ideas

There were a few novel ideas and several shared strate-

gies between the submitted solutions. In track 1, inspired

from the video deblurring technique in EDVR [84], VIDAR

and Imagination teams used pyramid deformable convolu-

tions to align multiple features from a single image. netai

and Noah CVlab teams used multi-task training method to

optimize features for joint deblurring and super-resolution.

Transformer architecture [82] was used by Noah CVlab and

ZOCS teams. Non-local module [85] was used by NJUST-

IMAG team. In track 2, to overcome the limitation of batch

normalization [30], half-instance normalization scheme was

proposed by The Fat, The Thin and The Strong team. Ob-

ject edge information was exploited by Yonsei-MCML and

Blur Attack teams. Specifically to handle images with JPEG

compression artifacts, CAPP OB team used auto-endocer

loss [36]. Dilated convolutions were adopted in many so-

lutions to enlarge the receptive field. Also, the attention

modules were widely employed.

4.2. Challenge Winners

The challenge winners are determined by the PSNR

scores. In track 1, VIDAR team achieved the best restora-

tion quality with their EDPN architecture. They also exhib-

ited the best SSIM and LPIPS scores in track 2. The EDPN

model is inspired from EDVR [84] and exploits the sim-

iliraty information within the extracted features. In track

2, The Fat, The Thin and The Strong team showed the

best PSNR score from their proposed HINet model. They

propose Half Instance Normalization Block to design their

model architecture.

4.3. Visual Comparison

We provide a visual comparison between the top-ranked

solutions. Figure 1 shows the deblurred images from low-

resolution input in Track 1. Figure 2 illustrates the images

deblurred from JPEG-compressed input in Track 2.
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Figure 3: VIDAR team (Track 1 & 2). Enhanced Deep Pyramid Network

5. Challenge Methods and Teams

5.1. VIDAR

VIDAR team proposed Enhanced Deep Pyramid Net-

work (EDPN) [90] for blurry image restoration from multi-

ple degradations. The overall structure of EDPN is shown

in Figure 3, which is inspired by EDVR [84]. Specifically,

they exploit the self- and cross-scale similarities in the de-

graded image with two pyramid-based modules, i.e., the

pyramid progressive transfer (PPT) module and the pyramid

self-attention (PSA) module. They first replicate the given

blurry image K times (K = 4) and feed the replicated im-

ages as the input to EDPN, which aims to fully exploit the

self-similarity contained in the degraded image. The fea-

tures extracted from the multiple same images by a feature

extractor consisting of 18 residual blocks are fed into the

PPT module. The PPT module is designed to transfer the

cross-scale similarity information from the same degraded

image at the feature level with a pyramid structure, which

performs the deformable convolution and generates atten-

tion masks to transfer the self-similarity information in a

progressive manner. The following PSA module is designed

to aggregate information across the above transferred fea-

tures, which adopts the self- and spatial-attention mecha-

nisms to fuse the multiple features. For the blurry image

super-resolution task, the fused features are fed into a re-

construction module followed by an upsampling layer. For

the blurry image deblocking task, the upsampling layer will

not be necessary. The reconstruction module is composed

of 120 multi-scale residual channel attention blocks [108].

Please refer to [90] for more details.

5.2. netai

netai team proposed Pixel-Guided Dual-Branch Atten-

tion Network (PDAN) for joint image deblurring and super-

resolution. The dual-branch scheme of PDAN is similar to

[107]. In PDAN, the feature extraction module uses resid-

ual spatial and channel attention (RSCA) module, inspired

by [108]. The deblurring module is a residual encoder-

decoder model to enlarge the receptive field, activated by

Figure 4: netai team (Track 1). Enhanced Multi-Task Net-

work

LeakyReLU layers [56]. The shallow feature from the fea-

ture extraction module is fed into the reconstruction module

to increase the spatial resolution. The upscaling is done by

scale 4 through a convolutional layer to reconstruct the HR

output image. netai team proposed an HPEM loss function

for using a hard example mining strategy to focus on the

difficult areas automatically. The whole model is jointly

trained from scratch using L1 loss and then fine-tuned with

the weighted sum of L1 loss and the HPEM loss. The over-

all architecture is shown in Figure 4. Please refer to [71] for

more details.

5.3. NJUST­IMAG

NJUST-IMAG team developed an end-to-end network

consisting of a deblurring module and a subsequent super-

resolution module. A non-local residual network (NLRN) is

proposed as the super-resolution module to better generate

high-quality images. In the NLRN, the non-local residual

group is adopted as the basic unit. The non-local residual

group contains two sub-groups that each consist of a non-

local block [85] and four RCABs [108]. The non-local ar-

chitecture is effective at modeling the global information

which is able to help remove the residual blur and further

improve the super-resolution performance. Self-attention is
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Figure 5: NJUST-IMAG team (Track 1). Learning A

Cascaded Non-Local Residual Network for Super-resolving

Blurry Images

adopted to explore the relation between each image patch.

Multi-head mechanism [82] is used to make the non-local

block focus on more diverse global correlation.

The whole model is jointly trained starting from the pre-

trained deblurring module. L1 loss and the image gradient

loss are employed to train the model. The overall architec-

ture is shown in Figure 5. More information can be found

in [5].

5.4. SRC­B

Figure 6: SRC-B team (Track 1 & 2). MRNet: Multi-

Refinement Network

SRC-B team proposed a Multi-Refinement Net-

work (MRNet) for image deblurring. MRNet was

originally developed for defocus deblurring on images

from dual camera and applied to single image deblurring

in this competition. MRNet is composed of 4 modules:

feature extraction, fusion, reconstruction, and upsampling.

The feature extraction module computes Siamese feature

from the single input image. The features are concatenated

in channel dimension and then fused by 1× 1 convolution.

Inspired by MMDM [51], Residual Block Module (RBM)

is proposed. RBM adopts the same configuration as

MMDM, consisting of 10 residual modules and a global

residual connection. To avoid the increment in computa-

tional complexity, channel attention is not used. Similarly

to FERM in [51], 5 RBM modules are used to form residual

group module (RGM). Multi-scale RGM (MSRGM) is

constructed from the RGMs by computing parallel features

with encoder-decoder structure. Finally, the reconstruction

module is composed of multiple MSRGM modules, con-

nected in series. On the idea that each block refines the

features from the previous layer, every module has a global

residual connection.

With the proposed architecture self-ensemble did not

consistently increase PSNR. Thus, multi-model ensemble

strategy was used to make final results. The overall archi-

tecture is shown in Figure 6.

5.5. Baidu
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Figure 7: Baidu team (Track 1 & 2). Joint Super-

Resolution and Deblurring Using Dual Model Ensemble

Baidu team proposes to improve MPRNet [101] and a

RRDB-based model [86] and exploit the virtue of 2 models

via ensemble. The MPRNet is enhanced by adding an up-

sampler in the 3rd stage and by introducing an iterative pro-

cess in the SAM module. RRDB model was pretrained from

DF2K dataset, combining DIV2K [2] and Flickr2K [77, 45]

datasets as [86].

Each model was trained with L1, FFT, and MS-SSIM

loss with large patches of size 320× 320. For the enhanced

MPRNet, 640× 640 patches were used. The final output is

generated from the ensemble of each model output that is an

self-ensemble [78] result from 8 geometric transforms. The

learning rate is initialized as 1 × 10
−4 and halved at 20k,

30k, 35k iterations. Adam optimizer was used. The overall

architecture is shown in Figure 7.

5.6. MMM

Figure 8: MMM team (Track 1). M3Net: Multi-stage,

Multi-patch, and Multi-resolution

MMM team proposed a M3Net model using multi-stage,

multi-patch, multi-resolution strategy. The model is divided

into 3 levels and input of the each layer is a downsam-

pled low-resolution input split in non-overlapping patches.

For the lower two stages, encoder-decoder architecture with

different depth is employed to extract features of multiple

scales. The top stage does not have such encoder-decoder

structure to preserve the spatial high-frequency information.



In the encoder-decoder structure, the features at the same

resolution are aggregated by concatenation and convolution.

They are progressively fused with the upper stage. CAB

and ORB modules in [101] are applied at each stage to ex-

tract features. The skip connection between the encoders

and decoders and the global skip connection with 4 times

upsampling are introduced to enhance the image restoration

quality. The overall architecture is shown in Figure 8.

5.7. Imagination

Figure 9: Imagination team (Track 1). Pyramid De-

formable Convolution

Imagination team proposed a pyramid deformable con-

volution method. Bowworing the idea of PCD alignment

module in EDVR [84], they used pyramid cascading DCN

to further align individual image features. For the refined

bicubic LR aligned features, an RCAN model [108] with 10

residual groups with 20 RCABs are applied. REDS120fps

dataset [59] is used to synthesize additional training data.

L2 loss is used at training. In the testing phase, 6 indepen-

dent models with ×8 self-ensemble is used to obtain addi-

tional gains in PSNR. The overall architecture is shown in

Figure 9.

5.8. Noah CVlab
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Figure 10: Noah CVlab team (Track 1 & 2). Pre-trained

Image Processing Transformer

Noah CVlab team adopted an Image Processing Trans-

former (IPT) approach proposed in [10]. The IPT model

consists of multi-head and multi-tail for different tasks and

a shared transformer body including an encoder and a de-

coder. The input image is first converted to visual features

and then divided into patches as visual words for subsequent

processing. The resulting image with high visual quality is

reconstructed by ensembling output patches.

In the pretraining phase, there are 6 heads and tails cor-

responding to the six image-to-image tasks including super-

resolution with scale 2, 3, 4, denoising with noise level 30

and 50, and deraining. In the fine-tuning phase, the head

and tail for ×4 super-resolution is chosen and the other

heads and tails are dropped. Both the heads and tails are

convolutional layers. The body consists of a 12-layer trans-

former encoder and a 12-layer transformer decoder.

The model is pretrained with ImageNet [14] dataset and

fine-tuned with GOPRO [60] and REDS [59] datasets. Im-

ageNet data is utilized for generating degraded images by

downsampling, adding Gaussian noise, rain streaks. The

overall architecture is shown in Figure 10.

5.9. TeamInception

Figure 11: TeamInception (Track 1 & 2). Multi-Stage

Progressive Image Restoration

TeamInception presented MPRNet architecture intro-

duced in [101]. MPRNet consists of three stages to pro-

gressively restore images. The first two stages are geased

on encoder-decoder subnetworks that learn the broad con-

textual information due to the large receptive field. The

last stage employs a subnetwork, ORSNet containing mul-

tiple ORB modules. Supervised attention module (SAM)

is incorporated between the stages. Cross-scale feature fu-

sion mechanism is introduced where the intermediate multi-

scale contextual features of the earlier subnetworks help

consolidating the intermediate features of the latter subnet-

work. L1, MS-SSIM, VGG loss is used to train the model.

The overall architecture is shown in Figure 11.

5.10. ZOCS Team

ZOCS Team used RDN [109] as a baseline and added

token-based transformer to the building block, RDB. The



Figure 12: ZOCS Team (Track 1). PyVTRDN - Equip

RDN with Pyramid token based transformer

advantages of token-based transformer can be listed as fol-

lows: 1) similar patterns in an image are grouped 2) trans-

formers use the non-local self-similarity based on image to-

kens 3) less computation cost is reuiqred compared with

a non-local layer. The token-based transformer module is

added after the last convolution layer of RDB. Then pyra-

mid token visual transformer is added after the upsampling

layer of RDN. The model is pretrained on DF2K dataset

(DIV2K + Flickr2K) [2, 45] is used and then fine-tuned on

the REDS dataset [59]. The overall architecture is shown in

Figure 12.

5.11. Mier

Figure 13: Mier team (Track 1 & 2). Big UNet for Image

Restoration

Mier team proposed a Big UNet based on MWCNN [50]

and RCAN [108]. They replaced the convolutional layers

in MWCNN with the residual group in RCAN to enhance

toe reconstruction quality. In order to further expand the re-

ceptive field, they added a multi-scale dilated block (MDB)

from DAVANet [113]. For track 1, bicubic upsampling is

applied to the input to match the image resolution. ×8 self-

ensemble is applied. The overall architecture is shown in

Figure 13.

5.12. INFINITY

INFINITY team used EDSR [45] to deblur images in

Track 1. Self-ensemble was used with 8 geometric trans-

forms. They tested WDSR [97], RFDN [48], DRN [25],

RCAN [108], RCAN with pixel attention [110] and self-

calibrated convolutions [49] and chose EDSR for better ac-

curacy.

5.13. DMLAB

LR image
HR image
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Figure 14: DMLAB team (Track 1 & 2). Multi-scale Hi-

erarchical Dense Residual Network

DMLAB team proposed Multi-scale Hierarchical Dense

Residual Network (MS-HDRN). Hierarchical dense resid-

ual learning is proposed via multi-level dense connections

and multi-level residual connections. To implement multi-

level dense connection, 1×1 convolution layers are inserted

as the first and the last layers of MDCG and MDCB mod-

ules [41], reducing the number of feature maps. Inspired by

[7], multi-scale feature extraction modules are used with-

out reducing spatial resolution. To achieve the implementa-

tion principle, MDCB [41] and Laplacian attention [4] mod-

ules are used with modifications. The overall architecture is

shown in Figure 14.

5.14. RTQSA­Lab

RTQSA-Lab team proposed Enhanced Attention Net-

work for the competition track 1. They presented a new

attention network consisting of a Global Attention Mod-

ule (GAM) and a Local Attention Module (LAM) to model

the dependencies between layers, channels, and positions.

Specifically, the proposed GAM adaptively emphasizes hi-

erarchical features by considering correlations among lay-

ers. Meanwhile, LAM learns the confidence at all positions

of each channel, selectively capturing more informative fea-

tures.

5.15. Yonsei­MCML

Yonsei-MCML team proposed an edge detection-based

attention network for image deblurring. On top of BA-

Net [80] using dilated convolutions, attention module is

added. The edge information is fed into the model by Sobel

filter in the horizontal and the vertical directions. Following

ESPCN [70], sub-pixel convolution is employed with mod-

ification. The overall architecture is shown in Figure 15.



Figure 15: Yonsei-MCML team (Track 1). Edge Attention

Network

5.16. SCUT­ZS

SCUT-ZS team applied EDSR [45] in image deblurring

task in participation to track 1.

5.17. Expasoft team

Figure 16: Expasoft team (Track 1). BowNet

Expasoft team proposed a BowNet architecture, combin-

ing ESRGAN [86] and UNet [68]. The presented UNet con-

sists of RRDB blocks [86] where the changes in the number

of channels are made by 1× 1 convolutions. Average pool-

ing is used to reduce the scale of feature maps in UNet. The

UNet and the ESRGAN body are applied in parallel and the

extracted features are concatenated and fused in the next

layers. The resolution is increased by a sequence of 3 × 3

convolutions and nearest-neighbor upsampling. The overall

architecture is shown in Figure 16.

5.18. The Fat, The Thin and The Strong

SAM
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Figure 17: The Fat, The Thin and The Strong team

(Track 2). HINet: Half Instance Normalization Network

for Image Restoration

The Fat, The Thin, and The Strong team proposes a

two-stage feature completion network. Five feature rep-

resentation for each stage is presented to effectively in-

crease the receptive field. At each stage, a convolutional

feature is extracted followed by a body architecture simi-

lar to UNet [68]. To replace the batch normalization, half-

IN block is designed in the encoding stage. Half-IN block

uses both the non-normalized and the normalized feature

from instance normalization [81]. SAM block from MPR-

Net [101] is adopted to refine feature and interact with the

input features of the second stage. 3 models were used for

ensemble but not much PSNR boost were observed in the

REDS validation set. The overall architecture is shown in

Figure 17. Please refer to [11] for more details.

5.19. CAPP OB

Figure 18: CAPP OB team (Track 2). Wide Receptive

Field and Channel Attention Network

CAPP OB team proposed a wide receptive field and

channel attention network (WRCAN), an encoder-decoder

architecture similar to UNet [68]. Dilated convolutions are

used to increase the receptive field and the channel atten-

tion [108] considers the relation between the feature chan-

nels. They further optimize the model using with auto-

encoder loss [36] to handle the JPEG compression artifacts.

The overall architecture is shown in Figure 18. Please refer

to [39] for more details.



5.20. DuLang
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Figure 19: DuLang team (Track 2). Multi-Scale Fusion

Net

DuLang team proposes a multi-scale Fusion

Net (MSFN) based on AFN [88] and MIRNet [100]

to restore blurry images with JPEG artifacts. To expand

the receptive field, dilated convolutions are added to Res-

Block. Triple attention computes the attention weights by

capturing cross-dimension interaction using a three-branch

structure [58]. To train the proposed model, L1 loss,

L1 loss between the Lapalacian images, and the L1 loss

between the Sobel-filtered images are used. The overall

architecture is shown in Figure 19.

5.21. GiantPandaCV

Figure 20: GiantPandaCV team (Track 2). A Simple Di-

lated Encoder-Decoder Network

GiantPandaCV team proposed a simple encoder-decoder

structure model. Different from U-Net, the receptive field

is enlarged by dilated convolution layers. They used SSIM

and Charbonnier loss function to train the proposed model.

The overall architecture is shown in Figure 20.

5.22. Maradona

Maradona team used a multi-scale residual network

model [60] by extending the model depth to 182 layers in

their participation in track 2. ×8 self-ensemble was used at

test time.

5.23. LAB FUD

Figure 21: LAB FUD team (Track 2). yuv-grid-net

LAB FUD team proposed a yuv-grid-net. The model

convers the input sRGB image to YUV colorspace and con-

catenates a grid map in 8 × 8 and 16 × 16 size. Processed

by a residual network, the output of the model is converted

from the YUV colorspace to sRGB. The overall architecture

is shown in Figure 21.

5.24. SYJ

SYJ team proposed a Multi-level Wavelet-ResNet. The

proposed method performs discrete wavelet transforms in

the neural network. Residual group modules [108] are used

in the model with intermediate residual connections. The

overall architecture is shown in Figure 22.
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Figure 22: SYJ team (Track 2). Multi-level Wavelet-

ResNet in Residual Learning

5.25. Dseny

Dseny team presented a multi-scale and multi-patch

network to deblur images in real-time. They combined

SRN [76] and DMPHN [102] to build their model archi-

tecture. The overall architecture is shown in Figure 23.

5.26. IPCV IITM

IPCV IITM team used multi-scale context block [96] in

multi-patch hierarchical [102, 74] architecture. The overall

architecture is shown in Figure 24.



Figure 23: Dseny team (Track 2). Multi-scale and Multi-

patch Network

ENCODER DECODERINPUT

ENCODER DECODER

ENCODER DECODER OUTPUT

Figure 24: IPCV IITM team (Track 2). Hierarchical

Encoder-Decoder with Multi-scale Convolution

5.27. Blur Attack

Figure 25: Blur Attack team (Track 2). EACD: Deblur-

ring Network Using Edge Module, ASPP Channel Atten-

tion and Dual Network

Blur Attack team proposed a model named EACD. The

model extracts edge in addition to the convolutional feature.

The features are processed by residual dense blocks [109]

and residual groups [108]. The overall architecture is shown

in Figure 25.
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[66] Eduardo Pérez-Pellitero, Sibi Catley-Chandar, Aleš
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