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Abstract

In this paper we target the color transfer estimation

problem, when we have pixel-to-pixel correspondences. We

present a feature-based method, that robustly fits color

transforms to data containing gross outliers. Our solution

is based on an optimal inlier maximization algorithm that

maximizes the number of inliers in polynomial time. We in-

troduce a simple feature detector and descriptor based on

the structure tensor that gives the means for reliable match-

ing of the color distributions in two images. Using com-

binatorial methods from optimization theory and a number

of new minimal solvers, we can enumerate all possible sta-

tionary points to the inlier maximization problem. In order

for our method to be tractable we use a decoupling of the

intensity and color direction for a given RGB-vector. This

enables the intensity transformation and the color direction

transformation to be handled separately. Our method gives

results comparable to state-of-the-art methods in the pres-

ence of little outliers, and large improvement for moder-

ate or large amounts of outliers in the data. The proposed

method has been tested in a number of imaging applica-

tions.

1. Introduction and motivation

We will in this paper target the problem of robust color

transfer between images. Color transfer, also known as

color mapping, color correction or color balancing, is the

problem of transferring the colors between two or more im-

ages so that they in some sense are the same. A nice intro-

duction and overview to the problem is given in [9].

There are various scenarios and use cases for color trans-

fer, but in this paper we are addressing the specific case

when we have two images of the same scene, and where we

have known pixel-to-pixel correspondences. We will de-

scribe an overall system for robust estimation of the color

transformation, given two input images in the same geo-

metric coordinate system. However, our robust fitting could
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also be directly used in any other feature based [32] or

patch based [20] color transfer algorithm. For our feature

based method, we will show how to optimally maximize

the number of inliers, i.e. the number of correspondences

that follow the fitted color transformation within some error

bound. This gives a very robust approach that can handle

large amounts of outliers. By outliers we mean data points

that do not follow any underlying sought color transform,

and that arise due to e.g. mismatches and occlusions. Pre-

viously, methods that optimally find models that maximize

the number of inliers, in polynomial time, have been de-

veloped, [8]. The authors used it to produce algorithms for

optimal image stitching and 2D-registration. In [44] similar

methods were used to perform large-scale image-based lo-

calization. We will in this paper apply these ideas to color

matching.

Our main contribution in this paper is an optimal inlier

maximization scheme that robustly fits color transforma-

tions to data (Section 3.2 and 3.3). In order use this method

in a system, we also describe a feature detector and fea-

ture descriptor for color matching (Section 2), and how to

choose the working color space in order to get separable

color transformations (Section 3.1)1.

1.1. Related work

There exists a number of approaches for transferring

the colors of one image to another. Most of these ap-

proaches work on the overall color distribution of the im-

ages [37, 33, 11, 23, 10, 30, 45, 16, 18] . One main reason

is that these methods also work on images that depict dif-

ferent scenes entirely, i.e. where there is no obvious spatial

relation between the images. However, this can also be an

impediment, especially when such spatial correspondences

exist. To this end, methods based on segmentation [42, 46],

and matching patches in the corresponding images have

been developed, [20]. This, and many such feature based

methods, also estimate a geometric transformation between

the images. In this paper we restrict ourselves to the case

when this transformation is known, or when the images are

naturally in the same geometric coordinate system (in our

1Code at: github.com/hamburgerlady/antifeature-color-transform
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experiments we show a number of natural use cases where

this is true). Other feature based methods [32, 48, 46, 31]

typically match SIFT features, and then fit the transforma-

tion to colors extracted at these points. Most of these meth-

ods are not robust to outliers to any large extent, however,

the method of Park et al. [32] is based on a robust low rank

matrix formulation. Recently also methods based on learn-

ing, for so-called style transfer, have shown impressive re-

sults [50, 28], but these methods typically do not consider

outliers.

2. Feature representation

We will in this section describe our feature representa-

tion. Most feature based methods for color transfer use

SIFT features, [32, 31, 46, 48], mostly since these methods

also do geometric matching. However, such feature points

are by design points with high frequency structures. This is

not ideal for modelling color, since color by nature is a low

frequency property. For this reason, many color transfer al-

gorithms extract the color by some form of averaging over a

larger window around the SIFT points, [31, 46, 48]. We will

base our representation on the structure tensor [5, 25, 24],

but it could be based on other detectors, e.g. MSER [29].

The structure tensor, as its name suggests, captures much of

the local intensity variations in a compact and robust way.

These properties make it very suitable as a tool for feature

extraction, and the classic Foerstner-Harris corner detectors

[15, 21] were based on it. It is well known that the mag-

nitudes of the eigenvalues of the structure tensor J(x, y)
capture the local structure at (x, y), so that typically corners

have two large eigenvalues, linear structures and edges have

one large and one small eigenvalue and slowly varying ar-

eas have two small eigenvalues. These properties have been

used to find corners in images, by thresholding e.g. the de-

terminant (which equals the product of the eigenvalues) of

J(x, y). In our case we are interested in feature point that

have as little corner or edge structures as possible, and as

such they would correspond to antifeatures to what we nor-

mally extract as features. We could do this by looking at the

product of the eigenvalues, and when this is small it consti-

tutes a good candidate for a feature. It turns out that we get

better behavior by looking at the logarithm of the product

(this will among other things suppress lines and edge struc-

tures), so we will use this as a basic function from which

we extract our features,

ϕ(x, y) = log(1 + det J(x, y)). (1)

We would like ϕ to be small at our feature points, so we will

threshold it at some level. We choose this level as a factor

of the mean ϕ̄ of ϕ, over the whole image. We then choose

all points (x, y) that are also local minimizers of ϕ, i.e. we
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Figure 1. Left shows the response function ϕ(x, y) as in (1). Then

follows the initial feature set A, the final feature set A′ after lateral

inhibition and the descriptors for the extracted features.

extract our feature set A as A = A1 ∩A2, with

A1 ={(x, y) |ϕ(x, y) ≤ Cϕ̄}, (2)

A2 ={(x, y) |ϕ(x, y) ≤ ϕ(x′, y′) ∀ |(x′, y′)− (x, y)| < ǫ}.

In most cases we aim at features that cover the whole of

the image, in order to capture the color variations, but at

the same time we do not want too dense sampling. To this

end we apply a simple lateral inhibition mechanism [36], by

ordering the features randomly and cancelling out a neigh-

borhood around each feature taken in the order. This gives

us our final feature set A′. In Figure 1 the result of our fea-

ture extraction scheme is shown on an example image. We

choose the locally averaged color as our descriptor d for a

feature position (xi, yi), by

d(xi, yi) = I(x, y) ∗G(x, y)|(xi,yi), (3)

where G(x, y) is a smoothing Gaussian function. To the

right in Figure 1 the resulting descriptor colors are shown

for the example image.

3. Color transformation inlier maximization

In the presence of outliers, finding accurate correspon-

dences is difficult, and robust methods are highly desirable.

Typically, we have a model that depends on a number of pa-

rameters Θ, and we would like to fit this model to our data

in a robust way, such as

min
Θ

∑

i

ℓ(ri), (4)

where ri is the residual for data point i, and ℓ(x) is a robust

loss function. Here we choose to minimize the number of

outliers (or equivalently to maximize the number of inliers),

and hence define

ℓ(r) =

{

0 if r ≤ ǫ,

1 otherwise,
(5)

for some inlier bound ǫ. This formulation leads to a chal-

lenging optimization problem, but we will now show how

we can find a tractable solution. In [8] it was shown how the

number of inliers can be maximized in polynomial time, for

a fixed-dimensional model, where the computational com-

plexity follows directly as a consequence of the theory of



optimization. This is done by rewriting (4) using a dummy

function f 2,

min
Θ

f(Θ) (6)

sigi(Θ) ≤ 0 i = 1, . . . , n, (7)

hj(Θ) = 0 j = 1, . . . ,m− k. (8)

Here gi(Θ) ≤ 0 is a polynomial expression in Θ equivalent

to ri ≤ ǫ, hj(Θ) are (polynomial) embedding constraints

for the parameters Θ and

si =

{

1 if data point i is an inlier,

−1 otherwise.
(9)

The k−dimensional parameter space should be a differen-

tiable manifold embedded in R
m with a set of (m − k)

equality constraints hj and f(Θ) should be a polynomial.

The main theorem from [8] shows that one can find the op-

timal solution with respect to the number of inliers by enu-

merating a finite set of so called critical points, essentially

being the Karush-Kuhn-Tucker (KKT) points. These criti-

cal points divide the solution space into regions that contain

different combinations of inliers and outliers, and the opti-

mal solution with respect to the number of inliers will be

found in one of the critical points. The critical points are

found by enumerating all possible subsets of data points of

sizes less or equal to the dimension (k) of the parameter

space. For all subsets of data points B of size |B| = k the

critical points Θ∗ are given as solutions to

gi(Θ
∗) = 0, i ∈ B. (10)

For subsets B of size |B| < k the critical points fulfill (10),

and in addition that

{∇gi(Θ
∗), i ∈ B} ∪ {∇f(Θ∗), ∇h1Θ

∗, . . .} (11)

should be a linearly dependent set. For all possible criti-

cal points, we check how many inliers we get to our prob-

lem, and the optimal solution will be the among these so-

lutions. For a k−dimensional parameter space this leads to

an O(nk+1) algorithm.

3.1. Problem formulation

We are now ready to formulate and solve the main opti-

mization problem addressed in this paper. Our assumption

is that we have two sets of (geometrically aligned) corre-

sponding feature points ({fi} and {f ′i}) whose descriptors

({di} and {d′

i}) each characterize the color distribution of

their respective images. We assume that there are outliers in

2The function f is used to move the loss function to the constraints,

and can be chosen arbitrarily (simple) as long as we get a finite number of

critical points

these correspondences, due to e.g. misalignment, saturation

or occlusions. We would now like to find a transformation

T on the descriptors so that T (di) ≈ d′

i for all or most i.
In robust estimation one key to a tractable system is for the

model to be low-dimensional, in order to avoid combinato-

rial explosion. So, we would like to define our transforma-

tion T with as few parameters as possible, but so that it still

captures most of the typical color transformations that oc-

cur naturally. There are a number of different color spaces

that have been described in the literature, e.g. the HSI fam-

ily or the CIE L*a*b* [34], with different properties and

uses. Many of these convert the RGB channels, and sepa-

rate them into one channel that captures the intensity values

(the intensity or luminance) and two channels that capture

the color or chromaticity distribution in some way (e.g. into

hue and saturation). For color transfer based on histograms,

one usually wants to do this separately on each channel. In

this case it is important to use a color space that separates

the color channels into decorrelated (and if possible inde-

pendent) color channels [43, 35]. For an investigation into

how different color spaces influence the color transfer prob-

lem see [39]. At first glance it would seem sensible to work

in a perceptually modeled space such as Lαβ [41] or CIE

L*a*b*. However, since we in any case need to model non-

linearities in our method, moving back and forth to such

a space typically only adds computational overhead. For

this reason, we will define our separation in a simpler way,

and base it on separating intensity and color in a specific

way. Similar separations have also been used previously

[27]. For a given descriptor vector d (which is a 3-vector

defining an RGB-color), we define the intensity v as

v(d) = |d|. (12)

Note that this is a non-linear function of d as opposed to

many other approaches where the luminance channel is de-

fined as a linear combination of the RGB-vector. The mo-

tivation for defining our intensity as the length of d is that

we can then define the color c as

c(d) =
d

|d|
=

d

v(d)
⇔ d = v(d)c(d). (13)

This means that all color vectors c have length one. We

will now work with transformations on d that consist of

a non-linear scaling, S (defined on a vector x as S(x) =
S(|x|)x/|x|), followed by a rotation R. So, for a given de-

scriptor d we have

T (d) = R(S(d)) = R(S(v·c)) = R(S(v)c) = S(v)R(c),
(14)

since the rotation only acts on the direction of the vector,

R(d) = R(v · c) = vR(c), (15)

and the length is preserved after rotation,

|R(d)| = |d| = |v · c| = |v||c| = |v| = v. (16)



One can also easily verify that the order isn’t important, i.e.

T (d) = R(S(d)) = S(R(d)) = S(v)R(c). Viewing the

color of a pixel as a direction in RGB-space has (albeit with-

out the unit-length constraint) been used in color constancy

and illumination estimation applications, [12, 2, 13], with

homographies as transformation class.

3.2. Robust intensity estimation

We will now show how inlier maximization can be ap-

plied to intensity transformations. For our optimization

to be tractable we need our model to be relatively low-

dimensional, but at the same time be able to model real in-

tensity transformations, including non-linear exposure and

gamma correction. We assume that our color spaces have

been affinely mapped to lie in the interval [0, 1], so for this

reason we let our non-linear scaling map the origin to the

origin. Transformations based on polynomials have previ-

ously been used for color calibration and illumination esti-

mation [22, 14, 1]. We have experimented with a number

of different polynomial scaling functions, and have chosen

to work with third-degree polynomials (passing through the

origin),

S(v) = pabc(v) = av3 + bv2 + cv. (17)

These are not necessarily monotone in v, but we will en-

force this constraint by discarding solutions that do not

fulfill monotony. Given two sets of corresponding feature

points with intensities ({vi} and {v′i}) and an inlier bound

ǫv we would like to solve

min
a,b,c

∑

i

ℓ(D(pabc, (vi, v
′

i)), (18)

ℓ(r) =

{

0 if r ≤ ǫv,

1 otherwise,
(19)

where D is the distance from the polynomial to the point.

There is no closed form solution for the smallest distance

from a point to a polynomial curve. Here we will use

an approximate distance, based on the linearization of the

polynomial curve at the given point. We then define the

distance from the polynomial to the point as the distance

from the point to the tangent of the polynomial curve at the

x−coordinate of the point, i.e. given a point (x0, y0) and a

polynomial pabc the distance is given by

D(pabc, (x0, y0)) =
|pabc(x0)− y0|

√

1 + (dpabc

dx
(x0))2

. (20)

We now solve (18) by reformulating it in the form of (6) and

go through all critical points. In order to do this, we define

our dummy function as f(a, b, c) = a. The dummy function

can be chosen arbitrarily, as long as it gives a finite number

of critical points, i.e. that there are a discrete number of

critical points as opposed to an infinite number. In this case

hj is empty since we have no additional constraints on our

parameters (a, b, c). As building blocks for finding the crit-

ical points we need polynomial solvers for the cases when

three, two and one inlier constraints are fulfilled exactly re-

spectively. Here, only the first two cases turn out to have

non-empty solution sets. We will start with the three-point

solver. Given three corresponding intensity measurements

{(v1, v
′

1), (v2, v
′

2), (v3, v
′

3)} we would like to find a third-

degree polynomial pabc going through the origin so that

D(pabc, (vi, v
′

i)) = ǫv, i = 1, 2, 3. (21)

This can be reformulated as three polynomial constraints by

multiplying with the denominator in (20) and then squaring

each side of the expression. This gives three polynomials

gi, in three variables a, b and c of total degree two (see sup-

plemental material for the derivation details). This system

of polynomial equations can be solved in a number of dif-

ferent ways. We choose to use the automatic generator from

[26] to produce a Matlab solver based on the action matrix

method. This gives us a solver with in general eight solu-

tions with an elimination template of size 26×34. The Mat-

lab implementation runs in 20µs on a 2.5 GHz Intel Core i7

MacBook Pro.

The second sub-problem that we need to solve is when

two constraints are active and when the gradient of the goal

function is linearly dependent with the gradients of the con-

straints, so that

gi = 0, i = 1, 2, (22)

det([∇f ∇g1 ∇g2]) = 0. (23)

Since the gradient of the goal function is constant, and the

gradients of the constraints gi are linear in the variables, the

determinant constraint will be a second-degree polynomial

in the parameters (a, b, c). This means that we end up with

the same type of equations as for the three-point case, and

we can use the same minimal solver for the two-point case.

We now find the best model by going through all combina-

tions of three and two points. This leads in this case to a

total complexity of O(n4) for n correspondences.

3.3. Robust rotation estimation

For the rotation estimation we assume that we have n
corresponding unit length color directions ({ci} and {c′i})

and an inlier bound ǫc. We would then like to find a rotation

matrix R so that

min
R

∑

i

ℓ(|Rci − c′i|), (24)

ℓ(x) =

{

0 if x ≤ ǫc,

1 otherwise.
(25)



We will represent our rotations using quaternions q =
(q0, q1, q2, q3). If |q| = 1 we can transform our quaternion

to a rotation matrix R = Q(q). However since we would

like to use as few model parameters as possible we will use

the Cayley-Gibbs-Rodrigues formulation [3] to scale our

quaternion so that q0 = 1, and hence we now only need to

use three parameters (q1, q2, q3) to model our space3. The

problem is that now Q(q) is no longer a valid rotation ma-

trix. We can solve this by scaling it with the inverse of the

squared norm of q so that

R(q) =
Q(q)

qTq
. (26)

Similarly, as for the intensity transformation estimation, we

need basic solvers for a number of cases, in order to find

all critical points. We have now embedded our parameter

space in R
3, so the dimension is three, i.e. we have h =

q0 − 1 in (6). We thus need to investigate cases when up

to three constraints are active. We will start by expressing

the residual constraint gi for one correspondence. For each

i we have

|Rci − c′i|
2 = |ci]

2 + |c′i|
2 − 2(c′i)

TRci. (27)

Now using our Cayley representation for the rotation, and

using (27) we get for an active constraint

|ci|
2 + |c′i|

2 − 2(c′i)
T Q(q)

qTq
ci =ǫ2c ⇔ (28)

2(c′i)
TQ(q)ci + (ǫ2c − |ci]

2 − |c′i|
2)qTq =0 ≡ gi(q).

Here Q(q) is quadratic in q so each gi(q) is a quadratic ex-

pression in q. For three active constraint we get three equa-

tions in the three parameters. These are three full second-

degree polynomials so we get exactly the same problem as

for the three-points intensity solver, so we can use the same

solver but with different structure in the input coefficients.

When only two constraints are active, we need to use

our defined dummy function, which in this case we choose

as f(q) = q1. We again have a linear goal function which

means that we also in this case get the same structure as

for the two-points intensity solver, and again we get three

full second-degree polynomials in the three variables. We

can again use the same minimal solver. For fewer active

constraints than two, the solution sets are empty.

We now find the best rotation by going through all com-

binations of three and two points. This leads in this case to

a total complexity of O(n4) for n correspondences.

3.4. System overview

In order for the methods in the previous sections to be

tractable we needed low dimensional parametric spaces.

3Note that we cannot represent rotations that correspond to q0 = 0, and

we use the standard way of handling this by applying a random (known)

rotation before processing.

However, from these methods we do not only get the actual

transformations, we also get robust estimates of the inlier

outlier partition of the correspondences. This means that

we can use the estimated inliers to further refine our model.

We propose a simple extension of our model by relaxing

our rotation registration to an affine registration. We assume

that we now have transformed corresponding feature pairs

(di,d
′

i) for all i that are deemed inliers from the previous

estimation. We then affinely map our descriptors in a least

squares manner, i.e. we find A and b that solve

min
A,b

∑

i

|Adi + b− d′

i|
2
2. (29)

This is a linear least squares problem which can be solved

in closed form using standard methods. In addition to this

we use a sub-sampling scheme of our initial feature set. In

all experiments and evaluation, we use maximum 50 corre-

spondences in our robust method, for speed-up. Based on

the initial transformation we use the inlier set of all feature

points for the final affine refinement. See supplemental ma-

terial for model comparison using different number of cor-

respondences and different transformation classes (affine,

projective or higher order polynomial models).

4. Performance evaluation

In this section we will investigate how well our methods

work in a controlled setting, in order to evaluate the perfor-

mance in terms of accuracy and robustness. We will also

compare our method with a number of other methods, on

several benchmark datasets. Concerning the total running

time of our algorithm, it depends heavily on the number of

input correspondences. As an example if we have 50 corre-

spondences, the time of going through all triplets of points

for the intensity estimation would be #triplets · solver time

= 19600 · 20µs ≈ 0.4s. For larger images, time will also

be spent in the actual transforming of the image (this is true

for any algorithm). See Table 2 for comparison of complete

execution times on the experiments. We have not explic-

itly compared to RANSAC. Our proposed solvers can be

directly used as minimal solvers in a RANSAC framework

(by setting ǫ = 0). However, there is no gain here since the

complexity will be the same (we still need to sample three

points, and RANSAC will never guarantee an optimal solu-

tion, even if we do exhaustive sampling [8]). A better option

if runtime is critical is to use our framework with an early

bailout option. Higher order models would require many

more point correspondences in RANSAC, such as e.g. 12

for an affine model [31], and is not tractable in our setting.

4.1. Numerical stability of solvers

We will start by investigating the numerical stability of

our minimal solvers. We will focus on the two three-point



Table 1. Benchmark result on 40 synthetically color transformed images with perfect geometric alignment from [47]. The results are given

as means of PSNR, SSIM, and the trained metric LPIPS[49] over all images, where each row represents different fractions of outliers.

CS (dB) SSIM LPIPS

Inl. [33] [17] [11] [30] [32] Our [33] [17] [11] [30] [32] Our [33] [17] [11] [30] [32] Our

1.0 42.4 38.9 36.5 25.3 33.7 36.5 98 97 97 86 96 97 0.04 0.04 0.05 0.13 0.05 0.05

0.8 20.4 25.2 21.2 21.8 33.2 35.7 80 93 83 84 96 97 0.32 0.06 0.25 0.16 0.05 0.05

0.6 16.7 19.8 17.7 19.3 27.8 35.1 63 83 70 80 91 96 0.45 0.12 0.33 0.18 0.12 0.05

0.4 14.5 16.4 15.5 17.4 20.7 34.5 48 66 58 77 81 96 0.53 0.23 0.39 0.21 0.24 0.06

0.2 12.9 14.0 13.8 15.9 17.1 30.5 37 42 48 73 71 92 0.60 0.43 0.44 0.24 0.35 0.08
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10

 of error
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Figure 2. Histogram over the logarithm of the errors for a large

number (10,000) of problem instances, given synthetic data with

no noise. It shows the performance of our three-point rotation

solver.

solvers used in the intensity and rotation estimation respec-

tively. At the core of these minimal solvers we have the

same polynomial problem, three full multivariate polyno-

mials in three variable of total degree two. The used solvers

have the same template size so here we could have used

the exact same solvers. However, since we have different

structure in how we set up the problem in terms of what we

input and what we estimate, we opted to generate two dif-

ferent solvers. In Fig. 2 the histogram over the logarithms

of the absolute errors from 10,000 random instance prob-

lems is shown, for our three-point rotation solver. We get

essentially the same numerical characteristics for our other

solver.

4.2. Benchmark on image color matching

In order to compare our method against other color trans-

formation methods we tested our method on a standard

benchmark set. The dataset is described in [47] and con-

tains pairs of images, a target and a source image. The

source image has been synthetically transformed from the

target image, and the objective is to transform the source

image so that it fits the target image. Examples of input and

output can be seen in Fig. 3. The images are perfectly ge-

ometrically aligned, but no information on the color trans-

formation is provided. To run our method, we detect fea-

tures in the source image, and then extract descriptors at

the same feature point positions in both images, using the

method described in section 2. We then robustly fit an in-

Input Target Proposed Gong Park Pitie

Figure 3. Example results on the synthetic color matching dataset

[47] with 20% added outliers. Left column shows the input im-

ages, second column shows the target images, and then follows

the transformed images using the proposed and compared meth-

ods. See supplemental material for more results.

Table 2. Mean execution time per image for benchmark tests.

[33] [17] [11] [30] [32] Our

Synthetic (s) 1.4 3.3 0.62 0.19 1.6∗ 1.1

Middlebury (s) 5.8 7.0 2.1 0.49 3.6∗ 1.9

TUT-INTEL (s) 11.5 5.3 3.8 0.97 6.4∗ 3.1

∗The timings for [32] do not include feature extraction and matching.

tensity transformation and a rotation using our optimal in-

lier estimation. The inlier set is then used to find an affine

transformation. The total transformation (intensity, rotation

and affine) is then applied to the whole source image to pro-

duce our candidate target image. To test the robustness of

our method with respect to outliers we simulated gross out-

liers by randomly changing the color of a certain percent-

age of the target image. We then estimated the transform,

and evaluated the result using the original uncorrupted tar-

get image. The evaluation is based on the PSNR-values, the



Input Target Proposed Pitie Park

Figure 4. Example results on the INTEL-TUT dataset [4], with

20% added outliers. Left column shows the RAW input images,

second column shows the target JPG images, and then follows the

transformed images using the proposed and the compared meth-

ods [33] and [32]. See supplemental material for more results.

structure similarity index and the trained metric LPIPS[49],

between the transformed images and the target images. We

compare our method to a number of other methods for color

transformation estimation; the methods of Pitie et al. [33],

Gong et al. [17], Fecker et al. [11], Park et al. [32] and

Nikolova and Steidl [30]. The results can be seen in Table 1

and Fig. 3 (20% outliers), where we have also included the

results from the other methods. We test going up to hav-

ing 80% outliers. Although this would seem unlikely in

a real application, we wanted to show the breaking point

of our algorithm as well as show that the results degrade

gracefully up to this point. A number of compared methods

will perform slightly better when there are no outliers, but

the differences are very small. Higher order methods will

have a tendency to give artifacts, for even small outlier rates.

See also supplemental material for additional tests on model

size. In order to further test our method on a larger set of

real images, we have used two additional datasets for illu-

mination estimation and color constancy, namely the Mid-

dlebury color dataset [6] and the INTEL-TUT dataset [4].

The first dataset contains 85 registered RAW/JPG pairs of

natural scenes taken with 12 different camera models. The

second dataset contains around 2000 raw images taken with

three different cameras. It also contains color corrected JPG

images intended for illustration of how a color corrected

image should look like. However, we can use these im-

ages to benchmark our color transfer method against previ-

ous methods. We follow the procedure from the previous

section, and the results can be seen in Table 3 for the Mid-

dlebury dataset. The results on the far more challenging

INTEL-TUT dataset are shown in Table 3 and Fig. 4. The

corresponding distributions of LPIPS[49] over all images

can be seen in Fig. 5. The resulting distributions for SSIM

and PSNR are given in the supplemental material, and show

similar statistics. The conclusion is that, even for small out-

lier levels, previous methods degrade unfavorably.

5. Example applications

Our emphasis in this paper is the presentation of an op-

timal inlier maximization algorithm for color transfer esti-

mation. We will in this section showcase how our method

can be incorporated as a building block in different appli-

cations. We want to show that the handling of outliers is

practical in many systems, but we do not claim that the fol-

lowing simple implementations are necessarily beyond the

current state-of-the-art within the specific applications. Ad-

ditional results can be found in the supplemental material.

Image stitching The process described in the previous

section can be directly applied also to image stitching. Mis-

alignments and moving objects make robust methods desir-

able. We use standard methods for the geometric alignment.

We then run our feature detector on the overlapping region,

and extract our color descriptor from the two images. We

run our robust color matching, and use the estimated trans-

form on the whole image. This gives us our two images

now also hopefully in the same color coordinate system.

Often some form of blending function is used to avoid bor-

ders between images in the stitching, but here we don’t use

any blending. For overlapping pixels, we simply choose the

pixel-wise max. The result on an example can be seen in

Fig. 6. To the left is the stitched images without the esti-

mated color transform, and to the right using the estimated

color transform. In this case get a very seamless stitching

result. See the supplemental material for additional results.

HDR estimation from multiple exposure LDR brackets

Next example application is how to estimate a high dynamic

range (HDR) image from several low dynamic range (LDR)

images [40, 7, 19, 38]. We have applied our method to blind

bracketing, when the exposure settings for the input images

are unknown. We will need to handle problems with mis-

alignment, moving objects and severely over and under ex-

posed parts of the images, so this motivates the need for

robust methods. Please see the supplemental material for

results and details on how we applied our method.

Color transfer for non rigid motion In order to see if

our method could also be used for geometrically unaligned

images, we compared our method with the feature based

robust method of Park et al. [32]. We use their sift based

method for extracting matching patches. We then replaced

their color matching method with our proposed method. On

each tentative patch pair we ran our feature detector and

extractor (typically this gives two to four feature points for a

32×32 patch). We then ran our robust color estimation and

applied the transform on the whole input image. The results

for two example images are shown in Fig.7. Left shows

the input images, and the second column images show the
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Figure 5. Distribution of LPIPS[49] on the INTEL-TUT dataset [4], for varying outlier levels. See suppl. mtrl for SSIM and PSNR values.

Table 3. Benchmark result on the Middlebury dataset [6] (top) and the INTEL-TUT dataset [4] (bottom). The results are given as means of

PSNR, SSIM, and the trained metric LPIPS[49] over all images, where each row represents different fractions of outliers.

CS (dB) SSIM LPIPS

Inl. [33] [17] [11] [30] [32] Our [33] [17] [11] [30] [32] Our [33] [17] [11] [30] [32] Our

1.0 35.7 28.0 29.7 23.0 27.4 32.2 98 89 92 82 92 96 0.03 0.13 0.10 0.15 0.08 0.05

0.8 20.9 23.2 19.9 21.3 25.6 32.2 79 82 72 81 89 96 0.28 0.17 0.27 0.16 0.10 0.05

0.6 17.1 18.9 16.7 19.6 18.7 31.8 60 73 57 79 78 96 0.39 0.24 0.35 0.18 0.21 0.05

1.0 29.4 27.8 24.7 17.0 28.0 29.0 88 84 69 34 85 86 0.13 0.22 0.26 0.43 0.15 0.15

0.8 19.7 24.2 16.0 16.4 24.1 28.9 63 80 47 34 74 86 0.39 0.25 0.51 0.43 0.24 0.15

0.6 16.4 20.2 13.9 15.6 19.0 28.9 44 71 36 34 65 86 0.53 0.31 0.58 0.44 0.36 0.15

Figure 6. The result of stitching two images, with or without the

proposed color transformation. Left: Result after pointwise max

at each pixel. Middle: The same result but with the proposed color

transformation on the second image. No additional blending was

used. See supplemental material for more details and examples.

target color space. The third column images are the result

from Park et al. and the rightmost images are the results

from our proposed method.

6. Conclusion

We have in this paper introduced an optimal inlier max-

imization algorithm for robust feature-based color transfer

estimation. Using methods from optimization theory and a

number of new minimal solvers we can enumerate all pos-

sible stationary points to the inlier maximization problem.

In order for our method to be tractable we use decoupling

of the intensity and color direction for a given RGB-vector,

Input Target Park Proposed

Figure 7. Non rigid color transformation. Left shows input images,

second column shows target color space. Then follows the method

of Park et al. [32] and the proposed method run on the tentative

patch matches from Park et al. The results are similar, but the

proposed method arguably matches the colors slightly better.

enabling separation of the intensity transformation and the

color direction transformation. We have shown that our

method gives results comparable to state-of-the-art meth-

ods in the presence of no outliers in the data, and that it out-

performs other methods for moderate or large amounts of

outliers in the data. An additional benefit is that the robust

sampling is an efficient way to represent the color distribu-

tion, without needing to optimize over all pixels.
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