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Abstract

Learned lossy image compression has demonstrated im-
pressive progress via end-to-end neural network training.
However, this end-to-end training belies the fact that lossy
compression is inherently not differentiable, due to the ne-
cessity of quantisation. To overcome this difficulty in train-
ing, researchers have used various approximations to the
quantisation step. However, little work has studied the
mechanism of quantisation approximation itself. We ad-
dress this issue, identifying three gaps arising in the quan-
tisation approximation problem. These gaps are visualised,
and show the effect of applying different quantisation ap-
proximation methods. Following this analysis, we propose a
Soft-STE quantisation approximation method, which closes
these gaps and demonstrates better performance than other
quantisation approaches on the Kodak dataset.

1. Introduction

Image compression is a fundamental area of computer
vision. The human visual system is more sensitive to noise
in lower spatial frequencies, and ignores most higher fre-
quencies. To exploit this phenomenon, traditional image
compression methods, based upon a module-based block
diagram, exploit quantisation to remove redundant informa-
tion. For example, quantisation approaches based on the
rounding function balance the compression rate with visual
distortion by minimising quantisation residuals. However,
in learned image compression, the situation is different.

In 2015, Toderici et al. first introduced neural networks
in image compression [17]. In following works end-to-end

learned image compression has demonstrated excellent re-
sults. Indeed, recent works (e.g. [9, 5]) have shown that end-
to-end learned image compression methods delivers out-
standing performance on various benchmark datasets, such
as the Kodak and CLIC datasets. However, there are two
main difficulties in end-to-end learned lossy image com-
pression [2]: (1) quantisation is not differentiable, and (2)
spatial redundancy must be efficiently reduced. This pa-
per addresses the former: Ballé et al. [2, 3] has highlighted
that the quantisation component used in conventional im-
age compression methods is not differentiable. This non-
differentiability prevents gradients from flowing to the en-
coder during end-to-end training. As a work-around, they
added uniform noise as a simple approximation of quantisa-
tion, which makes the network end-to-end trainable. More
recent work builds on this approach and delivers better per-
formance by adding complicated neural blocks or autore-
gressive context models [18].

Despite this encouraging progress, there is still little
insight into quantisation approximation itself, and in par-
ticular how it achieves such good performance by simply
adding uniform noise during training. This lack of theoret-
ical understanding of quantisation approximation has been
noted as unsatisfactory by some researchers [8]. This paper
addresses the underpinnings of the quantisation approxima-
tion with the following contributions:

1. Three gaps theory: We propose a framework of three
gaps (Discrete gap, Entropy Estimation gap and Lo-
cal Smoothness gap) to characterise the approxima-
tion of quantisation in learned image compression. We
highlight that designing better quantisation approxi-
mations relies on an understanding of its inner work-



ings. In the visualisations of our experiments, different
quantisation approximation methods are shown to sig-
nificantly change the latent distribution, which in turn
highly affects compression performance.

2. Dequantisation: We introduce a dequantisation step
into the STE quantisation approximation to make
entropy estimation meaningful (so-called Soft-STE).
Adding noise to the latent variables [2] can be ex-
plained as a naive dequantisation process. Our exper-
iments show that models utilising the dequantisation
approach achieve better performance.

3. Adversarial perturbation: We suggest that a quan-
tisation approximation function will significantly
change the loss landscape. The local Lipschitz con-
stant can be used to measure these changes. We further
suggest that models with small local Lipschitz con-
stants should have better performance. This observa-
tion offers a possible direction to design better quanti-
sation approximation methods. By following this idea,
we introduce an adversarial perturbation to the pro-
posed Soft-STE quantisation approximation. Experi-
mentally, we see that adversarial perturbations can de-
crease the estimated score of the local Lipschitz con-
stant, and results in better compression performance
on the Kodak test set.

To evaluate the proposed methods, we adopt the widely
used architecture in [2], and change only the quantisation
approximation method. In particular, following [3], we use
a hyper-prior network, but other widely-used pipeline com-
ponents, such as context modelling and attention modules,
are removed to keep the analysis simple and clear.

2. Related Work

Learned image compression has made tremendous
progress. Toderici et al. first showed neural networks could
be used for image compression tasks in 2015 [17]. Now,
end-to-end trained compression models outperform tradi-
tional codecs such as JPEG2000[14] and BPG [4].

However, practically it is difficult to train deep neu-
ral networks for image compression tasks in an end-to-end
fashion. The entropy coding step, which relies on Shannon
Entropy (or discrete Cross-Entropy to be precise), requires
a discrete representation of the bottleneck latent space. This
introduces the need for some form of quantisation. At in-
ference, common practice is to use integer rounding, which
is not differentiable. Unfortunately, using integer round-
ing also in training prevents gradient flow, thus making op-
timisation of the Encoder impossible. Ballé et al. [2, 3]
recognised this conflict and introduced an approximation of
quantisation during training based on the addition of uni-
form noise, which makes the model end-to-end trainable.

However, identifying the ‘right’ choice of quantisation ap-
proximation still remains a challenge. Despite significant
follow-up work in recent years, such as the inclusion of
auto-regressive components [10], and mixture-models [6],
there has been little innovation on quantisation and quanti-
sation approximation itself.

Any innovations in quantisation must address two major
challenges: (1) the rounding function is not differentiable;
and (2) the discrete probability (ground truth) mass func-
tion cannot be easily estimated by optimising the ELBO
of its continuous approximation. To address the first prob-
lem, a simple approximation is to add uniform noise to the
continuous latent variables [2, 3]. For example Ballé et al.
claim this approach is based on a relaxed probability model:
the discrete probability mass function (ground truth) is ex-
pected to be equal to the probability mass of the continu-
ous probability density within the corresponding quantisa-
tion bin. This analysis may explain why their entropy model
works in some cases. However, some questions remain un-
addressed: namely why should the continuous latent vari-
ables require this additive noise, and how does this uniform
noise help the decoder reconstruct the image from the quan-
tised latent? To address the second problem, Ballé et al. use
the CDF of the Gaussian distribution to estimate the relaxed
continuous distribution of the latent space [3]. However, the
selection of the quantisation approximation function signif-
icantly affects the distribution of the latent variables. As a
result, the difference between the estimated distribution and
the ground truth of the latent distribution affects compres-
sion performance.

There are many other quantisation approximation meth-
ods in the literature. Theis et al. introduced the straight-
through estimator (STE) to approximate the quantisation
step [16]. STE uses the rounding function in the forward
pass, but an identity function replaces the gradient function
in the backward pass. Unfortunately models trained with
STE perform worse than models trained with a noise ap-
proximation. Hu et al. suggest that this is due to the fact that
during training, optimisers require a continuous approxima-
tion of the quantised coefficient distribution [8]. But models
trained with STE suffer from discontinuities (even if their
gradients are approximated smoothly), and so are difficult
to optimise. Other approaches are designed with a modi-
fied objective function. For example Yang et al. designed a
continuous proxy by using a Bernoulli variable with a “tem-
pered” distribution [19]. Their method directly optimises a
discrete latent by sampling with the Gumbel-softmax trick.
Agustsson et al. used soft-to-hard vector quantisation to re-
place the scalar quantisation approximation [1]. Dumas et
al. introduced an additional model to learn the quantisation
parameters [7]. Despite these innovations, almost all re-
cent works utilise noise quantisation approximation due to
its simplicity and superior performance.



3. Three Gaps in quantisation approximation

In this section, a theoretical framework is introduced for
studying different quantisation approximation methods. We
analyse the effect of selecting different quantisation approx-
imations in the learned image compression pipeline.

3.1. Discrete Gap for noise approximation

In the literature, noise quantisation approximation (also
known as additive noise) is understood as a relaxation of
the rounding function. Instead of directly using discrete
data, the optimisation process stays in the continuous do-
main, subject to a noisy perturbation with properties simi-
lar to rounding. However, there is an obvious gap in mod-
els trained with a noise quantisation approximation: The
approximated latent distribution is fundamentally different
from the ground truth latent distribution. We call this differ-
ence the Discrete gap. We suggest the Discrete gap changes
the loss landscape. To be precise, with noise approxima-
tion [2], the gap is defined as follows:

GAP = R(y) - Qnoise(y) 1

Qnoise(y) = gnoise =y+tu u ~ U(—05, 05) (2)

where R(y) = ¢ is the rounded latent, w is the uniform
noise and @Qoise (v) indicates the noise quantisation approx-
imation in end-to-end training. The formula shows that the
data for inference will always be different from the data
used in training. The fact that § # ¢ partially explains
the performance gap between training and validation. In
general, with an arbitrary quantisation training function, we
define the Discrete gap as follows:

Ga=Y_|R(y) - Qy)l, 3)

where ()(.) is an arbitrary quantisation function, and |.|, in-
dicates the p-norm. In what follows, we use G4 to measure
how close the quantisation approximation is to the ground
truth. Large G4 will lead to a large performance gap be-
tween training and validation [8].

The discrete gap is obvious, especially in models that
use noise quantisation approximation during training. Nat-
urally, a good quantisation approximation method should be
expected to simulate the actual rounding process in the for-
ward pass, which will in turn help the decoder learn faithful
reconstruction images from quantised latent. Note that the
rounding function does indeed perturb the latents [2]. Ad-
ditive uniform noise is used to mimic these rounding per-
turbations. However the uniform noise perturbations lead
to extra difficulties for the decoder when trying to recon-
struct images. During training, the decoder is expected to
“denoise” these noisy perturbations. However, at inference,
there is no reason to expect the actual quantisation residuals
1 — vy to follow the uniform distribution.

3.2. Discrete latent and the Entropy Estimation Gap

Of course, approximating quantisation with STE easily
closes the Discrete gap, whereby the rounding function is
used in the forward pass and the identity function is used
as a stand-in for the gradient. However, simply apply-
ing STE approximation leads to worse compression perfor-
mance [16]. We suggest that simply applying STE leads to
failure to properly estimate the continuous entropy, which
we call the Entropy Estimation Gap. This is the differ-
ence between the real distribution of the discrete latent and
its continuous estimation during training, defined as:

Grp = dist(Py(5 = ) | / Q@) d)) @
B

Py(.) is the probability mass function of the rounded, dis-
crete, latent , and Q4(.) is the estimated density function
for approximated latent §. dist(. || .) can be any distance
measurement between two distributions (such as the KL-
divergence or Wasserstein Distance). The domain of inte-
gration 13 is used to represent the bin of quantisation (or hy-

percube associated if quantising vectors). In [2], [ Q(7)dy
B

is represented as [ Q(uly)du where u is sampled from a
B

flexible continuous distribution (e.g. uniform distribution).
In the STE approximation, Py(-) is a discrete distribu-
tion, and is not a continuous random variable. However,
when we embed the STE distribution in a continuous space,
we reasonably expect that the learned continuous entropy
models will, during training, collapse onto point masses
supported on the discrete points [15]. In particular, this col-
lapse will bring additional difficulties in optimising the rate
term. Thus, the gap Ggg of a model trained with STE ap-
proximation should be larger than models trained with noise
approximation, due to the worse rate estimation.

3.3. Local Smoothness Gap

Quantisation approximation methods are used to pro-
duce “valid” gradient information. But well-defined gradi-
ents are not in themselves enough to ensure good compres-
sion performance. The gradient of the approximate quan-
tisation can affect the compression performance by alter-
ing the loss landscape. In turn, the properties of this loss
landscape determine how the training optimiser oscillates
around a local optimum. We propose that the “local smooth-
ness” of the loss landscape can be considered an indicator
of the local optima. Moreover, good quantisation approx-
imations should produce “smooth” loss landscapes which
will help the optimisation converge.

The Lipschitz constant is a tool to measure the “smooth-
ness” of the loss landscape. However, it is not feasible to
compute the global Lipschitz constant within polynomial



time. Fortunately, in learned image compression, quantisa-
tion can be understood as a small perturbation around the
latent variables, and is local rather than global. Therefore
we suggest that the local Lipschitz constant may be a more
important metric in learned image compression. Following
the definition of (the local) Lipschitz constant, we define
the Local Smoothness Score (LSS) to measure the Local
Smoothness Gap:

LSS = Ep((L(§ + &) — L(9))/(£)) o)

Here the perturbation ¢ is added to the latent § after
quantisation approximation. L = Lp + ALp is the rate-
distortion loss. Lp = E(p(z|y)) is the distortion loss for
the reconstruction quality and Lr = E(—log P(9)) is the
rate loss measuring bitstream length. LSS is a measure
of the loss’s susceptibility to perturbations, in particular to
quantisation perturbations. If the LSS is small, then a rea-
sonable expectation is that the compression pipeline will be
insensitive to quantisation perturbations. The LSS is well
known elsewhere as a proxy for perturbation sensitivity; for
example Miyato et al. [11] advocate the importance of the
local Lipschitz constant in the adversarial robustness liter-
ature. We remark that the particular quantisation approxi-
mation function will highly affect the Local Lipschitz con-
stant. For instance, STE approximation will lead to very
high LSS. We suggest that smaller Lipschitz constants can
improve compression performance.

4. Soft-STE quantisation approximation

The three gaps identified above characterise problems
associated with various quantisation approximations in
learned image compression. The Entropy Estimation Gap
and the Local Smoothness gap are proposed to be reasons
which limit the performance of the models trained with
STE. To overcome these problems, we propose, Soft-STE
quantisation, which we show reduces or eliminates these
two gaps, and lead to a better compression performance.

Soft-STE is motivated as a remedy for the Entropy Es-
timation Gap, so that the rate term of the model with STE
approximation will work in a meaningful way, and will be
prevented from collapsing onto point masses. Therefore, in
the rate-term, we do not use the STE approximation alone.
Instead, we add continuous noise to the output of the STE
approximation. In the literature, this approach is termed
Dequantisation [12]. The total loss will be changed as:

L = E(p(z|9))+AE(—log P(j+¢)) s.t. § = STE(y) (6)

Here STE(.) denotes STE quantisation approximation,
and £ is some continuous perturbation (possibly noisy),
which relaxes the discrete coefficient. Uniform noise or
Gaussian noise are possible noise distributions. Note, how-
ever, that perturbation is only added in the rate term, but not

to the distortion term. Of course, noisy perturbations could
be learned, which may lead to better dequantisation results.
However, we also note that the selected perturbation will
affect the Local Smoothness Gap, and will therefore impact
performance.

For this reason, in our implementation, we implement
Soft-STE using adversarial perturbations. In detail, we use
the Fast Sign Gradient Method (FSGM), which is widely
used in adversarial training and network robustness [13].
This method adds the ‘noise’ extracted from the Jacobian
matrix to the original input during training. Thus in our
implementation of Soft-STE, we calculate the Adversarial
perturbation { = € x VL%. Here VL7 is the Jacobian ma-
trix of rate loss without the dequantisation step. As a result,
we hypothesise that the model so learned should be robust
to perturbations within each quantisation bin. To ensure the
& within quantisation bins, the € is selected as the variance
of U(—0.5,0.5).

Further to Soft-STE, we use Spectral normalisation to
further constrain the local Lipschitz constant of the learned
networks[11]. Since the rate term V Ly only backpropa-
gates through the encoder, we only apply spectral normali-
sation to the encoder network. Our implementation adopts
the fast approximation for the spectral norm of all weight
matrices in the convolution layers [11].

5. Experiments

In this section, we empirically visualise the three gaps
for models trained with different quantisation approxi-
mations. The compression performance of the proposed
method is evaluated by using the Kodak dataset!.

5.1. Experimental Setup

We use the common architecture first proposed in Ballé
et al. [3]. A hyperprior network [10] is applied to predict
mean and scale for the latent. We do not use context mod-
elling, for simplicity. Various quantisation approximation
methods are applied during training. The fully factorised
distribution placed on the latent variable is assumed to be
Gaussian p(y|z) = N(9; ug(z), 04(z)) where p4(z) and
0;(z) are the mean and scale predicted by the hyperprior
network. The training examples are 256 x 256 pixel patches
randomly cropped from a set of 1M high-resolution PNG
images scraped from the internet. All models are optimised
for mean squared error (MSE) as the distortion loss, and the
Adam optimiser is used in training. We train for 2M itera-
tions with a batch size of 2, and the learning rate starts as
10~* and drops to 1075 after 1.5M iterations. All runs are
performed on one NVIDIA Tesla V100 GPU.

ICan be downloaded from http://www.cs.albany.edu/
~xypan/research/snr/Kodak.html
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Figure 1. Left: Visualisation for the discrete gap during training
using STE (Red) and noise (Blue). Right: Visualisation for the
average discrete gap as per Equation 3 for model trained with Soft-
STE (Green), STE (Pink) and noise (Purple). Note that STE does
not have a discrete gap, and so the STE bar is not visible.

5.2. Visualisation Results

Discrete Gap is defined in Eq. 3. A natural idea is to
visualise this gap for different quantisation approaches dur-
ing training. Figure 1 (left) visualises the discrete gap from
the beginning of training to 2M iterations. We consider two
models in this figure: the model trained with STE approx-
imation [16] (red line) and noise approximation [2] (blue
line). From this figure, it is apparent that the model with
STE approximation maintains a discrete gap of zero. The
discrete gap for the noise approximation decreases during
training, but is non-negligible. We suggest that the de-
coder with noise approximation learns to denoise the uni-
form noise. However, the difference between uniform noise
and the rounded residual (R(y) — y) leads to a performance
gap between training and validation.

Figure 1 (right) shows average G4 over the last 1000 it-
erations during training. We consider three models: the pro-
posed Soft-STE approximation (green), the model trained
with STE approximation (pink), and noise approximation
(purple). The model with Soft-STE approximation has a
smaller average discrete gap G4 than the model with noise
approximation. The proposed Soft-STE slightly closes this
discrete gap during training.

Entropy Estimation Gap is defined in Eq. 4 and directly
relates to the selected density function in the entropy (rate)
loss. The quantisation approximation method changes the
distribution of latent. This can be seen in Figure 2, which
visualises the average histogram of the latent y at 300K it-
erations, comparing the model trained with STE approxi-
mation against noise approximation. The histogram is cal-
culated over the entire Kodak dataset. We use 0.05 as the
width of each histogram bin and fix our plot to the values
between -4 and 3. Figure 2 illustrates the effect on the latent
variable distribution from the two quantisation approxima-
tion methods. Noise approximation encourages the model
to have a balanced distribution within the bin of quantisa-
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Figure 2. Average histogram for the latent at 300k iterations over
Kodak dataset. Left: The model trained with STE approximation.
Right: The model trained with noise approximation. Note that the
STE model is collapsing towards a discrete distribution with mass
centred on integer points.

tion B. But for the model with STE approximation, bars
around integer values are significantly higher than others.
We suggest that this makes the latent y closer and closer to
a discrete distribution during training. Using discrete data
may force a continuous model to produce a degenerate solu-
tion that places all probability mass on discrete data points
[15]. This difference partly explains why directly applying
STE leads to poor compression performance.

Visualising the approximated entropy estimation gap
G g is difficult. Entropy Estimation Gap is designed to il-
lustrate the difference between the discrete probability mass
for the rounded coefficients and the probability density dis-
tribution estimated by the model. Directly calculating Ggg
is not tractable in practice, because the distribution of the
rounded latent is unknown. We estimate G g by:

Gege = EjnP(5),9~N (11 ,0) Wasserstein(P (), N (py, o))

Here, y is the rounded latent and g is generated by a repa-
rameterisation trick § = 1, +  * o, where § ~ N (0, I).

Figure 3(a) is a smoothed line chart to show the approx-
imated Gpp during training. We have also considered the
model with STE approximation and the model with noise
approximation. In this figure, the Wasserstein distance does
not decrease monotonically throughout training.

Applying STE quantisation approximation actually
Srows Gpg in the later stages of training. Linking this ob-
servation to the distribution of latent, we suggest that degen-
erate solutions enlarge G EE, making the model unstable.

The average G g for the model with STE approximation
(pink), noise approximation (purple) and Soft-STE (green)
can be found in Figure 3(b). Each model in this figure
is fully trained to 2 million iterations. We then use an-
other ten thousand iterations to estimate average G EE.- We
study three models: the proposed Soft-STE approximation
(green), the model trained with STE approximation (pink),
and noise approximation (purple). We suggest that the pro-
posed Soft-STE approximation in part closes the entropy
estimation gap for the image compression pipeline.
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Figure 3. Visualisation for the entropy estimation gap using
Wasserstein distance. 3(a) The model trained with STE (Red) and
noise (Blue), visualising the entropy estimation gap using Wasser-
stein distance during training. The estimation of GgEg is calcu-
lated from the rounded latent and a data sampled from Gaussian
distribution by using reparameterisation trick with the predicted
Ly, 0y. 3(b) Visualisation of the average Entropy Estimation gap
in the fully trained model: Soft-STE (Green), STE (Pink) and
noise (Purple).
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Figure 4. Visualise the LSS and related loss value for the model
trained with noise approximation and STE approximation.

Local Smoothness Gap is also difficult to visualise.
As per the analysis of Section 3.3, we calculate the Local
Smoothness Score by using Monte Carlo simulation. Fig-
ure 4 demonstrate the Local Smoothness Score and the loss
value for three different models. One model uses noise ap-
proximation (Maroon) and two models use STE approxima-
tion (Indigo and Blue). We apply spectral normalisation to
all convolution layers in the STE SN model (Indigo).

From Figure 4(a), we see that both models with STE ap-
proximation have higher LSS during training. Spectral nor-
malisation stabilises training and encourages a lower LSS
for the model trained with STE approximation. However
spectral normalisation alone cannot close the local smooth-
ness gap. From Figure 4(b), we see that the model with
higher LSS also has a higher loss value. This shows that the
proposed LSS and local smoothness of the loss surface are
highly related to compression performance.

5.3. Performance Comparison

To evaluate the effect of different quantisation approxi-
mations, four different approximation methods for quanti-
sation are tested in this section. Uniform approximation is
the baseline of this experiment [2, 9]. The implementation
of this method follows the original paper [2]. At inference,
the rounding function is applied to the pipeline to get the
discrete coefficient as per the realised useage. Uniform + is
a modified version of uniform approximation. The training
and quantisation approximation part will not be changed,
but § = R(y — 1) + p is applied in the validation/testing
part. This means we can train a single model and evaluate
it for both settings.

STE models use straight-through-estimator [16] to re-
place noise quantisation approximation during training. The
rounded latent in the validation/test pass will be calculated
by using the forward pass of STE. Soft-STE is our own
proposed quantisation approximation method. We replace
the naive STE approximation with the proposed Soft-STE.
For the validation/testing part, the Soft-STE approximation
block is replaced by a rounding function § = R(y — u) + p.
From the previous section, we have seen that Soft-STE can
eliminate the entropy estimation gap and the local smooth-
ness gap during training. In this section we will show that
the quantisation approximation with smaller gaps leads to
better compression performance.

PSNR-BPP is a common evaluation metric over the Ko-
dak dataset. In our visualisations, different values of hyper-
parameter ) in range [10~4, 0.3] are chosen to reach differ-
ent bit rates. All models are initially trained with A = 0.01,
and we apply 100K iterations for different As to fine-tune
the model with different bit-rate settings. The learning rate
of this fine-tuning step will be fixed to 10~%. This design
significantly decreases the training cost of this set of ex-
periments; however, the performance score will be slightly
lower than models trained with different As from scratch.

Results of the performance comparison can be found in
Figure 5. The blue line (noise) and the green line (STE)
are two models which follow Ballé et al. [3] and Theis
et al. [16]. The yellow line (noise +) denotes the model
trained with noise approximation (same as blue line) but
Use Ydecoder = R(y — p) + p in the validation to min-
imise the quantisation residuals. The red line (S-ste) de-
notes the proposed model trained with soft-STE quantisa-
tion approximation. From the comparison in Figure 5, we
can see the effectiveness of the proposed Soft-STE approxi-
mation methods. By comparing the model with noise (blue)
and Soft-STE (red), the proposed Soft-STE approximation
offers an extra performance gain of the pipeline described in
[2] with hyper-prior [3]. If we only consider the model with
STE function (red and green lines), the proposed Soft-STE
significantly improve the performance of the model, in line
with our hypothesis of the three gaps theory. Soft-STE ap-
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Figure 5. Evaluation of proposed quantisation with a hyperprior
model on Kodak dataset. “noise” and “noise+” means the model
trained with uniform noise approximation. “ste” and “S-ste” de-
note the model trained with Straight Through Estimator and the
proposed Soft-STE approximation methods. The latter leads to
improved performance by eliminating the entropy estimation gap
and the local smoothness gap.

proximation eliminates the discrete gap (Figure 2 (Right)),
entropy estimation gap (Figure 3(b)) and local smoothness
gap during training. We highlight that using the rounding
function Ygecoder = R(y — 1) + p in the validation can
decrease the quantisation residual (red and yellow lines).

6. Conclusion

In this paper, we have explored the quantisation approx-
imation problem for learned image compression tasks. We
defined a set of three gaps that are related to compression
performance, and visualised these gaps in practice. The
proposed theoretical framework can be used to analyse dif-
ferent quantisation approximation methods. We proposed a
novel quantisation approximation method, Soft-STE, which
demonstrates better performance than noise approximation
on a benchmark dataset.
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