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Abstract

This paper reviews the first challenge on high-dynamic

range (HDR) imaging that was part of the New Trends in

Image Restoration and Enhancement (NTIRE) workshop,

held in conjunction with CVPR 2021. This manuscript fo-

cuses on the newly introduced dataset, the proposed meth-

ods and their results. The challenge aims at estimating a

HDR image from one or multiple respective low-dynamic

range (LDR) observations, which might suffer from under-

or over-exposed regions and different sources of noise. The

challenge is composed by two tracks: In Track 1 only a sin-

gle LDR image is provided as input, whereas in Track 2

three differently-exposed LDR images with inter-frame mo-

tion are available. In both tracks, the ultimate goal is to

achieve the best objective HDR reconstruction in terms of

PSNR with respect to a ground-truth image, evaluated both

directly and with a canonical tonemapping operation.

1. Introduction

Current consumer-grade cameras struggle to capture

scenes with varying illumination with a single exposure shot

due to the inherent limitations of the imaging sensor, which

suffers from saturation in high-irradiance regions and from

uncertainty in the readings for low-light regions.

In recent years, advances in computational photogra-
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phy have enabled single-sensor cameras to acquire images

with an extended dynamic range without the need of expen-

sive, bulky and arguably more inconvenient multi-camera

rigs, e.g. [11, 23, 35]. Generally, those algorithms exploit

multiple LDR frames captured with different exposure val-

ues (EV) that are then fused into a single HDR image

[8, 24], with some of those methods including frame align-

ment [15, 29, 38] or pixel rejection strategies [39].

Convolutional Neural Networks (CNNs) have greatly ad-

vanced the state-of-the-art for HDR reconstruction, espe-

cially for complex dynamic scenes [15, 27, 38, 39]. Addi-

tionally, CNNs have opened a new path into single-image

HDR imaging thanks to their ability to learn complex and

entangled vision tasks seamlessly, e.g. denoising, cam-

era response function estimation, image in-painting, high-

frequency and detail hallucination [20]. Despite the ill-

posed nature of the single-image HDR reconstruction, most

current methods obtain plausible results that, if not as accu-

rate as those reconstructed from multiframe LDR images,

can be a good alternative when multiple frames are not

available or can not be captured due to time constrains.

The NTIRE 2021 HDR Challenge aims at stimulating

research for computational HDR imaging, and better un-

derstand the state-of-the-art landscape for both single and

multiple frame HDR processing. It is part of a wide spec-

trum of associated challenges with the NTIRE 2021 work-

shop: non-homogeneous dehazing [3], defocus deblurring

using dual-pixel [2], depth guided image relighting [10],

image deblurring [25], multi-modal aerial view imagery

classification [19], learning the super-resolution space [22],

quality enhancement of heavily compressed videos [40],

video super-resolution [32], perceptual image quality as-

sessment [12], burst super-resolution [4], high dynamic



range [26].

2. Challenge

The NTIRE 2021 HDR Challenge is the first edition that

addresses the HDR image enhancement task. This chal-

lenge aims to gauge and advance the state-of-the-art on

HDR imaging. It is focused specially in challenging scenar-

ios for HDR image reconstruction, i.e. wide range of scene

illumination, accompanied by complex motions in terms of

camera, scene and light sources. In this section we present

details about the new dataset used for the challenge, as well

as how the challenge tracks are designed.

2.1. Dataset

Both training and evaluation of HDR imaging algorithms

require high quality annotated datasets. Specially for deep

learning methods, the number of training examples and their

diversity in terms of e.g. scene and camera motion, exposure

values, textures, semantic content, is of crucial importance

for the model performance and generalization capabilities.

Creating a high quality HDR dataset with such features still

poses several challenges. Current HDR datasets are gen-

erally captured using static image bracketing, with some

efforts towards controlling the scene motion so that stop-

motion dynamic scenes can be assembled: In the work of

Kalantari et al. [15] a subject is asked to stay still in order

to capture three bracketed exposure images on a tripod used

to generate ground-truth, and afterwards two additional im-

ages are captured while the subject is asked to move, ob-

taining therefore a input LDR triplet with inter-frame mo-

tion and a reference HDR ground-truth image aligned to the

central frame. Such capturing approaches are normally lim-

ited to small datasets, as this type of capturing is time con-

suming, and additionally it constrains the motions that can

be captured while misalignment might still happen if the

subject is not completely still.

For this challenge we introduce a newly curated HDR

dataset. This dataset is composed of approximately 1500

training, 60 validation and 201 testing examples. Each ex-

ample in the dataset is in turn composed of three input

LDR images, i.e. short, medium and long exposures, and

a related ground-truth HDR image aligned with the central

medium frame. The images are collected from the work

of Froelich et al. [11], where they capture an extensive set

of HDR videos using a professional two-camera rig with

a semitransparent mirror for the purpose of HDR display

evaluation. The contents of those videos include naturally

challenging HDR scenes: e.g. moving light sources, bright-

ness changes over time, high contrast skin tones, specular

highlights and bright, saturated colors. As these images lack

the necessary LDR input images, similarly to [16], we syn-

thetically generate the respective LDR counterparts by fol-

lowing accurate image formation models that include sev-

eral noise sources [13].

Image Formation Model: In order to model the HDR to

LDR step, we use the following pixel measurement model

as described in [13]:

Il = min {Φt/g + I0 + n, Imax} , (1)

where Il is an LDR image, Φ is the scene brightness, t is

the exposure time, g is the sensor gain, I0 is the constant

offset current, n is the sensor noise and Imax denotes the

saturation point. For our data processing, we assume Φ to

be well approximated by the ground-truth HDR images, and

produce different LDR images by modifying the exposure

time t parameter of any three consecutive frames.

Noise Model: In order to realistically reproduce the

characteristic of common LDR images, we include a zero-

mean signal whose variance comes from three independent

sources, i.e. photon noise, read noise and analog-to-digital

(ADC) gain and quantization noise (for 8-bit LDR images).

For pixels under the saturation level, the variance of n reads:

Var(n) = Φt/g2 + σ2
read/g

2 + σ2
ADC (2)

Note that first photon-noise term is signal-dependent (nor-

mally represented by a Poisson distribution), while the read-

noise term is gain-dependent.

We show in Figure 1 some examples of the HDR and the

synthetically generated LDR images.

Partitions: We provide training, testing and validation

data splits. With our synthetically processed set, we man-

ually discard images to balance the number of frames per

scene and to remove undesirable frames, mostly due to e.g.

dominant presence of lights, lack of inter-frame motion, ex-

cessive presence of noise in the HDR image. This leads to

roughly 1750 frames within 29 different scenes. The vali-

dation and testing splits are obtained randomly from 4 dif-

ferent scenes (carousel fireworks 02, fireplace 02, fishing

longshot, poker travelling slowmotion) while the other 25

scenes are used for the training set, ensuring that there is no

scene overlap between training and testing/validation. This

results on a training set short of 1500 examples, and a vali-

dation and testing set of 60 and 201 examples respectively.

2.2. Challenge Design and Tracks

This challenge is organized into two different tracks,

both of them sharing the same evaluation metrics and

ground-truth data. The results from both tracks are thus

directly comparable and can explain the performance dif-

ferences between single and multi-frame HDR imaging.

2.2.1 Track 1: Single Frame

This track evaluates the HDR reconstruction when only a

single LDR frame is available. In contrast to the multi-

frame approaches, single image HDR methods have only
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Figure 1. Visualizations of samples included in the newly curated training, validation and testing datasets. Each training example is

composed by three input LDR images (short, medium and long) and a related ground-truth image aligned with the medium input LDR.

Note that validation and testing ground-true images were not made available to participants.

a single exposure (instead of a bracketed set) which is ar-

guably more challenging when recovering under- and over-

exposed regions as no information from neighboring frames

at different EVs can be leveraged. Similarly, single image

denoising poses further challenges than its multiple frame

counterpart as noise sources are of zero mean and less ob-

servations are available. On the other side, this track does

not have to deal with motion related artifacts, e.g. ghosting,

bleeding edges, which are common in the multiframe set-

up.

2.2.2 Track 2: Multiple Frame

This track evaluates the HDR reconstruction for three dif-

ferently exposed LDR images (i.e. short, medium, long)

with diverse motion between the respective frames, includ-

ing camera motion, non-rigid scene motion with an empha-

sis on complex moving and changing light sources. The

bracketed input frames were separated by steps of 2 or 3 EV

between them, similarly to other existing datasets [15]. In

order to enable direct comparison between both tracks, the

medium LDR frame in Track 2 corresponds to the single-

frame LDR input on Track 1 and thus both tracks share the

same ground-truth data.

2.3. Evaluation

The evaluation of the challenge submissions is based on

the computation of objective metrics between the estimated

and the ground-truth HDR images. We use the well-known

standard peak signal-to-noise ratio (PSNR) both directly

on the estimated HDR image and after applying the µ-law

tonemapper, which is a simple and canonical operator used

widely for benchmarking in the HDR literature [15,27,39].

From within these two metrics, we selected PSNR-µ as the

main metric to rank methods in the challenge.

For the PSNR directly computed on the estimated HDR

images we normalize the values to be in the range [0, 1] us-

ing the peak value of the ground-truth HDR image.

For the PSNR-µ, we apply the following tone-mapping

operation T(H):

T(H) =
log(1 + µH)

log(1 + µ)
(3)

where H is the HDR image, and µ is a parameter that con-

trols the compression, which we fix to µ = 5000 following



common HDR evaluation practises. In order to avoid exces-

sive compression due to peak value normalization, for the

PSNR-µ computation we normalize using the 99 percentile

of the ground-truth image followed by a tanh function to

maintain the [0, 1] range.

3. Results

From 120 registered participants in Track 1, 16 teams

participated during the development phase and finally 7

teams entered the final testing phase and submitted results

and fact sheets. As for Track 2, from 126 registered partic-

ipants, 28 teams participated during the development phase

and finally 6 teams entered the final testing phase and sub-

mitted results and fact sheets. We report the final test phase

results in Table 1 and 2 for track 1 and 2 respectively. A vi-

sualization of both metrics for each track separately can be

found in Figure 2 and 3, and all the results from both tracks

are aggregated in Figure 4. The methods and the teams that

entered the final phase are described in Section 4, more de-

tailed information about each team and their member’s af-

filiation can be found in Appendix A.

3.1. Main ideas

In the single frame track, the majority of the proposed

architectures consist of several sub-networks which aim to

reverse single aspects of the HDR to LDR image pipeline,

perhaps inspired by the success of Liu et al. [20]. Variants

of the Residual Dense Block [43] are the most commonly

used backbone although U-Net style architectures are used

by a significant minority. In addition to the standard ℓ1 loss,

some methods also use perceptual colour losses.

In the multiple frames track, a major number of so-

lutions are inspired by Yan et al. AHDRNet [39], with

most submissions using their attention mechanism. Most

methods also adopt the Dilated Residual Dense Block, al-

though similarly to Track 1, U-Net style architectures with

non-dense residual blocks are also present and achieve

competitive performance. Ensemble approaches to im-

prove performance via test time augmentations such as

flips/transpose [34] are common among the participants,

leading to increases of up to 0.5 dB. Some submissions

aim to explicitly align input images instead of just rejecting

unaligned regions with attention, including the first-ranked

submission which aligns images using deformable convolu-

tions [7, 21].

3.2. Top results

Track 1: The top two methods (NOAHTCV and XPixel)

obtain similar PSNR-µ scores, only about 0.07 dB apart,

while in terms of PSNR the difference is more noticeable, in

the range of 0.6 dB. BOE-IOT-AIBD comes third in terms

of PSNR-µ, at around 0.4 dB gap to the first position, how-

ever they are ranked first in terms of PSNR by a notice-
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able margin (0.6 dB) to the second best-performer in that

metric (NOAHTCV). The rest of competing teams obtain

scores within 2 and 1 dB gaps when compared to the best-

performer in terms of PSNR and PSNR-µ respectively.

Track 2: In this track, both metrics behave similarly and

exactly the same ranking is obtained with either of them.

The MegHDR team obtains the first position, with a lead

of 0.56 dB in terms of PSNR-µ and a broader difference of

0.78 in terms of PSNR when compared against the runner-

up team in the leaderboard (SuperArtifacts). NOAHTCV

follows at roughly 0.5 dB and 0.8 dB performance gap with

respect to MegHDR in terms of PSNR-µ and PSNR respec-

tively. The rest of competing teams obtain scores within 1.6
and 2.6 dB gaps when compared to the best-performer in

terms of PSNR and PSNR-µ respectively.

4. Team and Methods

4.1. NOAHTCV

NOAHTCV have proposed two methods, one for single

frame and one for multi-frame. Both methods are discussed

here.

Single Image HDR Reconstruction in a Multi-stage

Manner The team propose a multi-stage method which de-

composes the problem into two sub-tasks; denoising and

hallucination. The input image, I is first passed through a

denoising network to get the denoised image D. Both I and

D are processed by the hallucination network to obtain H .

Finally I , D and H are fused by a refinement network. The

general architecture can be seen in Figure 5. MIRNet [42] is

employed as the denoising network, while the hallucination

network uses masked features as in [28] to reconstruct de-

tails in the over-exposed regions. The refinement network

is a U-Net equipped with coordinate attention [14].

Hallucination NetDenoising Net Refinement NetC CI

I

O

Input LDR

image

Output HDR 

imageO C Concatenation

D H

Figure 5. Architecture of Single Image HDR Reconstruction in a

Multi-stage Manner, proposed by the NOAHTCV team.

Alignment Augmentation and Multi-Attention

Guided HDR Fusion The team propose a three stage

method consisting of an Alignment and Augmentation

module, an Attention Based Information Extraction

module, and an Enhancement and Fusion module. The

architecture can be seen in Figure 6. The Alignment and

Augmentation module uses a pretrained PWC-Net [33]

to warp the short and long input images with a predicted

optical flow. Both the original images and warped images

are fed into the network. The Attention Based Informa-

tion Extraction module employs the occluded attention

mechanism from AHDRNet [39] to reduce misalignment

distortion. Channel attention is also used on shallow fea-

tures extracted by a shared convolutional layer to re-weight

features generated by different frames. The Enhancement

and Fusion module employs the network architecture from

AHDRNet [39] with the final sigmoid layer removed.

Figure 6. Architecture of Alignment Augmentation and Multi-

Attention Guided HDR Fusion, proposed by the NOAHTCV team.

4.2. MegHDR

ADNet: Attention-guided Deformable Convolutional

Networks for High Dynamic Range Imaging The team

propose ADNet [21], a novel multi-frame imaging pipeline

where the LDR images and their corresponding gamma-

corrected images are processed separately, instead of being

concatenated together. This is motivated by the intuition

that images in the LDR domain are helpful for detecting

noisy or saturated regions, while images in the HDR domain

help to detect misalignment. The PCD align module aligns

the gamma corrected images using pyramid, cascading and

deformable convolutions based on EDVR [36]. The spatial

attention module suppresses undesired saturation and noisy

regions in the LDR images while highlighting the regions

useful for fusion. The resulting features are concatenated

and processed by dilated residual dense blocks (DRBDs) as

in AHDRNet [39]. The architecture can be seen in Figure 7.

Figure 7. Architecture of ADNet, proposed by the MegHDR team.

4.3. XPixel

HDRUNet: Single Image HDR Reconstruction

with Denoising and Dequantization The team propose

HDRUNet [6], which consists of three sub-networks: the

base network, the condition network and the weighting net-

work. The architecture can be seen in Figure 8. The

base network is a U-Net style encoder-decoder model. The

condition network and spatial feature transform (SFT) lay-

ers [37] are introduced to achieve adaptive modulation



Team Username PSNR-µ PSNR Runtime (s) GPU Ensemble

NOAHTCV noahtcv 34.804 (1) 32.867 (2) 61.52 (5) Tesla P100 flips, transpose

XPixel Xy Chen 34.736 (2) 32.285 (3) 0.53 (2) RTX 2080 Ti -

BOE-IOT-AIBD chenguannan1981 34.414 (3) 33.490 (1) 5.00 (4) Tesla V100 -

CET CVLab akhilkashok 33.874 (4) 32.068 (4) 0.20 (1) Tesla P100 flips, rotation

CVRG sharif apu 32.778 (5) 31.021 (5) 1.10 (3) GTX 1060 -

no processing - 25.266 (6) 27.408 (6) - - -

Table 1. Results and rankings of methods submitted to the Track 1: Single frame HDR. Please note that running times are self-reported.

Team Username PSNR-µ PSNR Runtime (s) GPU Ensemble

MegHDR liuzhen 37.527 (1) 39.497 (1) 1.35 (3) RTX 2080 Ti flips, transpose

SuperArtifacts evelynchee 36.968 (2) 38.723 (2) 3.80 (4) RTX 2080 Ti -

NOAHTCV noahtcv 36.452 (3) 37.250 (3) 1.26 (2) Tesla V100 -

ZJU231 ZJU231 35.912 (4) 36.900 (4) 0.37 (1) RTX 2080 Ti
flips, rotation,
×4 models

Samsung Research
Bangalore∗ AnointedKnight 37.151 39.408 15.77 Tesla P40 flips, transpose

no processing - 25.266 (5) 27.408 (5) - - -

Table 2. Results and rankings of methods submitted to the Track 2: Multiple frames HDR. Please note that running times are self-reported.

based on the features being processed. Besides, inspired

by [9], a mask is calculated for the global residual, as adding

it directly is sub-optimal. Finally, a tanh ℓ1 loss function is

adopted to balance the impact of over-exposed values and

well-exposed values on the network learning.

Figure 8. Architecture of HDRUNet: Single Image HDR Recon-

struction with Denoising and Dequantization, proposed by the

XPixel team.

∗ Incomplete submission (no reproducibility) thus not in the challenge

ranking.

4.4. BOE­IOT­AIBD

Task-specific Network based on Channel Adaptive

RDN The team propose a method [5] which consists of

three sub-networks which each perform a different task: Im-

age Reconstruction (IR), Detail Restoration (DR) and Local

Contrast Enhancement (LCE) [17]. The IR network recon-

structs the coarse HDR image from the input LDR image.

The DR network can further refine the image details by

adding its output to the coarse HDR output of IR. Finally

the LCE network predicts a luminance equalization mask

which is multiplied by the refined HDR image for contrast

adjustment. The total architecture can be seen in Figure

9. All three sub-networks use the same backbone, named

the Channel Adaptive RDN. This consists of the standard

Residual Dense Network [43] with the Gate Channel Trans-

formation layer [41] added to each RDB block.

4.5. SuperArtifacts

Multi-Level Attention on Multi-Exposure Frames for

HDR Reconstruction The team propose a multi-level ar-

chitecture which processes and merges features at three dif-

ferent resolutions. On top of the architecture of AHDR-

Net [39], the model encodes the frames into three levels,

with each feature being half the resolution of the previous

level. This increases the receptive field and helps to bet-



Figure 9. Architecture of Task-specific Network based on Channel

Adaptive RDN, proposed by the BOE-IOT-AIBD team.

ter handle large foreground motion. At each level, the at-

tention mechanism is used to identify which regions to use

from the long and short exposure frames. The features at

each level are merged independently first before being up-

sampled back to the original resolution. The features from

all three levels are then merged together using some fusion

blocks to generate the final HDR image. The architecture

can be seen in Figure 10.

Figure 10. Architecture of Multi-Level Attention on Multi-

Exposure Frames for HDR Reconstruction, proposed by the Su-

perArtifacts team.

4.6. CET­CVLAB

Single Image HDR Synthesis with Densely Connected

Dilated ConvNet The team propose an architecture which

consists of a densely connected stack of dilated residual

dense blocks (DRDBs) [1]. The dilation rate of convolu-

tional layers used within the proposed DRDB progressively

grows from 1 to 3 and then progressively decreases from 3

to 1. The DRDBs themselves are also connected as shown

in Figure 11 to improve the representation capability of the

network.

Figure 11. Architecture of Single Image HDR Synthesis with

Densely Connected Dilated ConvNet, proposed by the CET-

CVLAB team.

4.7. CVRG

Deep Single-Shot LDR to HDR The team propose a

two stage method [31]: Stage I (inspired by [30]) performs

denoising and recovers the 8-bit HDR image from the single

LDR input; Stage II tonemaps the image into the linear do-

main and recovers the 16-bit HDR image. The architecture

can be seen in Figure 12. The team proposes the Resid-

ual Dense Attention Block (RDAB) as the building block of

the model. The RDAB, which combines the residual dense

block and the spatial attention module, can be seen in Fig-

ure 13.

Figure 12. Architecture of Deep Single-Shot LDR to HDR, pro-

posed by the CVRG team.

Figure 13. Residual Dense Attention Block, proposed by the

CVRG team.



4.8. ZJU231

Reference-Guided Multi-Exposure Fusion Network

for HDR Imaging The team propose a two-stage archi-

tecture which consists of the ghost reduction sub-network

and the multi-exposure information fusion sub-network. In-

spired by AHDRNet [39], the ghost reduction sub-network

uses the reference image to generate an attention map for

the short and long exposure images. The extracted fea-

tures are guided via element-wise multiplication with the

attention maps. The guided features are concatenated and

merged by the fusion sub-network, which consists of five

DRDBs followed by three convolutions, as shown in Fig-

ure 14.

Figure 14. Architecture of Reference-Guided Multi-Exposure Fu-

sion Network for HDR Imaging, proposed by the ZJU231 team.

4.9. Samsung Research Bangalore

HDR Merging using Multi Branch Residual Net-

works The team propose a multi-branch U-Net architecture

inspired by [38] and [18] which consists of an encoder, a

residual body and a decoder as seen in Figure 15. The build-

ing blocks of the network are Double Convolutional Resid-

ual Blocks (DCRB). This consists of two convolutions with

prelu activations and the input is skipped to the output using

a 1x1 convolution.

Each input image is processed with separate branches.

The encoder consists of three blocks which successively

downsample the input image. The features are then concate-

nated and processed using six residual blocks, followed by

three decoder blocks which upsample the image back to full

resolution. There are skip connections between all three of

the encoder and decoder blocks. Self-ensembling strategy

by averaging 8 ensembles created using flip and transpose

operations are used to further improve the results.
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Samsung Research Bangalore
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