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Abstract

Given a source image, our goal is to synthesize novel

images of the same scene under different conditions, which

could include changes in the time of day, season, or weather

conditions. We consider two variants, unguided and guided

synthesis, both of which require a way to generate diverse

output images that cover the range of possible conditions.

For the former task, the layout of the output image should

match the source image and the conditions should appear

realistic. For the latter task, the conditions should match

those of a provided auxiliary guidance image. We address

both tasks simultaneously using a probabilistic formula-

tion, with separate distributions for each task, and use an

end-to-end training method. We draw samples from these

distributions to synthesize plausible images of the source

scene. We prepare a new large-scale dataset and propose

three benchmark tasks. The dataset, benchmarks, and eval-

uation code are available at https://mvrl.github.

io/un_guided.

1. Introduction

We address the task of synthesizing images of a scene,

given a single source image, under different conditions. To

do this well requires understanding scene geometry, texture,

and illumination. For outdoor scenes, synthesis also requires

understanding appearance changes due to the time of day,

weather conditions, and the seasons. Applications of outdoor

image synthesis include providing semantically meaningful

tools for image editing and generating training data for au-

tonomous driving systems. We explore two related tasks:

unguided and guided synthesis, as shown in Figure 1. In

unguided synthesis, the task is to generate new images of a

scene from a single source image. For the guided synthesis

task, we are given a guidance image and aim to change the

appearance of the source image to match that of the guidance

image, while preserving the scene contents.

We formulate a probabilistic model with two distributions,

unguided and guided. The unguided distribution, which is

conditioned on a source image, can be sampled from in or-
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Figure 1. We propose a probabilistic approach for unguided and

guided outdoor-image synthesis. Our method generates diverse

images using a single forward pass through a neural network.

der to synthesize images of the source scene under diverse

conditions. The guided distribution, which is conditioned on

both a source and a guidance image, can be sampled from

to synthesize images of the source scene with appearance

that matches the guidance image. During training, we jointly

optimize for the likelihood of the unguided and guided distri-

butions, as well as minimizing for image reconstruction error.

A key benefit of our approach is that we achieve our perfor-

mance without the extensive annotation effort that is required

for competing approaches, such as transient attributes.

Generative adversarial networks (GANs) have gained

attention due to the ability to generate photorealistic im-

ages [15, 40, 47, 48]. Early GANs focused on unconditional

generation, where the goal was to be able to sample random

images that were indistinguishable from real images. This

setting is limited because there is little user control over

output scene layout. Conditional GANs can generate images

based on a source image or segmentation mask, making it

easy for a user to control the output. Typically, these meth-

ods require discrete source and target domains. For example

they could be used to convert summer images into winter

images. However, appearance changes in outdoor scenes are



continuous and it is limiting to divide into discrete domains.

Several approaches, like [13,14], overcome the limitation

of synthesis between discrete domains by conditioning the

generation on a rich description of the desired output, which

we will call guidance. The guidance can come in the form

of an explicit description of the illumination conditions. For

example, Karacan et al. [14] requires the user to specify 40

transient appearance attributes [20]. Such methods typically

require segmentation labels to control the scene layout and a

full specification of transient attributes, which can be diffi-

cult to specify correctly. Our method only requires sets of

images from the same scene for training; there is no need for

segmentation labels or transient attribute specification. Thus,

we can use unlabelled images from outdoor webcams and

use any image as the guidance image.

We introduce a large dataset of outdoor webcam images,

with associated benchmarks, to support training and evalu-

ation of this and future methods. We find that our model

performs well at both guided and unguided synthesis, out-

performing many natural baseline methods without the need

for extensive annotations. Our main contributions include:

• We propose a probabilistic framework to synthesize

appearances of an outdoor scene that can be used for

both guided and unguided synthesis.

• We formulate the latent representation as a probability

distribution and show that this distribution is better than

using a deterministic latent vector.

• We prepare a training dataset of outdoor images con-

taining short-term and long-term changes along with

evaluation benchmarks for guided and unguided syn-

thesis of outdoor images.

2. Related Work

The task of outdoor image synthesis is related to condi-

tional image generation and style transfer approaches.

2.1. Conditional GANs

A conditional GAN, such as Pix2Pix [10], is capable of

synthesizing high-quality images in a target domain given a

source-domain image. Many methods have been proposed to

address problems with the early methods: CycleGAN [47],

DualGAN [40], and CUT [28] eliminate the need for aligned

image pairs; Pix2PixHD [38] generates higher-resolution

outputs; and BicycleGAN [48] can generate more diverse

images. These models do not scale to arbitrary styles: a lim-

ited numbers of domains are defined, and typically a model

learns to convert between two domains only. It is imperative

that a sufficient number of images from every domain are

available for training. There are various methods to gener-

ate images from segmentation masks such as SPADE [29],

and SEAN [49]. Domain adaptation methods like [21, 39]

learn to transfer images from one domain to another. Ex-

isting conditional GANs, like Pix2PixHD [38], are trained

to transfer between two narrowly defined domains, such as

day-and-night, and a different model is trained for every

domain transfer. We train a single model that can generate

realistic images under diverse conditions.

2.2. Style Transfer

Earlier neural style transfer methods required optimiza-

tion for a given style image during inference [5]. (We use the

terms “style image” and “guidance image” interchangeably

here.) Subsequent methods, like [12, 44], trained a model

for every possible style transfer: one model for transfer from

style A to style B and vice versa. Recently, several arbitrary

style transfer methods [2, 8, 9, 22, 23, 27, 34, 37] have been

proposed to generalize to any style without separate training.

FST [41] can apply filters from style images to the source

image. AdaIN [8] transfers global feature statistics by sim-

ply matching the mean and variance between content and

style image. Avatar-Net [34] proposes a patch-based feature

manipulation module to bridge the gap between the content

and style image distribution. WCT [22] uses feature trans-

forms, i.e., whitening and coloring, to match content feature

statistics to those of a style image in the deep feature space.

WCT2 [42] uses whitening and color transforms to transfer

the style. SANet [27] uses a learnable attention module and

replaces the fixed cosine similarity with a flexible similar-

ity kernel. However, these style transfer methods not only

require style images for guidance, but also diverse domains

and sufficient images from every domain for training.

2.3. Natural Image Synthesis

Existing datasets for natural image synthesis are typically

used for either modeling short- or long-term changes. The

methods that model long-term changes are typically guided

by the transient attributes dataset [20], which provides im-

ages with manual annotations of attributes of outdoor scenes,

such as cloudy, sunny etc. The method by Karacan et al. [14]

synthesizes an image based on desired transient attributes.

However, this method operates in an explicitly supervised

way by requiring scene layout and desired attributes. Tran-

sient attributes are hard to decouple, and there is no straight-

forward way of specifying all 40 attributes. In our case, the

desired conditions are specified by a guidance image, and so

our method does not require manual annotations of transient

attributes or segmentation masks.

There are datasets that include only short-term changes.

High-resolution day-time transfer (HiDT) [1], uses a disen-

tanglement approach to swap the style of any two images.

HiDT can generate photorealistic images of outdoor scenes,

but as the name suggests, it is limited to day-time transfer. Lu

et al. [43] look at recreating a scene under changes in lighting

conditions. Several methods have been proposed for time-

lapse generation from a single source image [25, 26]. The

method by Cheng et al. [3] proposes to generate a short-term



sequence that resembles the style of a provided reference

time-lapse. To our knowledge, our dataset is the only one

that includes both short- and long-term changes.

2.4. Probabilistic Image Synthesis

Probabilistic GANs have been proposed for unconditional

image generation. The probabilistic GAN [4] proposes a dis-

criminator that predicts a distribution; they use a standard

generator in this approach. BayesianGAN [33] and Prob-

GAN [6] propose to iteratively learn a distribution over gen-

erators that best match the true distribution of the data. We

present a probabilistic conditional image generation method

by modeling the latent representation with a distribution.

Our approach is inspired by Probabilistic U-Net [18], a bi-

nary segmentation approach that captures label uncertainty.

We propose an image synthesis method that uses two distri-

butions for different tasks of guided and unguided synthesis.

Our network architecture, formulation of both tasks, and loss

function are different from Probabilistic U-Net.

3. Problem Definition

Consider a statically mounted outdoor camera, recording

images of a scene over a long period of time. The recorded

images would likely include many types of transient appear-

ance changes. Depending on the scene, some of these would

be common, such as the change from day to night, and some

might be less common, such as the presence of snow. It is

possible to model the distribution over these changes for a

single scene by analyzing long-term image archives captured

by a single outdoor webcam [11]. We estimate these distri-

butions from an exemplar image, using image collections as

training data. Given a single exemplar image, we address

the task of modeling the distribution of natural images that

appear to be of the same scene captured from the same view-

point. The goal is to synthesize realistic images, preserving

the content of the exemplar, while enabling the sampling of

images that reflect the likely transient appearance distribu-

tion. We consider two variants of the task, unguided and

guided. The latter being useful when some degree of artistic

control over the generation process is needed.

For the unguided synthesis task, we are given a large

number of images, {Is
0
. . . IsN}, where each Isi is a source

image from scene s. The goal is to maximize the likelihood

of the other images from the same scene
∑

s

∑N

i=1
p(Isi |I

s
0
),

where we assume I0 is the exemplar image and the rest

are target images. For the guided synthesis task, we are

also given a set of guidance images, {Īs
1
. . . ĪsN}, which

have the same transient appearance attributes as the corre-

sponding target image but a different scene layout and are

potentially from a different scene. The goal is to maximize
∑

s

∑N

i=1
q(Isi |I

s
0
, Īsi ). In addition, for both tasks we want

to be able to sample from the distribution to generate novel

images and generalize to novel scenes that aren’t present in

the training dataset. Please note that we are considering a

much harder problem because 1) the input is a single im-

age without any labels of the scene content or geometry, 2)

the target domain is diverse and it includes all appearances

unlike existing works, such as [48], that restrict to a single

target domain such as winter or night, and 3) we train a single

model that captures the all visual conditions, in contrast to

methods that train a separate model for every target domain.

4. Approach

The high-level architecture of our proposed approach is

shown in Figure 2. Inference from our trained model is as

follows. Output images are generated by a decoder network

which takes as input a feature map describing scene layout

and a sample from the n-dimensional latent style space. We

define two distributions over style: the unguided, p, which

models likely appearances for a given source image, and

the guided, q, which is a narrower distribution that is also

conditioned on a guidance image. We model the distributions

as independent multivariate Gaussian distributions having

n dimensions. For unguided synthesis, we sample from the

unguided distribution, p, based on the source image, and pass

these through the decoder, as in Figure 1 (a). For guided

synthesis, we sample from the guided distribution, q, as in

Figure 1 (b). For both tasks, we can draw multiple samples

to make diverse predictions.

4.1. Network Architecture

Our architecture consists of several sub-networks: a style

encoder, a content encoder, two distribution parameter re-

gressors, and a decoder. The style encoder is used to extract

a style vector from the source and target images. The content

encoder, which is the first half of a ResNet-based U-Net [32],

extracts a feature map that represents the layout of the source

image. It is also extracts an additional content vector that can

capture high-level scene content, such as whether the scene

includes mountains or a beach. The two distribution parame-

ter regressors are small multi-layer perceptrons (MLPs) that

predict the parameters of the style distributions. Each has

two heads with n outputs, one for the means and the other

for the variances. In the decoder, we use adaptive instance

normalization (AdaIN) to combine the sampled style vector

and source content feature map [1, 8, 24]. Please see the

supplemental material for details of network architectures.

4.2. Training

Our training overview is presented in Figure 2. During

training, we sample a source and target image from a scene.

The target image is flipped horizontally and treated as the

guidance image. We pass the style encoding of the hori-

zontally flipped target image through an MLP to predict the

parameters of the guided distribution q: mean µq and vari-

ance σ2

q . We apply the horizontal flip to the target image to
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Figure 2. The proposed probabilistic visual appearance network. Two style encoders, with shared weights, extract style vectors from the

source and target images. A content encoder extracts a content feature map and content vector. Two MLPs predict distribution parameters

given the style vectors, and a content vector for the unguided distribution. The decoder synthesizes an output image using the content feature

map and a style vector sampled from the guided distribution.

limit information leakage and encourage generalization to

the cases where the guidance image is from a different scene.

Another MLP predicts the unguided distribution parameters

µp and σ2

p based on the the style and content of the source

image. We use content of the source image because possible

appearances of a scene are correlated with the scene content.

For example, we are more likely to observe snow and fog

in a scene if there are mountains in it. During training, we

draw a sample from the guided distribution and a decoder

combines this with source content features to synthesize the

final image. A key difference between our approach and

disentanglement based methods that swap style and content,

such as [1] and [30], is that in our case, the content might

not be visible in the target image for conditions such as night

and fog. Therefore, as shown in Figure 2, we only extract

the style from the target image.

We enforce the constraint that every sample from the

guided distribution (each example representing an appear-

ance condition) could reasonably be a sample from the un-

guided distribution. While training, we draw samples from

the guided distribution, which are used to synthesize an

image which should match the target image. The network

predicts an unguided distribution based on the source and

a guided distribution based on the target image. We jointly

optimize for unguided distribution, guided distribution and

the output image. For an unguided distribution p, guided dis-

tribution q, output image Î , and target image I , the complete

loss function is:

L = λpLp(p)− λpqLl(p, q) + LR(Î , I).

Here Lp is the conditioning loss for the unguided distribution,

Ll is a likelihood estimation between unguided and guided

distributions, and LR is the reconstruction loss between the

output image and target image. We set the weights λp = 0.2
and λpq = 0.2. The likelihood estimation between p and q

is given by:

Ll(p, q) = L(p, q) + λeh(p) + C

where h(p) is the entropy of the unguided distribution, and

L is the log-likelihood. We set λe = n, where n is the

dimension of p, and set C = n
2
ln(2π). The likelihood

function is

Ll(p, q) = −
1

2σ2
p

n
∑

i=1

(sq − µp)
2,

where µp and σ2

p are the mean and variance of p, and sq is

a sample from the guided distribution (sq ∼ q). Adding the

entropy regularization discourages the network from predict-

ing only distributions with small variance. The problem of

small variance has been discussed in InfoVAE [46] as well.

At inference time, we want to generate diverse samples

from the unguided distribution. A common approach for

this is to impose a unit Gaussian prior over the unguided

distributions, as in variational auto encoders (VAE) [17].

We relax this constraint and allow the unguided distribution

of individual images to vary, providing greater appearance

variations. During training, we perform this regularization at

the batch-level by introducing a regularization loss Lp. We

model the batch-wide collection of B predicted unguided

distributions as the Gaussian mixture 1

B

∑B

i=1
pi. We then

collapse the mixture down to a single multivariate Gaussian

using the distribution N (µM ,ΣM ) with parameters

µM =
1

B

B
∑

i=1

µpi
,ΣM =

1

B

B
∑

i=1

σ2

pi
+ µpi

µT
pi

− µMµT
M ,



where µpi
and σ2

pi
are mean and variance of the unguided

distributions. Note that N (µM ,ΣM ) is the multivariate

Gaussian that minimizes the KL divergence to the Gaus-

sian mixture 1

B

∑B

i=1
pi. We then set the regularization loss

Lp to be the KL divergence between the unit Gaussian and

the collapsed mixture of Gaussians N (µM , σ2

M ):

Lp(p) = DKL(N (0, 1),N (µM , σ2

M )).

The reconstruction loss, LR, is given by:

LR(Î , I) = L1(Î , I) + LF (Î , I) + 5 · LT (Î , I) + LG(Î , I) + LE(Î , I),

where LF is the feature loss [12] using a pretrained VGG

network [36], LE is the edge loss, and LG is the GAN loss

from a multi-scale discriminator [38]. LT = |T (Î)− T (I)|,
is the difference of transient attributes using a pretrained

network T that regresses transient attributes of an image.

5. A New Dataset for Natural Image Synthesis

We introduce a new derivative dataset of outdoor images

that contains short- and long-term appearance changes. It

contains images from 188 scenes: 94 time-lapse videos from

the TLVDB dataset [35] that have short-term changes and

94 cameras from transient attributes dataset [20] that have

long-term changes. While we collect images from these

datasets, we manually separate out source images, define a

training regime, and make evaluation benchmarks. Taking

images from existing datasets is a common practice and

images in [20] are also taken from other sources such as

AMOS [11]. We randomly selected 150 scenes for training,

19 for validation, and 19 for testing. We manually select

clear, daytime images to be used as source images. In total,

there are 5864 source and 17 368 target images.

We use this dataset to define three benchmarks for guided

and unguided synthesis, defined below. To our knowledge,

this the only large-scale dataset that contains 1) short-term

and long-term appearance changes, 2) manually filtered day-

time source images, 3) aligned images suitable for training

and evaluation, and 4) image synthesis benchmarks for both

guided and unguided synthesis. Our dataset is available at

https://mvrl.github.io/un_guided.

5.1. Unguided Synthesis Benchmark

We defined a benchmark to assess how well a method is

able to synthesize diverse, realistic samples from a single

image. To evaluate this task, we need diverse examples for

any given scene. As with all tasks, we select clean daylight

images as the source images. In the test set, we have 595
source images and 1140 target images. For quantitative

evaluation, we use standard point set distance measures and

Fréchet Inception Distance (FID) which compares quality of

generated images with real images [7].

To compute point set metrics, we use every source image

to generate k unguided images from the unguided distribu-

tion where k is the number of real target images for that

scene. We use Hausdorff distance and Chamfer distance as

measures of distances between the set of real target images

SI and the set of output images S
Î

of that scene. Hausdorff

distance is given as:

dH(SI , SÎ
) = max

[

max
e∈SI

∆m(e, S
Î
),max

e∈S
Î

∆m(e, SI)

]

,

∆m(x, S) = min
y∈S

∆(x, y)

for any distance measure ∆; we use L1 distance as ∆. We

also use Chamfer distance, dC , for evaluation:

dC(SI , SÎ
) =

1

|S|

∑

e∈SI

∆m(e, S
Î
).

While the Hausdorff distance measures the maximum dis-

tance between any two points on the closest matching pairs,

the Chamfer distance measures the average distance of the

closest pairs. To compute FID [7], we randomly select source

images to synthesize the same number images as the true

target images (1140). We then compute FID between the

output images from all scenes and all target images. To es-

tablish lower bounds for these metrics, we split the target

images into two partitions and compute the metrics between

the partitions. We refer to this as the Oracle Test Set.

5.2. Same­Scene Guided Synthesis Benchmark

In this benchmark, the guidance image is from the same

scene as the source image. This is intended to serve as an

easier case for the guided synthesis task. To create this, we

flip the target image horizontally and treat it as the guid-

ance image. Since we typically have more target images

from every scene, we make a fixed benchmark by randomly

selecting a source image (from the same scene) for every

target image. We have 1140 examples in this benchmark.

Since source and target images are from the same scene,

we use standard image matching metrics including L1 error,

peak signal to noise ratio (PSNR), and structural similarity

(SSIM). We also include perceptual similarity (LPIPS) [45]

(using a pretrained AlexNet [19]), that has been shown to

closely match human judgement.

5.3. Cross­Scene Guided Synthesis Benchmark

This benchmark, also having 1140 examples, estimates

generalization of methods; in this task the guidance image is

from a different scene. To make this benchmark, we use the

following procedure to select a guidance image that has sim-

ilar appearance as the target image. We train a model on the

transient attributes [20] dataset which gets only 1.3% mean

squared error on the held-out validation set for attributes like



Method
Same-Scene Guided Cross-Scene Guided Unguided Synthesis

L1 ↓ LPIPS ↓ PSNR ↑ SSIM ↑ L1 ↓ LPIPS ↓ PSNR ↑ SSIM ↑ Hausdorff ↓ Chamfer ↓ FID ↓

Oracle Test Set - - - - - - - - 0.1446 0.0609 26.4512

BicycleGAN [48] 0.1216 0.4668 15.8983 0.5249 0.1376 0.5937 14.6051 0.4217 0.2987 0.1145 121.6977

SANet [27] 0.1209 0.4175 16.0552 0.5057 0.1218 0.4216 15.7852 0.4949 - - -

Ours w/o guided distribution 0.2141 0.3984 12.1147 0.4821 0.2139 0.3982 14.0321 0.5084 0.5728 0.1539 219.5103

Ours w/o prior loss 0.1124 0.3392 16.9831 0.5889 0.1569 0.3594 14.7710 0.5354 0.2269 0.1147 84.8741

Ours w/o likelihood loss 0.1947 0.3892 13.3184 0.5064 0.1936 0.3926 13.3602 0.5083 0.2995 0.1791 91.3697

Ours full 0.1197 0.3367 16.4931 0.5858 0.1495 0.3490 15.0803 0.5566 0.2259 0.1231 79.8313

Table 1. Test set results of the three benchmarks.

Method Input L1 ↓ LPIPS ↓ PSNR ↑ SSIM ↑

Cheng [3]
Image +

Segmentation
0.1462 0.2842 14.7220 0.4858

Ours Image 0.1102 0.2947 16.9018 0.6822

Table 2. Results of time-lapse generation.

cloudy, snow etc. For every target image in the test set, we

randomly select a source image from the scene. To select the

guidance image from a different scene, we use our network

trained on transient attributes to find the most similar image

from other scenes, in terms of transient attributes.

6. Evaluation

Please see the supplemental material for network details

and additional visualizations.

6.1. Baseline Methods

We compare our method with three similar methods.

We compare with BicycleGAN [48] that was originally de-

signed to generate diverse samples from a single source. We

also compare with a recent arbitrary style-transfer method,

SANet [27], and a time-lapse generation method [3].

6.2. Implementation Details

We use PyTorch [31] to implement our model. Follow-

ing existing methods, we train all methods on 256 × 256
images. We show qualitative results on 512 × 512 images

from our model to demonstrate that we can generate realistic

high-resolution images. We optimize using the Adam opti-

mizer [16] (β1 = 0.9, β2 = 0.999) with a learning rate of

1.2× 10−4, L2 regularization of 1× 10−5, and batch size

of 24. All models are trained for 50 epochs and the learning

rate is reduced by a factor of 0.9 after every 5 epochs. Dur-

ing training, we randomly crop and flip images. We set the

latent dimension n = 32.

6.3. Quantitative Results

We show the results of all three benchmarks in Table 1.

Our method performs better on the same-scene guided syn-

thesis benchmark than SANet and BicycleGAN. For cross-

scene guided synthesis, our method gets the best LPIPS and

SSIM while SANet gets better L1 and PSNR. For unguided

synthesis, our method performs significantly better than Bi-

cycleGAN on Hausdorff distance and FID metrics, while

getting a comparable Chamfer distance. SANet, a style trans-

fer method, cannot be used for unguided synthesis without a

style image.

6.4. Qualitative Results

We show results of unguided synthesis in Figure 4. The

source image is shown on the left (a) and several images

sampled from the unguided distribution are shown in (b)-(e).

We can see that our method can generate realistic outputs

under diverse lighting and weather conditions. Results of

cross-scene guided synthesis are shown in Figure 3. Since

we model the style using a guided distribution, we can gen-

erate multiple samples from this during test set. For every

example, we show two synthesized outputs in Figure 3 (d)-

(e). We can see that there are some variations in these images,

like sky color and minor lighting variations.

6.5. Time­Lapse Generation

We compare our method for time-lapse generation with

the state-of-the-art method by Cheng et al. [3]. Both mod-

els are trained and evaluated on image size 512× 512. We

show quantitative results only on the time-lapse videos in the

test set, comprising of 8 sequences and 800 total examples.

These time-lapses are from the TLVDB dataset [35] which is

the test set used by Cheng et al. [3]. For this evaluation, we

select a source image from every sequence and use the hori-

zontally flipped version of other frames as the guidance. This

allows us to compare the output images with the reference

images. We show results in Table 2. Please note that Cheng

et al. [3] require the true segmentation labels of source and

guidance images during training and inference. Our method

does not need segmentation for training or inference. We can

see from Table 2 that our method performs better than [3]

on all metrics except LPIPS. We show qualitative results

in Figure 6; it can be seen that our method generates more

realistic outputs with natural colors of the sky.



(a) Source (b) Guidance (c) Target (d) Synthesis 1 (e) Synthesis 2

Figure 3. Qualitative results: cross-scene guided synthesis on the test set. We show two different synthesized images, (d) and (e), which are

sampled from the guided distribution q for the given guidance image.

(a) Source (b) Synthesis1 (c) Synthesis2 (d) Synthesis3 (e) Synthesis4

Figure 4. Qualitative results: unguided synthesis. Note that these results are from the unseen test set.
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Figure 5. Assessing the impact of changing the dimensionality, n, of the unguided/guided distributions.

Input

Reference

C
h

en
g

et
a

l.
[3

]
O

u
rs

Figure 6. Time-lapse results based on a reference sequence (top row). Our method works only on source images while Cheng et al. [3] also

requires segmentation masks of source image and the reference scene.

6.6. Ablation and Analysis

We provide ablation of the key choices in Table 1. We

show the significance of probabilistic modeling of the guided

distribution. If we extract a deterministic vector (ours

w/o guided distribution), the method performs significantly

worse on all metrics than our full method. We analyse our

proposed modeling of unguided distributions as mixture of

Gaussians: we prepare a baseline (ours w/o prior loss) in

which we use the standard KL divergence loss. This baseline

performs well on the same-scene synthesis and gets slightly

worse results on other benchmarks. Finally, we analyze our

proposed likelihood loss by developing a baseline (ours w/o

likelihood loss) that uses KL divergence between unguided

and guided distributions. This baseline, which closely resem-

bles probabilistic U-Net, performs worse on all benchmarks.

We analyze the size of the latent vector n as shown in Fig-

ure 5. We see that even as the latent vector size increases, the

performance of our method remains stable. We hypothesize

that this is because of two factors. First, our probabilistic

formulation encourages generalization during training by

drawing a sample from the guided distribution and not by

extracting the exact vector, as shown in the ablation of our

method vs. a method that does not use probability distribu-

tion (ours w/o guided distribution). Second, in our network

design, we extract a style encoding using global average

pooling and then feed this to an MLP which removes spatial

information.

7. Conclusion

We introduced a novel approach for synthesizing natural

appearance variations from a single source image, simulta-

neously addressing the tasks of unguided and guided image

synthesis. We formulated this as a probabilistic model with

an end-to-end training strategy. We also introduced a large-

scale dataset for training and three evaluation benchmarks.

We found that our method is able to synthesize diverse and

realistic images, improving upon several baseline methods.

We also significantly outperform the existing state of the art

for time-lapse image generation. On the other tasks we per-

form at or near the state of the art. This evaluation highlights

the value of our dataset and hope that it will spur further

research in this field.
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