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Abstract

Pixel binning is considered one of the most prominent

solutions to tackle the hardware limitation of smartphone

cameras. Despite numerous advantages, such an image sen-

sor has to appropriate an artefact-prone non-Bayer colour

filter array (CFA) to enable the binning capability. Con-

trarily, performing essential image signal processing (ISP)

tasks like demosaicking and denoising, explicitly with such

CFA patterns, makes the reconstruction process notably

complicated. In this paper, we tackle the challenges of joint

demosaicing and denoising (JDD) on such an image sensor

by introducing a novel learning-based method. The pro-

posed method leverages the depth and spatial attention in a

deep network. The proposed network is guided by a multi-

term objective function, including two novel perceptual

losses to produce visually plausible images. On top of that,

we stretch the proposed image processing pipeline to com-

prehensively reconstruct and enhance the images captured

with a smartphone camera, which uses pixel binning tech-

niques. The experimental results illustrate that the proposed

method can outperform the existing methods by a notice-

able margin in qualitative and quantitative comparisons.

Code available: https://github.com/sharif-

apu/BJDD_CVPR21.

1. Introduction

Smartphone cameras have illustrated a significant alti-

tude in the recent past. However, the compact nature of mo-

bile devices noticeably impacts the image quality compared

to their DSLR counterparts [15]. Also, such inevitable hard-

ware limitations, holding back the original equipment man-

ufacturers (OEMs) to achieve a substantial jump in the di-

mension of the image sensors. In contrast, the presence of

a bigger sensor in any camera hardware can drastically im-

prove the photography experience, even in stochastic light-

ing conditions [26]. Consequently, numerous OEMs have

exploited pixel enlarging techniques known as pixel binning
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in their compact devices to deliver visually admissible im-

ages [4, 43].

In general, pixel binning aims to combine the homoge-

nous neighbour pixels to form a larger pixel [1]. Therefore,

the device can exploit a larger sensor dimension outwardly

incorporating an actual bigger sensor. Apart from leverag-

ing a bigger sensor size in challenging lighting conditions,

such image sensor design also has substantial advantages.

Among them, capture high-resolution contents, producing

a natural bokeh effect, enable digital zoom by cropping an

image, etc., are noteworthy. This study denotes such image

sensors as a pixel-bin image sensor.

Quad Bayer CFA Bayer CFA

Figure 1: Commonly used CFA patterns of pixel-bin image

sensors.

Despite the widespread usage in recent smartphones, in-

cluding Oneplus Nord, Galaxy S20 FE, Xiaomi Redmi Note

8 Pro, Vivo X30 Pro, etc., reconstructing RGB images from

a pixel-bin image sensor is notably challenging [18]. Ex-

pressly, the pixel binning techniques have to employ a non-

Bayer CFA [22, 18] along with a traditional Bayer CFA [5]

over the image sensors to leverage the binning capability.

Fig. 1 depicts the most commonly used CFA patterns com-

bination used in recent camera sensors. Regrettably, the

non-Bayer CFA (i.e., Quad Bayer CFA [19]) has to appro-

priate in pixel-bin image sensors is notoriously vulnerable

to produce visually disturbing artefacts while reconstructing

images from the given CFA pattern [18]. Hence, combining

fundamental low-level ISP tasks like denoising and demo-

saicking on an artefact-prone CFA make the reconstruction

process profoundly complicated.

Contrarily, the learning-based methods have illustrated

distinguished progression in performing image reconstruc-
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Figure 2: Example of Joint demosaicing and denoising on Quad Bayer CFA.

tion tasks. Also, they have demonstrated substantial ad-

vantages of combining low-level tasks such as demosaicing

along with denoising [12, 21, 25, 9]. Most notably, some of

the recent convolutional neural network (CNN) based meth-

ods [35, 16] attempt to mimic complicated mobile ISP and

substantiate significant improvement in perceptual quality

over traditional methods. Such computational photography

advancements inspired this study to tackle the challenging

JDD of a pixel-bin image sensor and go beyond.

This study introduces a novel learning-based method to

perform JDD in commonly used CFA patterns (i.e., Quad

Bayer CFA [19], and Bayer CFA [5]) of pixel-bin image

sensors. The proposed method leverage spatial and depth-

wise feature attention [40, 14] in a deep architecture to re-

duce visual artefacts. We have denoted the proposed deep

as a pixel-bin image processing network (PIPNet) in the rest

of the paper. Apart from that, we introduced a multi-term

guidance function, including two novel perceptual losses

to guide the proposed PIPNet for enhancing the perceptual

quality of reconstructed images. Fig. 2 illustrates an exam-

ple of the proposed method’s JDD performance on a non-

Bayer CFA. The feasibility of the proposed method has ex-

tensively studied with diverse data samples from different

colour spaces. Later, we stretched our proposed pipeline

to reconstruct and enhance the images of actual pixel-bin

image sensors.

The contribution of this study has summarized below:

• Proposes a learning-based method, which aims to

tackle the challenging JDD on a pixel-bin image sen-

sor.

• Proposes a deep network that exploits depth-spatial

feature attentions and is guided by a multi-term objec-

tive function, including two novel perceptual losses.

• Stretches the proposed method to study the feasibility

of enhancing perceptual image quality along with JDD

on actual hardware.

2. Related work

This section briefly reviews the works that are related to

the proposed method.

Joint demosacing and denoising. Image demosaicing

is considered a low-level ISP task, aiming to reconstruct

RGB images from a given CFA pattern. However, in prac-

tical application, the image sensors’ data are contaminated

with noises, which directly costs the demosaicking process

by deteriorating final reconstruction results [25]. There-

fore, the recent works emphasize performing demosaicing

and denoising jointly rather than traditional sequential ap-

proaches.

In general, JDD methods are clustered into two ma-

jor categories: optimization-based methods [13, 37] and

learning-based methods [12, 9, 21]. However, the later ap-

proach illustrates substantial momentum over their classi-

cal counterparts, particularly in reconstruction quality. In

recent work, numerous novel CNN-based methods have

been introduced to perform the JDD. For example, [12]

trained and a deep network with millions of images to

achieve state-of-the-art results. Similarly, [21] fuse the

majorization-minimization techniques into a residual de-

noising network, [9] proposed a generative adversarial net-

work (GAN) along with perceptual optimization to perform

JDD. Also, [25] proposed a deep-learning-based method su-

pervised by density-map and green channel guidance. Apart

from these supervised approaches, [10] attempts to solve

JDD with unsupervised learning on burst images.

Image enhancement. Image enhancement works

mostly aim to improve the perceptual image quality by

incorporating colour correction, sharpness boosting, de-

noising, white balancing, etc. Among the recent works,

[11, 44] proposed learning-based solutions for automatic

global luminance and gamma adjustment. Similarly, [23]

offered deep-learning solutions for colour and tone correc-

tion, and [44] presented a CNN model to image contrast

enhancement. However, the most comprehensive image en-

hancement approach was introduced by [15], where the au-

thor enhanced downgraded smartphone images according

to superior-quality photos obtained with a high-end camera

system.

Learning ISP. A typical camera ISP pipeline exploits

numerous image processing blocks to reconstruct an sRGB

image from the sensor’s raw data. A few novel methods

have recently attempted to replace such complex ISPs by



learning from the convex set of data samples. In [35], the

authors proposed a CNN model to suppress image noises

and exposure correction of images captured with a smart-

phone camera. Likewise, [16] proposed a deep model in-

corporating extensive global feature manipulation to replace

the entire ISP of the Huwaei P20 smartphone. In another re-

cent work, [24] proposed a two-stage deep network to repli-

cate camera ISP.

Quad Bayer Reconstruction. Reconstructing RGB im-

ages from a Quad Bayer CFA is considerably challenging.

In [18] has addressed this challenging task by proposing a

duplex pyramid network. It worth noting, none of the ex-

isting methods (including [18]) specialized for our target

applications. However, their respective domains’ success

inspired this work to develop an image processing pipeline

for a pixel-bin image sensor, which can perform JDD and

go beyond.

3. Method

This section details the network design, a multi-term ob-

jective function, and implementation strategies.

3.1. Network design

Fig. 3 depicts the proposed method’s overview, includ-

ing the novel PIPNet architecture. Here, the proposed net-

work exploits feature correlation, also known as attention

mechanism [14, 40, 8], through the novel components in

U-Net [33] like architecture to mitigate visual artefacts.

Overall, the method aims to map a mosaic input (IM ) as

G : IM → IR. Where the mapping function (F) learns

to reconstruct an RGB image (IR) as IR ∈ [0, 1]H×W×3.

H and W represent the height and width of the input and

output images.

Group depth attention bottleneck block. The novel

group depth attention bottleneck (GDAB) block allowed the

proposed network to go deeper by leveraging depth atten-

tion [14]. The GDAB block comprises of m ∈ Z number of

depth attention bottleneck (DAB) blocks. Where the DABs

are stacked consecutively and connected with short distance

residual connection; thus, the network can converge with

informative features [8]. For any g-th member of a GDAB

block can be represented as:

Fg = WgFg−1 +Hg(Fg−1) (1)

Here, Wg , Fg−1, and Fg represent the corresponding

weight matrics, input, and output features. Hg(·) denotes

the function of group members (i.e., DAB).

Depth attention bottleneck block. The proposed DAB

incorporates a depth attention block along with a bottleneck

block. For a given input X, the m-th DAB block aims to

output the feature map X
′ as:

X
′
m = Bm(X) +Dm(X) (2)

In Eq. 2,B(·) presents the bottleneck block function, which

has been inspired by the well-known MobileNetV2 [34].

The main motive of utilizing the bottleneck block is to con-

trol the trainable parameters with satisfactory performance.

Typically, pixel-bin image sensors are exclusively designed

for mobile devices. Therefore, we stress to reduce the train-

able parameters as much as possible. Apart from the bottle-

neck block, DAB also incorporates a depth attention block,

which has denoted as D(·) in Eq. 2. It is worth noting,

this study proposes to adding the feature map of the depth

attention block along with the bottleneck block to leverage

the long-distance depth-wise attention [14, 8]. Here, depth-

wise squeezed descriptor Z ∈ R
C has been obtained by

shrinking X̂ = [x1, . . . ,xc] as follows:

Zc = AGP (xc) =
1

C

C
∑

i

xc(i) (3)

Here, AGP (c) presents the global average pooling, spatial

dimension, and feature map.

Additionally, an aggregated global dependencies have

pursued by applying a gating mechanism as follows:

W = τ(WS(δ(WR(Z)))) (4)

Here, τ and δ represent the sigmoid and ReLU activation

functions, which have applied after WS(·) and WR(·) con-

volutional operations, which intended to set depth dimen-

sion of features to C/r and C.

The final output of the depth attention block has obtained

by applying a depth-wise attention map with a rescaling fac-

tor [8] described as follows:

Dc = Wc · Sc (5)

Here, Wc and Sc represent the feature map and scaling fac-

tor.

Spatial attention block. The spatial attention block of

the proposed method has been inspired by recent convolu-

tional spatial modules [40, 6]. It aims to realize the spatial

feature attention from a given feature map X as follows:

F = τ(FS([ZA(X);ZM(X)]) (6)

Here, F(·) and τ represent the convolution operation and

sigmoid activation. Additionally, ZA and ZM present the

average pooling and max pooling, which generates two 2D

feature map as XA ∈ R
1×H×W and XM ∈ R

1×H×W .

Transition Layer. The proposed network traverses dif-

ferent features depth to exploit the UNet like structure using

upscaling or downscaling operations. The downsampling

operation has obtained on an input feature map X0 as fol-

lows:

F↓ = H↓(X0) (7)



Figure 3: Overview of the proposed method, including network architecture and submodules.

Here,H#(�) represents a stride convolutional operation.
Inversely, the upscaling on an input feature mapX 0 has

achieved as:

F " = H " (X 0) (8)

Here,H " (�) represents the pixel shuf�e convolution oper-
ation followed by the PReLU function, which intends to
avoid checkerboard artefacts [3].

Conditional Discriminator. The proposed PIPNet
has appropriated the concept of adversarial guidance and
adopted a well-established conditional Generative Adver-
sarial Network (cGAN) [31]. The objective of the cGAN
discriminator consists of stacked convolutional operations
and set to maximize as:EX ;Y

�
logD

�
X ; Y

��
.

3.2. Objective function

The proposed networkG parameterized with weights
W , aims to minimize the training loss by appropriating the
givenP pairs of training imagesf I M

t ; I G
t gP

t =1 as follows:

W � = arg min
W

1
P

PX

t =1

L T (G( I M
t ); I G

t ) (9)

Here,L T denotes the proposed multi-term objective func-
tion, which aims to improve the perceptual quality (i.e., de-
tails, texture, colour, etc.) while reconstructing an image.

Reconstruction loss.L1-norm is known to be useful for
generating sharper images [45, 35]. Therefore, an L1-norm
has adopted to calculate pixel-wise reconstruction error as
follows:

L R = k I G � I R k1 (10)

Here,I G andI R present the ground truth image and output
of G(I M ) respectively.

Regularized feature loss (RFL).: VGG-19 feature-
based loss functions aim to improve a reconstructed image's
perceptual quality by encouraging it to have identical fea-
ture representation like the reference images [15, 30, 39].
Typically, such activation-map loss functions represented as
follows:

L FL = � P � L VGG (11)

WhereL VGG can be extended as follows:

L VGG =
1

H j Wj Cj
k  t (I G ) �  t (I R ) k1 (12)

Here, andj denote the pre-trained VGG network and its
j th layer.

It is worth noting, in Eq.11, � P denotes the regulator of
a feature loss. However, in most cases, the regulator's value
has to set emphatically, and without proper tuning, it can
deteriorate the reconstruction process [39]. To address this
limitation, we replaced� P with a total variation regulariza-
tion [36], which can be presented as follows:

� R =
1

H j Wj Cj
k � Ov k + k � Oh k (13)

Here,k � Ov k andk � Oh k present the gradients' sum-
mation in the vertical and horizontal directions calculated














