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Abstract

Pixel binning is considered one of the most prominent

solutions to tackle the hardware limitation of smartphone

cameras. Despite numerous advantages, such an image sen-

sor has to appropriate an artefact-prone non-Bayer colour

filter array (CFA) to enable the binning capability. Con-

trarily, performing essential image signal processing (ISP)

tasks like demosaicking and denoising, explicitly with such

CFA patterns, makes the reconstruction process notably

complicated. In this paper, we tackle the challenges of joint

demosaicing and denoising (JDD) on such an image sensor

by introducing a novel learning-based method. The pro-

posed method leverages the depth and spatial attention in a

deep network. The proposed network is guided by a multi-

term objective function, including two novel perceptual

losses to produce visually plausible images. On top of that,

we stretch the proposed image processing pipeline to com-

prehensively reconstruct and enhance the images captured

with a smartphone camera, which uses pixel binning tech-

niques. The experimental results illustrate that the proposed

method can outperform the existing methods by a notice-

able margin in qualitative and quantitative comparisons.

Code available: https://github.com/sharif-

apu/BJDD_CVPR21.

1. Introduction

Smartphone cameras have illustrated a significant alti-

tude in the recent past. However, the compact nature of mo-

bile devices noticeably impacts the image quality compared

to their DSLR counterparts [15]. Also, such inevitable hard-

ware limitations, holding back the original equipment man-

ufacturers (OEMs) to achieve a substantial jump in the di-

mension of the image sensors. In contrast, the presence of

a bigger sensor in any camera hardware can drastically im-

prove the photography experience, even in stochastic light-

ing conditions [26]. Consequently, numerous OEMs have

exploited pixel enlarging techniques known as pixel binning
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in their compact devices to deliver visually admissible im-

ages [4, 43].

In general, pixel binning aims to combine the homoge-

nous neighbour pixels to form a larger pixel [1]. Therefore,

the device can exploit a larger sensor dimension outwardly

incorporating an actual bigger sensor. Apart from leverag-

ing a bigger sensor size in challenging lighting conditions,

such image sensor design also has substantial advantages.

Among them, capture high-resolution contents, producing

a natural bokeh effect, enable digital zoom by cropping an

image, etc., are noteworthy. This study denotes such image

sensors as a pixel-bin image sensor.

Quad Bayer CFA Bayer CFA

Figure 1: Commonly used CFA patterns of pixel-bin image

sensors.

Despite the widespread usage in recent smartphones, in-

cluding Oneplus Nord, Galaxy S20 FE, Xiaomi Redmi Note

8 Pro, Vivo X30 Pro, etc., reconstructing RGB images from

a pixel-bin image sensor is notably challenging [18]. Ex-

pressly, the pixel binning techniques have to employ a non-

Bayer CFA [22, 18] along with a traditional Bayer CFA [5]

over the image sensors to leverage the binning capability.

Fig. 1 depicts the most commonly used CFA patterns com-

bination used in recent camera sensors. Regrettably, the

non-Bayer CFA (i.e., Quad Bayer CFA [19]) has to appro-

priate in pixel-bin image sensors is notoriously vulnerable

to produce visually disturbing artefacts while reconstructing

images from the given CFA pattern [18]. Hence, combining

fundamental low-level ISP tasks like denoising and demo-

saicking on an artefact-prone CFA make the reconstruction

process profoundly complicated.

Contrarily, the learning-based methods have illustrated

distinguished progression in performing image reconstruc-
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Reference

PSNR:∞
Deepjoint [12]

PSNR:28.66 dB

Kokkinos [21]

PSNR:31.02 dB

Dong [9]

PSNR:30.07 dB

DeepISP [35]

PSNR:31.65 dB

DPN [18]

PSNR:32.59 dB

Ours

PSNR:34.81 dB

Figure 2: Example of Joint demosaicing and denoising on Quad Bayer CFA.

tion tasks. Also, they have demonstrated substantial ad-

vantages of combining low-level tasks such as demosaicing

along with denoising [12, 21, 25, 9]. Most notably, some of

the recent convolutional neural network (CNN) based meth-

ods [35, 16] attempt to mimic complicated mobile ISP and

substantiate significant improvement in perceptual quality

over traditional methods. Such computational photography

advancements inspired this study to tackle the challenging

JDD of a pixel-bin image sensor and go beyond.

This study introduces a novel learning-based method to

perform JDD in commonly used CFA patterns (i.e., Quad

Bayer CFA [19], and Bayer CFA [5]) of pixel-bin image

sensors. The proposed method leverage spatial and depth-

wise feature attention [40, 14] in a deep architecture to re-

duce visual artefacts. We have denoted the proposed deep

as a pixel-bin image processing network (PIPNet) in the rest

of the paper. Apart from that, we introduced a multi-term

guidance function, including two novel perceptual losses

to guide the proposed PIPNet for enhancing the perceptual

quality of reconstructed images. Fig. 2 illustrates an exam-

ple of the proposed method’s JDD performance on a non-

Bayer CFA. The feasibility of the proposed method has ex-

tensively studied with diverse data samples from different

colour spaces. Later, we stretched our proposed pipeline

to reconstruct and enhance the images of actual pixel-bin

image sensors.

The contribution of this study has summarized below:

• Proposes a learning-based method, which aims to

tackle the challenging JDD on a pixel-bin image sen-

sor.

• Proposes a deep network that exploits depth-spatial

feature attentions and is guided by a multi-term objec-

tive function, including two novel perceptual losses.

• Stretches the proposed method to study the feasibility

of enhancing perceptual image quality along with JDD

on actual hardware.

2. Related work

This section briefly reviews the works that are related to

the proposed method.

Joint demosacing and denoising. Image demosaicing

is considered a low-level ISP task, aiming to reconstruct

RGB images from a given CFA pattern. However, in prac-

tical application, the image sensors’ data are contaminated

with noises, which directly costs the demosaicking process

by deteriorating final reconstruction results [25]. There-

fore, the recent works emphasize performing demosaicing

and denoising jointly rather than traditional sequential ap-

proaches.

In general, JDD methods are clustered into two ma-

jor categories: optimization-based methods [13, 37] and

learning-based methods [12, 9, 21]. However, the later ap-

proach illustrates substantial momentum over their classi-

cal counterparts, particularly in reconstruction quality. In

recent work, numerous novel CNN-based methods have

been introduced to perform the JDD. For example, [12]

trained and a deep network with millions of images to

achieve state-of-the-art results. Similarly, [21] fuse the

majorization-minimization techniques into a residual de-

noising network, [9] proposed a generative adversarial net-

work (GAN) along with perceptual optimization to perform

JDD. Also, [25] proposed a deep-learning-based method su-

pervised by density-map and green channel guidance. Apart

from these supervised approaches, [10] attempts to solve

JDD with unsupervised learning on burst images.

Image enhancement. Image enhancement works

mostly aim to improve the perceptual image quality by

incorporating colour correction, sharpness boosting, de-

noising, white balancing, etc. Among the recent works,

[11, 44] proposed learning-based solutions for automatic

global luminance and gamma adjustment. Similarly, [23]

offered deep-learning solutions for colour and tone correc-

tion, and [44] presented a CNN model to image contrast

enhancement. However, the most comprehensive image en-

hancement approach was introduced by [15], where the au-

thor enhanced downgraded smartphone images according

to superior-quality photos obtained with a high-end camera

system.

Learning ISP. A typical camera ISP pipeline exploits

numerous image processing blocks to reconstruct an sRGB

image from the sensor’s raw data. A few novel methods

have recently attempted to replace such complex ISPs by



learning from the convex set of data samples. In [35], the

authors proposed a CNN model to suppress image noises

and exposure correction of images captured with a smart-

phone camera. Likewise, [16] proposed a deep model in-

corporating extensive global feature manipulation to replace

the entire ISP of the Huwaei P20 smartphone. In another re-

cent work, [24] proposed a two-stage deep network to repli-

cate camera ISP.

Quad Bayer Reconstruction. Reconstructing RGB im-

ages from a Quad Bayer CFA is considerably challenging.

In [18] has addressed this challenging task by proposing a

duplex pyramid network. It worth noting, none of the ex-

isting methods (including [18]) specialized for our target

applications. However, their respective domains’ success

inspired this work to develop an image processing pipeline

for a pixel-bin image sensor, which can perform JDD and

go beyond.

3. Method

This section details the network design, a multi-term ob-

jective function, and implementation strategies.

3.1. Network design

Fig. 3 depicts the proposed method’s overview, includ-

ing the novel PIPNet architecture. Here, the proposed net-

work exploits feature correlation, also known as attention

mechanism [14, 40, 8], through the novel components in

U-Net [33] like architecture to mitigate visual artefacts.

Overall, the method aims to map a mosaic input (IM ) as

G : IM → IR. Where the mapping function (F) learns

to reconstruct an RGB image (IR) as IR ∈ [0, 1]H×W×3.

H and W represent the height and width of the input and

output images.

Group depth attention bottleneck block. The novel

group depth attention bottleneck (GDAB) block allowed the

proposed network to go deeper by leveraging depth atten-

tion [14]. The GDAB block comprises of m ∈ Z number of

depth attention bottleneck (DAB) blocks. Where the DABs

are stacked consecutively and connected with short distance

residual connection; thus, the network can converge with

informative features [8]. For any g-th member of a GDAB

block can be represented as:

Fg = WgFg−1 +Hg(Fg−1) (1)

Here, Wg , Fg−1, and Fg represent the corresponding

weight matrics, input, and output features. Hg(·) denotes

the function of group members (i.e., DAB).

Depth attention bottleneck block. The proposed DAB

incorporates a depth attention block along with a bottleneck

block. For a given input X, the m-th DAB block aims to

output the feature map X
′ as:

X
′
m = Bm(X) +Dm(X) (2)

In Eq. 2,B(·) presents the bottleneck block function, which

has been inspired by the well-known MobileNetV2 [34].

The main motive of utilizing the bottleneck block is to con-

trol the trainable parameters with satisfactory performance.

Typically, pixel-bin image sensors are exclusively designed

for mobile devices. Therefore, we stress to reduce the train-

able parameters as much as possible. Apart from the bottle-

neck block, DAB also incorporates a depth attention block,

which has denoted as D(·) in Eq. 2. It is worth noting,

this study proposes to adding the feature map of the depth

attention block along with the bottleneck block to leverage

the long-distance depth-wise attention [14, 8]. Here, depth-

wise squeezed descriptor Z ∈ R
C has been obtained by

shrinking X̂ = [x1, . . . ,xc] as follows:

Zc = AGP (xc) =
1

C

C
∑

i

xc(i) (3)

Here, AGP (c) presents the global average pooling, spatial

dimension, and feature map.

Additionally, an aggregated global dependencies have

pursued by applying a gating mechanism as follows:

W = τ(WS(δ(WR(Z)))) (4)

Here, τ and δ represent the sigmoid and ReLU activation

functions, which have applied after WS(·) and WR(·) con-

volutional operations, which intended to set depth dimen-

sion of features to C/r and C.

The final output of the depth attention block has obtained

by applying a depth-wise attention map with a rescaling fac-

tor [8] described as follows:

Dc = Wc · Sc (5)

Here, Wc and Sc represent the feature map and scaling fac-

tor.

Spatial attention block. The spatial attention block of

the proposed method has been inspired by recent convolu-

tional spatial modules [40, 6]. It aims to realize the spatial

feature attention from a given feature map X as follows:

F = τ(FS([ZA(X);ZM(X)]) (6)

Here, F(·) and τ represent the convolution operation and

sigmoid activation. Additionally, ZA and ZM present the

average pooling and max pooling, which generates two 2D

feature map as XA ∈ R
1×H×W and XM ∈ R

1×H×W .

Transition Layer. The proposed network traverses dif-

ferent features depth to exploit the UNet like structure using

upscaling or downscaling operations. The downsampling

operation has obtained on an input feature map X0 as fol-

lows:

F↓ = H↓(X0) (7)



Figure 3: Overview of the proposed method, including network architecture and submodules.

Here, H↓(·) represents a stride convolutional operation.

Inversely, the upscaling on an input feature map X0 has

achieved as:

F↑ = H↑(X0) (8)

Here, H↑(·) represents the pixel shuffle convolution oper-

ation followed by the PReLU function, which intends to

avoid checkerboard artefacts [3].

Conditional Discriminator. The proposed PIPNet

has appropriated the concept of adversarial guidance and

adopted a well-established conditional Generative Adver-

sarial Network (cGAN) [31]. The objective of the cGAN

discriminator consists of stacked convolutional operations

and set to maximize as: EX,Y

[

logD
(

X,Y
)]

.

3.2. Objective function

The proposed network G parameterized with weights

W, aims to minimize the training loss by appropriating the

given P pairs of training images {IM
t, IG

t}Pt=1
as follows:

W ∗ = argmin
W

1

P

P
∑

t=1

LT (G(IM
t), IG

t) (9)

Here, LT denotes the proposed multi-term objective func-

tion, which aims to improve the perceptual quality (i.e., de-

tails, texture, colour, etc.) while reconstructing an image.

Reconstruction loss. L1-norm is known to be useful for

generating sharper images [45, 35]. Therefore, an L1-norm

has adopted to calculate pixel-wise reconstruction error as

follows:

LR =‖ IG − IR ‖1 (10)

Here, IG and IR present the ground truth image and output

of G(IM) respectively.

Regularized feature loss (RFL).: VGG-19 feature-

based loss functions aim to improve a reconstructed image’s

perceptual quality by encouraging it to have identical fea-

ture representation like the reference images [15, 30, 39].

Typically, such activation-map loss functions represented as

follows:

LFL = λP × LVGG (11)

Where LVGG can be extended as follows:

LVGG =
1

HjWjCj

‖ ψt(IG)− ψt(IR) ‖1 (12)

Here, ψ and j denote the pre-trained VGG network and its

jth layer.

It is worth noting, in Eq. 11, λP denotes the regulator of

a feature loss. However, in most cases, the regulator’s value

has to set emphatically, and without proper tuning, it can

deteriorate the reconstruction process [39]. To address this

limitation, we replaced λP with a total variation regulariza-

tion [36], which can be presented as follows:

λR =
1

HjWjCj

‖ ∆Ov ‖ + ‖ ∆Oh ‖ (13)

Here,‖ ∆Ov ‖ and ‖ ∆Oh ‖ present the gradients’ sum-

mation in the vertical and horizontal directions calculated



over a training pair. The regularized form of Eq. 11 can be

written as:

LRFL = λR × LVGG (14)

Perceptual colour loss (PCL). Due to the smaller aper-

ture and sensor size, most smartphone cameras are prone to

illustrate colour inconsistency in numerous instances [15].

We developed a CIEDE2000 [27] based on the perceptual

colour loss to address this limitation, which intends to mea-

sure the colour difference between two images in euclidean

space. Subsequently, the newly developed loss function en-

courages the proposed network to generate a similar colour

as the reference image. The proposed perceptual colour loss

can be represented as follows:

LPCL = ∆E
(

IG, IR

)

(15)

Here, ∆E represents the CIEDE2000 colour difference

[27].

Adversarial loss. Adversarial guidance is known to be

capable of recovering texture and natural colours while re-

constructing images. Therefore, we encouraged our model

to employ a cGAN based cross-entropy loss as follows:

LG = −
∑

t

logD(IG, IR) (16)

Here, D denotes the conditional discriminator, which aims

to perform as a global critic.

Total loss. The final multi-term objective function (LT )

has calculated as follows:

LT = LR + LRFL + LPCL + λG.LG (17)

Here, λG presents adversarial regulators and set as λG =

1e-4.

3.3. Implementation details

The generator of proposed PIPNet traverses between dif-

ferent feature depth to leverage the UNet like structure as

d = (64, 126, 256), where the GDAB blocks of the pro-

posed network comprise m = 3 number of DAB block (also

refer as group density in a later section). Every convolution

operation in the bottleneck block of a DAB block incorpo-

rates 1 × 1 convolutional and a 3 × 3 separable convolu-

tion, where each layer is activated with a LeakyReLU func-

tion. Additionally, the spatial attention block, downsam-

pling block, and discriminator utilize 3 × 3 convolutional

operation. A swish function has activated the convolution

operations of the discriminator. Also, every (2n−1)th layer

of the discriminator increases the feature depth and reduces

the spatial dimension by 2.

4. Experiments

The performance of the proposed method has been stud-

ied extensively with sophisticated experiments. This section

details the experiment results and comparison for JDD.

4.1. Setup

To learn JDD for a pixel-bin image sensor, we extracted

741,968 non-overlapping image patches of dimension 128×
128 from DIV2K [2] and Flickr2K [38] datasets. The image

patches are sampled according to the CFA patterns and con-

taminated with a random noise factor of N (IG|σ). Here,

σ represents the standard deviation of a Gaussian distribu-

tion, which is generated by N (·) over a clean image IG. It

has presumed that the JDD has performed in sRGB colour

space before colour correction, tone mapping, and white

balancing. The model has implemented in the PyTorch [32]

framework and optimized with an Adam optimizer [20] as

β1 = 0.9, β2 = 0.99, and learning rate = 1e−4. The model

trained for 10 ∼ 15 epoch depending on the CFA pattern

with a constant batch size of 12. The training process accel-

erated using an Nvidia Geforce GTX 1060 (6GB) graphical

processing unit (GPU).

4.2. Joint demosaicing and denoising

We conducted an extensive comparison with the bench-

mark dataset for the evaluation purpose, including BSD100

[29], McM [41], Urban100 [7], Kodak [42], WED [28],

and MSR demosaicing dataset [17]. We used only lin-

RGB images from the MSR demosaicing dataset to ver-

ify the proposed method’s feasibility in different colour

spaces (i.e., sRGB and linRGB). Therefore, we denoted the

MSR demosaicing dataset as linRGB in the rest of the pa-

per. Apart from that, four CNN-based JDD methods (Deep-

joint [12], Kokkinos [21], Dong [9], DeepISP [35]) and a

specialized Quad Bayer reconstruction method (DPN [18])

have studied for comparison. Each compared method’s per-

formance cross-validated with three different noise levels

σ = (5, 15, 25) and summarized with the following evalua-

tion metrics: PSNR, SSIM, and DeltaE2000.

4.2.1 Quad Bayer CFA

Performing JDD on Quad Bayer CFA is substantially chal-

lenging. However, the proposed method aims to tackle this

challenging task by using the novel PIPNet. Table. 1 illus-

trates the performance comparison between the proposed

PIPNet and target learning-based methods for Quad Bayer

CFA. It is visible that our proposed method outperforms the

existing learning-based methods in quantitative evaluation

on benchmark datasets. Also, the visual results depicted in

Fig. 4 confirm that the proposed method can reconstruct

visually plausible images from Quad Bayer CFA.



Method σ
BSD100 WED Urban100 McM Kodak linRGB

PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE

Deepjoint [12]

5

34.69/0.9474/2.45 30.99/0.9115/3.30 31.04/0.9272/3.43 31.16/0.8889/3.21 32.39/0.9310/3.01 40.03/0.9694/1.59

Kokkinos [21] 34.54/0.9662/2.25 32.18/0.9428/2.77 32.16/0.9501/3.13 32.84/0.9280/2.49 33.05/0.9532/2.74 38.46/0.9670/1.45

Dong [9] 33.79/0.9604/2.39 31.22/0.9312/3.03 31.48/0.9395/3.24 31.80/0.9117/2.81 32.72/0.9494/2.85 38.40/0.9477/1.75

DeepISP [35] 36.78/0.9711/1.94 32.25/0.9392/2.93 32.52/0.9494/3.10 32.32/0.9143/2.89 34.25/0.9547/2.45 42.02/0.9819/1.27

DPN [18] 37.71/0.9714/1.81 33.60/0.9490/2.50 33.73/0.9560/2.78 34.37/0.9354/2.26 35.73/0.9597/2.22 42.08/0.9767/1.16

PIPNet 39.43/0.9803/1.42 35.08/0.9609/2.08 35.66/0.9670/2.25 35.55/0.9470/1.90 37.21/0.9699/1.79 44.14/0.9827/0.94

Deepjoint [12]

15

32.68/0.8883/2.81 29.97/0.8678/3.61 30.02/0.8819/3.72 30.19/0.8432/3.51 31.02/0.8655/3.35 36.94/0.9100/1.88

Kokkinos [21] 33.57/0.9396/2.56 31.38/0.9183/3.07 31.40/0.9262/3.38 32.03/0.9026/2.79 32.17/0.9208/3.04 37.72/0.9453/1.75

Dong [9] 32.49/0.9280/2.67 30.27/0.9004/3.32 30.52/0.9110/3.50 30.80/0.8755/3.08 31.58/0.9128/3.13 35.66/0.9061/2.05

DeepISP [35] 34.73/0.9443/2.30 31.31/0.9174/3.20 31.44/0.9276/3.37 31.47/0.8909/3.13 32.74/0.9226/2.81 39.44/0.9608/1.59

DPN [18] 35.08/0.9451/2.17 32.27/0.9265/2.80 32.22/0.9340/3.07 33.16/0.913/2.53 33.60/0.9274/2.57 39.43/0.9613/1.44

PIPNet 36.68/0.9586/1.79 33.55/0.9416/2.41 33.85/0.9481/2.56 34.21/0.9277/2.18 34.89/0.9422/2.14 41.86/0.9728/1.18

Deepjoint [12]

25

30.15/0.8006/3.51 28.42/0.8008/4.16 28.44/0.8140/4.28 28.69/0.7745/4.03 29.00/0.7724/4.02 33.73/0.8246/2.51

Kokkinos [21] 31.99/0.9070/2.95 30.12/0.8868/3.45 30.09/0.8961/3.74 30.74/0.8697/3.17 30.74/0.8827/3.43 36.03/0.9152/2.08

Dong [9] 31.49/0.8870/3.00 29.50/0.8607/3.60 29.72/0.8755/3.80 29.67/0.8205/3.38 30.76/0.8685/3.43 31.74/0.8419/2.65

DeepISP [35] 32.85/0.9111/2.79 30.17/0.8885/3.60 30.17/0.8994/3.81 30.42/0.8650/3.51 31.19/0.8839/3.29 37.23/0.9343/2.09

DPN [18] 33.33/0.9059/2.57 31.07/0.8930/3.18 31.09/0.9019/3.40 31.91/0.8811/2.88 31.98/0.8840/2.96 37.49/0.9280/1.79

PIPNet 34.62/0.9353/2.14 32.13/0.9198/2.75 32.28/0.9285/2.89 32.88/0.9072/2.49 33.04/0.9140/2.50 39.44/0.9565/1.47

Table 1: Quantitative evaluation of JDD on Quad Bayer CFA. A higher value of PSNR and SSIM indicates better results,

while lower DeltaE indicates more colour consistency.

Reference

Deepjoint [12]

DeepISP [35]

Kokkinos [21]

DPN [18]

Dong [9]

PIPNet

Figure 4: Qualitative evaluation of JDD on Quad Bayer CFA.

4.2.2 Bayer CFA

As mentioned earlier, the pixel-bin image sensors have to

employ Bayer CFA in numerous instances. Therefore, the

proposed PIPNet has to perform JDD evenly on Bayer CFA.

Table. 2 illustrates the JDD performance of the proposed

method and its counterparts on Bayer CFA. The proposed

method depicts the consistency in Bayer CFA as well. Also,

it can recover more details while performing JDD on Bayer

CFA without producing any visually disturbing artefacts, as

shown in Fig. 5.

4.3. Network analysis

The practicability of the proposed network and its novel

component has been verified by analyzing the network per-

formance.

4.3.1 Ablation study

An ablation study was conducted by removing all novel

components like attention mechanism (AM), PCL, and RFL

from the proposed method and later injecting them into the

network consecutively. Fig. 6 depicts the importance of

each proposed component through visual results. Apart

from that Table. 3 confirms the practicability of novel com-

ponents introduced by the proposed method. For simplicity,

we combined all sRGB datasets and calculated the mean

over the unified dataset while performing JDD on challeng-

ing Quad Bayer CFA.

4.3.2 Group density vs performance

Despite being significantly deeper and wider, the proposed

PIPNet comprises 3.3 million parameters. The bottleneck

block employed in GDAB allows our network to control the

trainable parameter. Nevertheless, the number of parame-

ters can be controlled by altering the group density (GD) of

the GDAB blocks, as shown in Fig. 7. Additionally, Ta-

ble. 4 illustrates the relation between GD and performance

in both colour spaces while performing JDD.

5. Image reconstruction and enhancement

Typically, smartphone cameras are susceptible to pro-

duce flat, inaccurate colour profiles and noisy images com-



Model σ
BSD100 WED Urban100 McM Kodak linRGB

PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE

Deepjoint [12]

5

35.73/0.9661/2.21 32.96/0.9439/2.67 32.44/0.9468/2.99 33.56/0.9283/2.48 33.74/0.9519/2.62 38.99/0.9690/1.66

Kokkinos [21] 36.81/0.9712/2.14 34.78/0.9561/2.43 34.30/0.9552/2.86 35.37/0.9462/2.20 35.24/0.9596/2.51 39.77/0.9716/1.56

Dong [9] 36.66/0.9710/2.29 33.72/0.9461/2.60 33.94/0.9486/2.85 33.88/0.9244/2.44 35.72/0.9646/2.56 38.07/0.9381/1.81

DeepISP [35] 38.60/0.9771/1.60 34.05/0.9497/2.38 33.53/0.9550/2.67 34.08/0.9327/2.31 35.29/0.9606/2.09 43.72/0.9826/1.11

DPN [18] 40.38/0.9837/1.25 36.71/0.9697/1.79 36.27/0.9707/2.08 37.21/0.9590/1.67 38.11/0.9739/1.61 43.97/0.9826/1.06

PIPNet 41.75/0.9851/1.11 37.84/0.9717/1.61 37.51/0.9731/1.87 38.13/0.9612/1.52 39.37/0.9768/1.41 46.41/0.9870/0.82

Deepjoint [12]

15

33.50/0.9084/2.83 31.62/0.8988/3.15 31.20/0.9016/3.51 32.20/0.8829/2.92 31.99/0.8872/3.28 36.56/0.9201/2.15

Kokkinos [21] 34.52/0.9377/2.62 32.93/0.9259/2.89 32.54/0.9264/3.30 33.52/0.9133/2.65 33.28/0.9202/2.98 37.82/0.9434/1.96

Dong [9] 33.86/0.9379/2.67 31.87/0.9123/2.95 32.20/0.9182/3.18 31.87/0.8792/2.80 33.27/0.9270/2.96 34.10/0.9009/2.28

DeepISP [35] 35.29/0.9410/2.23 32.46/0.9201/2.83 32.04/0.9260/3.12 32.57/0.9010/2.74 33.17/0.9192/2.68 39.81/0.9563/1.63

DPN [18] 36.90/0.9577/1.75 34.62/0.9462/2.22 34.33/0.9485/2.46 35.30/0.9355/2.04 35.28/0.9414/2.07 41.51/0.9726/1.36

PIPNet 37.59/0.9620/1.60 35.19/0.9494/2.07 34.93/0.9522/2.30 35.81/0.9391/1.92 35.96/0.9478/1.88 43.02/0.9735/1.13

Deepjoint [12]

25

30.91/0.8240/3.82 29.73/0.8308/3.94 29.42/0.8345/4.33 30.25/0.8137/3.64 29.81/0.7963/4.28 34.09/0.8432/2.95

Kokkinos [21] 32.20/0.8940/3.25 30.99/0.8864/3.47 30.64/0.8886/3.89 31.58/0.8717/3.18 31.19/0.8709/3.65 35.50/0.8987/2.47

Dong [9] 30.64/0.9005/3.52 29.39/0.8769/3.64 29.70/0.8888/3.88 29.34/0.8348/3.47 30.22/0.8866/3.90 30.61/0.8644/3.18

DeepISP [35] 32.54/0.8886/2.98 30.66/0.8765/3.41 30.33/0.8853/3.72 30.87/0.8547/3.28 31.03/0.8631/3.41 36.48/0.9063/2.31

DPN [18] 34.54/0.9267/2.21 32.70/0.9176/2.69 32.52/0.9237/2.89 33.42/0.9078/2.47 33.10/0.9044/2.53 39.20/0.9539/1.71

PIPNet 35.21/0.9379/2.01 33.24/0.9251/2.50 33.02/0.9300/2.71 33.95/0.9147/2.30 33.74/0.9186/2.31 40.46/0.9547/1.46

Table 2: Quantitative evaluation of JDD on Bayer CFA. A higher value of PSNR and SSIM indicates better results, while

lower DeltaE indicates more colour consistency.

Reference

Deepjoint [12]

DeepISP [35]

Kokkinos [21]

DPN [18]

Dong [9]

PIPNet

Figure 5: Qualitative evaluation of JDD on Bayer CFA.

Model
sRGB linRGB

PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE

Base 24.51/0.7436/8.15 25.68/0.6258/8.71

Base + AM 32.82/0.9208/2.75 38.95/0.9430/1.77

Base + AM + PCL 33.96/0.9344/2.40 41.01/0.9647/1.31

Base + AM + PCL + RFL 34.64/0.9436/2.22 41.82/0.9727/1.18

Table 3: Ablation study on sRGB and linRGB images. Each

component proposed throughout this study has an evident

impact on network performance.

Base Base + AM Base + AM

+ PCL

Base + AM

+ PCL + RFL

Figure 6: Each proposed component plays a crucial role in

JDD (best viewed in zoom).

paring to professional cameras [15, 16]. To address this lim-

GD Parameters
sRGB linRGB

PSNR/SSIM/DeltaE PSNR/SSIM/DeltaE

1 2,778,863 33.03/0.9239/2.73 38.30/0.9364/1.89

2 3,118,703 33.49/0.9308/2.61 39.79/0.9608/1.64

3 3,458,543 34.64/0.9436/2.22 41.82/0.9727/1.18

Table 4: Group density vs model performance. The number

of DAB blocks can impact network performance by making

a trade-off between parameters and accuracy.

GD = 1 GD = 2 GD = 3

Figure 7: Impact of GD while performing JDD (best viewed

in zoom).

itation and study the feasibility of a learning-based method

on an actual pixel-bin image sensor (i.e., Sony IMX586),

we stretch our PIPNet as a two-stage network. Stage-I of



Quad Bayer reconstruction and enhancement

Bayer reconstruction and enhancement

Figure 8: Qualitative comparison between pixel-bin image sensor output (i.e., Oneplus Nord) and the proposed PIPNet+. In

every image pairs, Left: Onelpus Nord and Right: Results obtained by PIPNet+.

the extended network performs JDD, as described in sec-

tion. 4, and stage-II aims to enhance reconstructed images’

perceptual quality by correcting colour profile, white bal-

ancing, brightness correction, etc. The extended version of

PIPNet is denoted as PIPNet+. It worth noting, the PIP-

Net+ comprises the same configuration (i.e., hyperparam-

eters, GD, etc.) as its one stage variant; however, it has

trained with smartphone-DSLR image pairs from the DPED

dataset [15], as suggested in a recent study [24]. Our com-

prehensive solution’s feasibility has compared with a recent

smartphone (i.e., Oneplus Nord), which utilizes the pixel

binning technique with actual hardware. We also develop

an android application to control the binning process while

capturing images for our network evaluation. Additionally,

the captured images were resampled according to the CFA

pattern prior to the model inference.

5.1. Visual results

Fig. 8 illustrates a visual comparison between Oneplus

Nord and our PIPNet+. The proposed method can improve

the perceptual quality of degraded images captured with an

actual pixel-bin image sensor while performing ISP tasks

like demosaicking, denoising, colour correction, brightness

correction, etc.

5.2. User study

Apart from the visual comparison, we perform a blind-

fold user study comparing Oneplus Nord and our pro-

posed method. Also, we develop a blind-fold online test-

ing method, which allows the users to pick an image from

pairs of Oneplus Nord and our reconstructed image. The

testing evaluation process is hosted online publicly by an

anonymous user. Thus, the unbiased user opinion can be

cast to calculate the mean opinion score (MOS) for both

CFA patterns. Table. 5 illustrates the MOS of our proposed

method and Oneplus Nord. The proposed method outper-

forms Oneplus Nord in blind-fold testing by a substantial

margin. Also, it confirms that Quad Bayer reconstruction

is far more challenging than a typical Bayer reconstruc-

tion. Therefore, the traditional ISP illustrates deficiencies

by producing visually pleasing images on such CFA pat-

terns, while the proposed method can deliver more accept-

able results.

CFA Method MOS ↑

Quad Bayer
Oneplus Nord 1.30

PIPNet+ 3.70

Bayer
Oneplus Nord 1.50

PIPNet+ 3.50

Table 5: A user study on Oneplus Nord and PIPNet+.

Higher MOS indicates better user preference.

6. Conclusion

This study tackled the challenging task of performing

JDD by incorporating a learning-based method specialized

for a pixel-bin image sensor. We introduced a novel deep

network that employed attention mechanisms and guided

by a multi-term objective function, including two novel per-

ceptual losses. Also, we stretched our proposed method to

enhance the perceptual image quality of a pixel-bin image

sensor along with reconstruction. The experiment with dif-

ferent CFA patterns illustrates that the proposed method can

outperform the existing approaches in qualitative and quan-

titative comparison. Despite revealing new possibilities, we

conducted our experiments mostly with simulated data col-

lected by traditional Bayer sensors. Hence, the performance

of the proposed network can differ in some complicated

cases. It has planned to counter the data limitation by col-

lecting a real-world dataset using pixel-bin image sensors

for further study.
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