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Abstract

Image quality assessment (IQA) aims to assess the per-

ceptual quality of images. The outputs of the IQA algo-

rithms are expected to be consistent with human subjec-

tive perception. In image restoration and enhancement

tasks, images generated by generative adversarial networks

(GAN) can achieve better visual performance than tra-

ditional CNN-generated images, although they have spa-

tial shift and texture noise. Unfortunately, the existing

IQA methods have unsatisfactory performance on the GAN-

based distortion partially because of their low tolerance to

spatial misalignment. To this end, we propose the reference-

oriented deformable convolution, which can improve the

performance of an IQA network on GAN-based distortion

by adaptively considering this misalignment. We further

propose a patch-level attention module to enhance the inter-

action among different patch regions, which are processed

independently in previous patch-based methods. The mod-

ified residual block is also proposed by applying modifi-

cations to the classic residual block to construct a patch-

region-based baseline called WResNet. Equipping this

baseline with the two proposed modules, we further propose

Region-Adaptive Deformable Network (RADN). The exper-

iment results on the NTIRE 2021 Perceptual Image Qual-

ity Assessment Challenge dataset show the superior perfor-

mance of RADN, and the ensemble approach won fourth

place in the final testing phase of the challenge.

1. Introduction

Image quality assessment tasks have gained increasing

research attention for decades, and its goal is to assess im-

age perceptual quality like humans. In the past decades,
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Figure 1. The scatter plots of various IQA models on the NTIRE

2021 Perceptual Image Quality Assessment Challenge validation

dataset, which show the relationship between the predicting scores

and the MOS labels.

researchers have proposed some IQA algorithms based on

deep learning [2, 16, 8, 33]. Although these IQA methods

can maintain consistency with human subjective evaluation

to some extent, they still show limitations in evaluating the

results of image restoration and image super-resolution. As

introduced in [8], some GAN-based image restoration (IR)

algorithms usually produce fake textures and other details.

However, the existing algorithms cannot distinguish GAN-

generated image textures from noises and natural details,



which deteriorates the performance of existing IQA algo-

rithms. To deal with GAN-based distortion, Gu et al. [8]

proposed a novel IQA benchmark characterized by includ-

ing a proportioned GAN-based distortion dataset, and most

previously proposed IQA methods have shown unsatisfying

performance on the dataset (see Fig. 1). They also propose

a Space Warping Difference (SWD) layer to compare the

features on a small range around the corresponding posi-

tion. The operation is robust to spatial shifts. We observe

that although the method has a specific effect, it cannot be

used in all scenarios because the range of the field defined

in [8] is a hyper-parameter that varies in different distortion

scenarios. Therefore, it is limited to specific circumstances

and is not general and flexible enough.

Considering the drawbacks above, we propose the

Region-Adaptive Deformable Network (RADN). The pro-

posed method consists of three components: modified

residual block, patch-level attention block, and reference-

oriented deformable convolution. We first revisit the clas-

sic residual blocks from IQA tasks and propose the mod-

ified residual block. Some modifications of the classi-

cal residual block are made to adapt the characteristics of

IQA tasks, including removing the Batch Normalization

(BN) layers, employing only 3 × 3 convolutional layers,

and adjusting the numbers of the convolutional layers. We

then build our baseline WResNet using the modified resid-

ual blocks. Experiments in Sec. 4.6 show that the WRes-

Net (without the other two modules) has already outper-

formed WaDIQaM [2] in both metric performance and con-

vergence.

For adaptation to images of significant differences, we

propose a novel module dubbed reference-oriented de-

formable convolution [4] which can select the region of in-

terest adaptively according to the shape of the object. Fur-

thermore, it changes adaptively with the size of the target

and selects critical information around it. We believe that

the offset predicted in the reference image can capture the

object’s actual shape, similar to the result observed by hu-

mans, which cannot be affected by the GAN-based distor-

tion. Applying such deformable convolution to the distorted

images can make the reference images interact with the dis-

torted images and be robust to the GAN-based distortion.

To boost the information interactions among the patch

regions, we further propose a patch-level attention mecha-

nism. Despite good performance on synthetically distorted

images of the patch-based algorithms, it may destroy both

the high-level semantic information of the image and the re-

lationship among patches. In other words, dividing a com-

plete image into patches can affect the performance of the

IQA methods. To alleviate this problem, we propose patch-

level attention. The critical assumption is that the character-

istics of an image patch depend not only on itself but also on

other image patches. Therefore, we introduce patch-level

attention after feature extraction of reference and distorted

images to capture dependencies by computing interactions

between two patch regions, respectively. This operation

will strengthen the information interaction among different

patches to obtain more accurate feature expressions for the

two images. This plug-and-play module can be incorpo-

rated into any patch-based IQA method to improve perfor-

mance.

Experiments on the newly-proposed PIPAL dataset and

cross-dataset evaluation on TID2013 and LIVE show the

competitive performance of our method on the above

datasets. Our method ranked fourth in the NTIRE 2021 Per-

ceptual Image Quality Assessment Challenge (NTIRE 2021

IQA Challenge)[10].

2. Related Work

Image Quality Assessment. The IQA algorithms are used

to evaluate the quality of images that may be degraded dur-

ing transmission, compression, and algorithm processing.

Researchers have worked hard to develop general quality

assessment algorithms close to human subjective evaluation

in the past decades. According to different scenarios, IQA

algorithms can be divided into full-reference (FR-IQA) and

no-reference methods (NR-IQA). FR-IQA methods com-

monly include SSIM [30], MS-SSIM [31] and PSNR, etc.

Inspired by them, FSIM [39], SR-SIM [36], and GMSD

[34] are proposed. These hand-crafted methods assess the

image quality by comparing the feature difference between

the distorted image and the reference image. Recently, the

deep learning-based FR-IQA methods [20, 2] get superior

prediction performance over hand-crafted methods. Apart

from FR-IQA methods, NR-IQA methods are developed to

assess image quality without the reference image. Liu et

al. [16] used comparative learning to assess image quality.

In [41], meta-learning is introduced in IQA to learn meta-

knowledge shared with humans. In some recent works,

IQA methods are applied to measure image restoration al-

gorithms [1]. Researchers hope to improve the performance

of image restoration algorithms by developing better IQA

methods. Gu et al. [8] proposed a new dataset named PI-

PAL. They test several existing algorithms to demonstrate

that these algorithms’ low tolerance toward spatial mis-

alignment may be a key reason for their dropping perfor-

mance. Unlike these approaches, we adopted patch-level

attention and reference-oriented deformable convolution in

our model to handle the GAN-based distorted images in PI-

PAL.

Deformable Convolution. Dai et al. [4] first proposed de-

formable convolution and proved that it is effective for so-

phisticated vision tasks such as object detection [42] and

semantic segmentation [4]. Offsets learned in deformable

convolution blocks can obtain the information in the light

of the object’s shape, improving the capability of the fea-
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Figure 2. The architecture of the proposed approach - Region Adaptive Deformable Network (RADN). A distorted image ID and its

corresponding reference image IR are randomly cropped into 32×32 sized patches. Then the patches are inputted into the feature extracting

module, and the final quality scores are obtained by weighted averaging. The yellow dashed box (a) and the red one (b) indicate our

reference-oriented deformable convolution and patch-level attention module, respectively, which can be found in Sec. 3.3 and Sec. 3.4.

Our baseline model WResNet can be obtained by removing the two proposed modules (a) and (b). The details of our modified residual

block can be found in Sec. 3.1.

ture extraction. It also performs well in low-level vision

tasks such as video super-resolution [24] and video deblur-

ring [26]. However, it has not been introduced in the IQA

task. Inspired by the methods mentioned above, we adopt

reference-oriented deformable convolution for FR-IQA.

Attention Mechanism. Attention mechanisms have been

widely used in various tasks [14, 15, 25, 32]. For in-

stance, in NR-IQA, Yang et al. [35] proposed an end-to-end

saliency-guided architecture and applied spatial and chan-

nel attention in their model. Their method got a good per-

formance in the NR-IQA task. Non-local operations [27]

compute the response at a position as a weighted sum of the

features at all positions for capturing long-range dependen-

cies. Motivated by these methods, we proposed patch-level

attention to capture dependencies between any two patches

of one image to obtain more accurate feature maps from

both reference and distorted images.

3. Proposed Method

The structure of the proposed Region Adaptive De-

formable Network (RADN) is shown in Fig. 2. For a pair

of images, we first crop the reference image IR and the

distorted image ID into patches with spatial size 32 × 32.

During feature extraction, first, the modified residual blocks

(green) are proposed and employed. Then with the interme-

diate feature maps of the reference and the distorted im-

age (i.e., FRM and FDM ), we use the proposed reference-

oriented deformable convolution (yellow) to select the re-

gion of interest and capture the object’s actual shape adap-

tively. Next, the patch-level attention module (red) is em-

ployed to boost the interaction among the image patches.

More details of the two proposed modules can refer to the

Sec. 3.3 and Sec. 3.4. The final feature maps (i.e., FD and

FR) and their difference (Fdiff = FD − FR) are then con-

catenated in the channel dimension to serve as a new fea-

ture, i.e.Fconcat = concat(Fdiff , FD, FR). Finally as in

Eq.1:

q̂ =

∑

0<i<Npatch
wi × si

∑

0<i<Npatch
wi

(1)

The combined feature Fconcat will be sent to the fully-

connected layers to predict the weight wi and the score si
of per patch and get the final quality score q̂ by weighted

averaging and Npatch in the equation means the amount of

the patches for one image.

Besides the aforementioned modules, we also propose

a contrastive pretraining strategy to further improve the

model’s ability to distinguish the image quality rather than

direct regression of the quality score.

3.1. Modified Residual Block

Considering the characteristics of IQA tasks and the PI-

PAL dataset [8], we improve the performance of the classic

residual block with a more reasonable structure (shown in

Fig. 3). The low-quality images vary greatly in content and

distortion types. As batch normalization operations will re-

sult in over-smoothness of special features in different sam-

ples [12, 28] which makes the model performance degrade

greatly, we remove all the batch- normalization layers in the

original residual block.

Furthermore, we adopt the 3×3 convolution without any

7× 7 employed in the original ResNet. The 3 × 3 convolu-

tion has been proven to be more hardware-friendly [7] and

more effective than the 7× 7 convolution layer followed by
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Figure 4. Reference-oriented deformable convolution. FRM and

FDM indicate the feature map of the reference image and the dis-

torted image respectively. The number of offsets is defined as: N=

|pk|.

a pooling layer in the earliest feature extraction stage. We

only add a shortcut every four convolutional layers, which

can generate more complex representations and show bet-

ter performance in our experiment than the two convolution

layers adopted in the original residual block.

3.2. WResNet

We use the modified residual blocks to build our base-

line method named WResNet (W stands for weighted aver-

aging). The architecture of our baseline is shown in Fig. 2,

which can be obtained by removing the two proposed mod-

ules (a) and (b). For WResNet, we apply the l2 loss function

to regress the quality scores during training.

3.3. Reference­Oriented Deformable Convolution

Considering that humans are less sensitive to the error

and misalignment of the edges in distorted images gener-

ated by GAN, Gu et al. [8] proposed SWD to deal with the

GAN-based distortion. In fact, the fixed design limits its

adaptation to different GAN-based distortion. Therefore,

we adopt the deformable convolution module in our residual

blocks to adapt to the mismatched regions of GAN-based

distortion between reference and distorted images. To make

better use of the reference information, different from the

original deformable convolution, we introduce reference-

oriented one shown in Fig. 4, where FDM and FRM are

the intermediate distorted and reference feature maps (see

Fig. 2). For conventional 2D convolution with a kernel of

N sampling locations, it first samples the values from the

regular offsets pk, k ∈ 1, 2, · · · , N , then sums the sampled

values weighted by Wk corresponding to the kth location.

For example, a 3×3 kernel has 9 regular sampling locations

which are defined as pk∈{(−1,−1), (−1, 0), · · · , (1, 1)}.

In terms of our reference-oriented deformable convolution,

we first generate the offsets ∆pk according to kth sampling

location from reference feature maps:

∆pk = f(FRM ) (2)

where f means a 3×3 convolution, the output channel num-

ber of which is 2N . Then the learned offsets ∆pk are used

for sampling the values in both reference and distorted fea-

ture maps, rather than the regular sampling with pk. For

each location p0 on the output reference and distorted fea-

ture maps F̂RM and F̂DM , the value in it is aggregated by

the following process:

F̂RM (p0) =

N
∑

k=1

wr
k · FRM (p0 + pk +∆pk),

F̂DM (p0) =
N
∑

k=1

wd
k · FDM (p0 + pk +∆pk), (3)

where wr and wd are the convolution weights for reference

and distortion feature maps. Owing to the deformable sam-

pling locations p0 + pk + ∆pk are fractional, bilinear in-

terpolation is applied [4] to sample the values.

With the application of this reference-oriented de-

formable convolution in both reference and distorted

branches (shown in Fig. 2), our model can deal with the

GAN-based distortion better and learn the spatial shift-

invariant features from the paired images adaptively. We

demonstrate the effectiveness of reference-oriented de-

formable convolution in Sec. 4.6.

3.4. Patch­Level Attention

The previous patch-level-based IQA methods predict the

quality of each patch individually, which leads to a specific
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Figure 5. The patch-level attention block. The feature maps are
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performance drop due to the lack of interaction among the

patch regions. We believe the quality of a patch not only de-

pends on its own feature but also affected by other patches

in the same image. Recently, the self-attention mecha-

nism exhibits excellent relation modeling in computer vi-

sion tasks from low-level to high-level tasks. However, how

to introduce it into the FR-IQA task is a challenge to be ex-

plored. To this end, we introduce a self-attention module to

handle the feature maps of reference and distorted images to

boost the interaction between any two patches in one image,

as shown in the red dashed box in Fig. 2. Different from the

non-local block proposed in [27], we compute the response

at a patch as a weighted sum of the features at all patches in

one image, namely patch-level attention.

Since dot-product attention is much faster and more

space-efficient in practice, we use it scaled by 1
√

dk
in our

patch-level attention block. Attention block generates cor-

responding Queries, Keys and Values of dimension dk by

performing linear projection on the patch-level feature vec-

tors X with WQ, WK , WV :

Q = WQX, K = WKX, V = WV X (4)

where X is reshaped from N × 512× 1× 1 to N × 512 (N

is the number of patches) before it is input into the patch-

level attention block. Attention operations are defined as

following:

Y = softmax(
QKT

√
dk

)V (5)

We involve the attention operation described in Eq. 5 into

a patch-level attention block that can be integrated into our

WResNet

WResNet

s1

IR

IR

2 FC layers

ID1

ID2

WResNet

IR IDn

Cross Entropy Loss

… … Sigmoid

out prob1 GT prob1

out prob2 GT prob2

GT probCout prob C

…

s2

s3

Figure 6. The architecture of our efficient contrastive model. Ar-

rows with the same color stand for a contrast pair and its result.

Every two scores are compared as a contrast pair so if there are n

pairs of reference and distorted images, there will be C
2

n contrast

pairs and preference probabilities.

model. It is defined as:

Z = WZY +X (6)

where Y is given in Eq. 5, WZ is a weight matrix to be

learned and Z is computed by a residual connection. An

example of patch-level attention block is shown in Fig. 5.

Through the processing of the patch-level attention

block, the patches in the same image can be better inter-

acted with each other and have more accurate feature repre-

sentation.

3.5. Contrastive Pretraining Strategy

Contrastive training is an acceptable way to take advan-

tage of the labels from the side, given that the MOS labels

are obtained by manually comparing the image pairs. Most

current IQA models tend to use l1 and l2 to regress the qual-

ity score, which merely concentrates on the accuracy of the

values and ignores the ranking relationships between the

samples. The contrastive models [8, 16] can alleviate this

problem by comparing the samples. Based on SWDN [8],

we propose a contrastive pretraining strategy to make the

model learn how to distinguish the image quality rather than

directly regress the quality score. The difference is that our

strategy is to pre-train the model by comparing the labels to

get the preference probabilities and then make use of the

MOS labels directly by l2 regression. Siamese Network

is an indispensable part of contrastive learning, and here

we use our WResNet proposed in Sec. 3.2. As in Fig. 6,

given a set of n quality scores {s1, s2, · · · , sn} obtained

by the Siamese Network, we make a comparison between

every two samples (si, sj) using the fully-connected layers

f(si, sj) to get the preference probabilities. Then we apply

the cross-entropy loss to regress them with the ground truth

preferring probability pij . The final cross-entropy loss is

shown as follows:



Table 1. Performance of different methods on the NTIRE 2021

IQA Challenge validation and testing datasets. The results of our

ensemble model is bolded.

Method
Validation Test

SROCC PLCC SROCC PLCC

PSNR 0.2548 0.2917 0.2493 0.2769

NQM [5] 0.3458 0.4164 0.3644 0.3954

UQI [29] 0.4859 0.5476 0.4195 0.4500

SSIM [30] 0.3400 0.3984 0.3614 0.3936

MS-SSIM [31] 0.4864 0.5633 0.4618 0.5007

IFC [22] 0.5936 0.6767 0.4851 0.5549

VIF [21] 0.4335 0.5236 0.3970 0.4795

VSNR [3] 0.3213 0.3750 0.3682 0.4107

RFSIM [38] 0.2656 0.3045 0.3037 0.3284

GSM [13] 0.4181 0.4688 0.4094 0.4646

SRSIM [36] 0.5658 0.6541 0.5728 0.6360

FSIM [39] 0.4672 0.5606 0.5038 0.5709

FSIMc [39] 0.4679 0.5587 0.5057 0.5727

VSI [37] 0.4501 0.5162 0.4584 0.5169

MAD [11] 0.6078 0.6263 0.5434 0.5804

NIQE [18] 0.0644 0.1018 0.0341 0.1317

MA [17] 0.2006 0.2034 0.1405 0.1469

PI [1] 0.1690 0.1662 0.1036 0.1454

LPIPS-Alex [40] 0.6276 0.6463 0.5658 0.5711

LPIPS-VGG [40] 0.5915 0.6471 0.5947 0.6331

PieAPP [20] 0.7063 0.6972 0.6074 0.5974

WaDIQaM [2] 0.6779 0.6543 0.5533 0.5480

DISTS [6] 0.6743 0.6860 0.6548 0.6873

SWD [8] 0.6611 0.6680 0.6243 0.6342

WResNet-Classic 0.4881 0.4868 0.4891 0.5056

WResNet-EDSR 0.6920 0.6856 0.6789 0.6877

WResNet 0.8137 0.8177 0.7501 0.7542

Ours 0.8655 0.8666 0.7770 0.7709

L(si, sj , pij) =
∑

0<i<n
i<j<n

−pij × f(si, sj)

−(1− pij)× (1− f(si, sj))

(7)

We implement the efficient back-propagation in Siamese

networks proposed by RankIQA [16] to remarkably im-

prove the training efficiency i.e., from 5-7 hours per epoch

to 20 minutes per epoch, and improve the performance of

the pretrained model. We validate the effectiveness of our

contrastive pretraining strategy in Sec. 4.6.

4. Experiments

4.1. Datasets

PIPAL [9] is a recently proposed IQA dataset, which

contains images processed by image restoration and en-

hancement methods (particularly the deep learning-based

methods) besides the traditional distorting methods. The

dataset contains 250 reference images, 29k distorted im-

ages of 40 distortion types, and 1.13m human judgment

quality scores. We also conduct cross-dataset evaluation on

TID2013 [19] and LIVE [23].

Figure 7. SROCC and PLCC performance of various models on

our validation dataset. The solid curves are the smoothed ones

with inertial filtering while the dotted curves are the original

ones without smoothing. WResNet-D indicates WResNet with

reference-oriented deformable convolutions.

Table 2. Cross-dataset evaluation on TID2013 and LIVE.

Method
TID2013 LIVE

SROCC PLCC SROCC PLCC

PSNR 0.687 0.677 0.873 0.865

WaDIQaM 0.698 0.741 0.883 0.837

RADN 0.747 0.796 0.905 0.878

4.2. Implementation Details

Training Details. We train the proposed model with the

patch-based training strategy in WaDIQaM [2], which has

been proved to be able to augment the data effectively and

improve the performance. For training, we randomly sam-

ple 32 patches from per distorted image and its correspond-

ing reference image rather than the whole image. These

sampled patches could be overlapped. We set the mini-

batch size as 2 for the consideration of the remarkable dif-

ference between distorted images. We found in experiments

that the model can better learn and adapt to such differences

with small batch sizes. We use ADAM optimizer with the

parameters β1 = 0.9, β2 = 0.999. For our models, the

learning rate is initialized as 10−4 and will decay to 0.8 of

itself at every 100 epochs. For testing, each pair of im-

ages are cropped into a certain number M of 32 × 32 non-

overlapping patches. These patches are then fed into the

network to predict the weight wi and the score of each patch

si. The final quality score s for the distorted image is cal-

culated by s =
∑M

i=1
wisi.

Data Arrangement for Contrastive Pretraining. As men-

tioned in Sec. 4.1, the PIPAL dataset contains 7 distortion

categories and 40 distortion subtypes. Each reference image

corresponds to 116 distorted images of different sub-types

from the seven distortion categories, but the specific subtype

is unknown. Considering the gap among various images,

we collect distorted images corresponding to the same refer-

ence and from the same category for contrastive pretraining.

We call these image collections ‘contrast groups’. To imple-

ment the efficient Siamese Network, we arrange the images

from the same contrast group into one batch to avoid the

duplicate score computing process. Thus, the training time
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Figure 8. The attention maps of the images obtained by visualizing the weights of the patches. The distortion types of (a)-(e) are traditional,

and the rest are GAN-based. The comparison between our proposed RADN and WResNet shows the effectiveness of our proposed modules,

which contributes to focusing on the noteworthy regions for IQA tasks, especially for the GAN-based distortions.

would be essentially saved.

4.3. Evaluation Criteria

To evaluate the performance, we use Spearman’s rank

order correlation coefficient (SROCC) and Pearson’s lin-

ear correlation coefficient (PLCC), following the prior

works [8, 2, 16]. For N testing images, the PLCC is de-

fined as follows:

PLCC =

∑N

i=1
(si − µsi)(ŝi − µŝi)

√

∑N

i=1
(si − µsi)

2

√

∑N

i=1
(ŝi − µŝi)

2

(8)

Where si and ŝi respectively indicate the ground-truth and

predicted quality scores of i-th image, and µsi and µŝi indi-

cate the mean of them. Let di denote the difference between

the ranks of i-th test image in ground-truth and predicted

quality scores. The SROCC is defined as

SROCC = 1− 6
∑N

i=1
d2i

N(N2 − 1)
(9)

Both metrics, PLCC and SROCC, are in [-1, 1], and higher

values indicate better performance.

4.4. Comparison with the State­of­the­arts

Evaluation on PIPAL. We compare our models with the

state-of-the-art FR-IQA methods on the NTIRE 2021 IQA

challenge validation and testing datasets. The quantitative

comparisons on both datasets are shown in Tab. 1 and the

’ours’ term indicates our ensemble approach. We divide the

general-purpose IQA methods into traditional methods and

deep learning-based methods. In general, deep learning-

based methods achieved better performance than the tradi-

tional methods. As can be seen, our method is superior to

WaDIQaM [2] which is also a patch-based approach and

widely used in the assessment of synthetically distorted im-

ages. Our method especially achieves superior results over

PieAPP [20] which is considered the most effective ap-

proach in [9] on both datasets by a large margin.

Cross-dataset Evaluation on TID2013 and LIVE. To val-

idate the generalization of our proposed RADN, we con-

duct the cross-dataset evaluation on TID2013 and LIVE. We

trained RADN on the training set of PIPAL and test it on the

full set of TID2013 and LIVE. As shown in Tab. 2, RADN

outperforms WaDIQaM [2] and PSNR with large margins

on both datasets, which indicates the effectiveness of our

proposed modules.

4.5. NTIRE2021 IQA Challenge

Our methods are originally proposed for participating

in the NTIRE 2021 Perceptual Image Quality Assessment

Challenge[10], which aims to establish an algorithm to

measure the visual quality of the images fairly and focuses

on the PIPAL dataset. Our ensemble approach with the

strategies mentioned above ranked 3rd place in the public

validation phase (also called the development phase) and

ranked 4th place in the final private test phase (as shown in

Tab. 1).

4.6. Ablation Study

To further investigate the effectiveness of our proposed

components, we conduct ablation studies on the validation



Table 3. Ablation study on the validation dataset of the NTIRE

2021 IQA Challenge. Contrastive refers to our contrastive pre-

training strategy. Deform indicates our reference-oriented de-

formable module and PatchAttn indicates our patch-level attention

module.

Contrastive Deform PatchAttn SROCC PLCC

0.8137 0.8177√
0.8244 0.8252√ √
0.8329 0.8337√ √
0.8343 0.8345√ √ √
0.8438 0.8435

dataset of the NTIRE 2021 IQA Challenge. Both SROCCs

and PLCCs are shown in Tab. 3.

Modified Residual Block. Fig. 7 depicts the performance

of different models on the validation dataset during training.

The dotted curves are the original ones without smoothing,

while the solid curves are the smoothed ones obtained by in-

ertial filtering. The orange curves indicate WaDIQaM, and

the blue ones indicate WResNet with our modified residual

blocks. We can easily conclude that WResNet outperforms

WaDIQaM on SROCC and PLCC. During the training pro-

cess, our WResNet ascend more steadily compared with the

vibrated curve of WaDIQaM. Also as in Tab. 1, WResNet-

Classic and WResNet-EDSR indicate WResNet with clas-

sic and EDSR-like residual blocks respectively. For a fair

comparison, all three models adopt 20 convolution layers,

and the superior performance of WResNet demonstrates the

effectiveness of our modified residual block. The architec-

tures of various residual blocks can refer to Fig. 3.

Contrastive Pretraining Strategy. The contrastive train-

ing strategy is adopted for pretraining our models. Tab. 3

shows that the proposed pretraining strategy can learn

the contrastive knowledge priors, which can improve the

model’s performance.

Reference-oriented Deformable Convolution. We only

add reference-oriented deformable convolution to our base-

line (i.e., WResNet+Deform), a major improvement on

SROCC and PLCC are shown in Tab. 3. The train-

ing process (indicate by the green curves) in Fig. 7 also

shows superior performance compared with our baseline

model, which indicates the proposed reference-oriented de-

formable convolution module can adapt to the GAN-based

distortion scenarios in PIPAL.

Patch-Level Attention. The patch-level attention mecha-

nism is proposed to enhance interactions among all patches.

The results in Tab. 3 show such interactions are indispens-

able for the patch-based IQA algorithms. To be specific, the

patch-level attention module gains another 0.01 improve-

ments on SROCC and PLCC, respectively.

Combined with all the components we proposed, RADN

significantly improves the evaluation performance, espe-

cially compared to our baseline.

4.7. Visualization and Discussion

To intuitively illustrate the effectiveness of our method,

we visualize the weights of patches in some images, as

shown in Fig. 8. According to the weight from the low-

est to the highest, the color of the patch is displayed as blue,

green, yellow, and red. A higher weight means the model

pays more attention to the patch region. The distortion types

of (a)-(e) are traditional, and the rest are GAN-based. The

second and third-row visualization results come from the

WResNet (without the deformable and patch-level attention

modules) and the whole method RADN.

As shown, both methods can adaptively give higher

weights to noteworthy regions. These regions usually con-

tain complex textures or salient subjects, which are essen-

tial in assessing the image quality because human tends to

pay more attention to such regions. The highlighted regions

are indicated with red boxes. Compared with WResNet,

our whole model RADN pays less attention to the regions

with less informative or the texture-less regions as shown in

Fig. 8 (a). As shown in Fig. 8 (b)-(e), for images of different

content, RADN perceives the images better and observably

stays under human’s perception - for example, the contours

of the duck’s head, the paintings, and the elder’s head are

clearly outlined, which strongly shows the effectiveness of

our proposed modules.

To further illustrate the effectiveness of our method on

GAN-based distortion, we show the visualized results for

different GAN-based distortion images according to the

same reference in Fig. 8 (f)-(h). Despite the diversity and

severe GAN-based distortions, our RADN can capture the

actual outline of the attracting targets like the boat and the

branches of the tree because of the reference-oriented de-

formable convolution. Also, RADN distributes fewer at-

tention weights in flat areas like the sea surface due to the

effectiveness of the patch-level attention module.

5. Conclusion

We propose a full-reference image quality assessment

approach called Region-Adaptive Deformable Network

(RADN). We first revisit the classic residual blocks and

propose the modified residual blocks from the viewpoint

of IQA tasks, which are used to build our baseline. We

introduce the patch-level attention mechanism for informa-

tion interaction among the patch regions and the reference-

oriented deformable convolution for adaptation to images of

significant differences. We also propose a contrastive pre-

training strategy to further improve the model’s capability

to truly distinguish the image quality rather than directly

learning the regression of the quality score. The experimen-

tal results reveal the excellent effectiveness of the proposed

method. Our ensemble method ranked fourth in the NTIRE

2021 Perceptual Image Quality Assessment Challenge.
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