This CVPR 2021 workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

NTIRE 2021 Challenge on Video Super-Resolution

Sanghyun Son' Suyoung Lee' Seungjun Nah' Radu Timofte' Kyoung Mu Lee'
Kelvin C.K. Chan Shangchen Zhou Xiangyu Xu Chen Change Loy Boyuan Jiang
Chuming Lin Yuchun Dong Donghao Luo Wenging Chu Xiaozhong Ji
Sigian Yang Ying Tai Chengjie Wang Jilin Li Feiyue Huang Chengpeng Chen
Xiaojie Chu Jie Zhang Xin Lu Liangyu Chen Jing Lin Guodong Du
Jia Hao Xueyi Zou Qi Zhang Lielin Jiang Xin Li He Zheng Fanglong Liu
Dongliang He Fu Li Qingqing Dang Peng Yi Zhongyuan Wang Kui Jiang
Junjun Jiang Jiayi Ma Yuxiang Chen Yutong Wang Ting Liu Qichao Sun
Huanwei Liang Yiming Li Zekun Li Zhubo Ruan Fanjie Shang Chen Guo
Haining Li Renjun Luo Longjie Shen Kassiani Zafirouli Konstantinos Karageorgos
Konstantinos Konstantoudakis Anastasios Dimou Petros Daras Xiaowei Song
Xu Zhuo Hanxi Liu Mengxi Guo Junlin Li Yu Li Ye Zhu Qing Wang
Shijie Zhao Xiaopeng Sun Gen Zhan Tangxin Xie Yu Jia Yunhua Lu
Wenhao Zhang Mengdi Sun Pablo Navarrete Michelini Xueheng Zhang Hao Jiang
Zhiyu Chen Li Chen Zhiwei Xiong Zeyu Xiao Ruikang Xu Zhen Cheng
Xueyang Fu Fenglong Song Zhipeng Luo Yuehan Yao Saikat Dutta
Nisarg A. Shah Sourya Dipta Das Peng Zhao Yukai Shi Hongying Liu
Fanhua Shang Yuanyuan Liu Fei Chen Fangxu Yu Ruisheng Gao Yixin Bai
Jeonghwan Heo Shijie Yue Chenghua Li Jinjing Li Qian Zheng Ruipeng Gang
Ruixia Song Seungwoo Wee Jechang Jeong Chen Li Geyingjie Wen
Xinning Chai Li Song

Abstract 1. Introduction

Super-Resolution (SR) is a fundamental computer vision
task that aims to obtain a high-resolution clean image from
the given low-resolution counterpart. This paper reviews
the NTIRE 2021 Challenge on Video Super-Resolution. We
present evaluation results from two competition tracks as
well as the proposed solutions. Track I aims to develop
conventional video SR methods focusing on the restoration
quality. Track 2 assumes a more challenging environment
with lower frame rates, casting spatio-temporal SR prob-
lem. In each competition, 247 and 223 participants have
registered, respectively. During the final testing phase, 14
teams competed in each track to achieve state-of-the-art
performance on video SR tasks.

T'S. Son (thstkdgus35 @snu.ac.kr, Seoul National University), S. Lee, S.
Nah, R. Timofte, K. M. Lee are the NTIRE 2021 challenge organizers,
while the other authors participated in the challenge.

Appendix A contains the authors’ teams and affiliations.

Website: https://data.vision.ee.ethz.ch/cvl/ntire21/

With increasing demands for high-quality videos such as
OTT service, live streaming, and personal media, improv-
ing the quality of videos is considered an important com-
puter vision problem these days. Among them, video super-
resolution (VSR) aims to reconstruct a high-resolution (HR)
sequence from the given low-resolution (LR) input frames.
Different from single image super-resolution (SISR), where
input and output images are constrained to a single timestep,
VSR can utilize temporal dynamics to deliver more accu-
rate reconstruction. Recent methods adopt explicit flow es-
timation [6, 56, 63], implicit alignment [20, 58] or atten-
tion [17] to effectively aggregate temporal information dis-
tributed over time.

In NTIRE 2021 Challenge on Video Super-Resolution,
participants are required to develop state-of-the-art VSR
methods on two distinctive tracks. The goal of Track 1 is to
reconstruct 30 HR sequences from given x4 downsampled
videos from the REDS [37] dataset, similar to the conven-
tional VSR algorithms. In Track 2, the input LR video has a



lower frame rate, i.e., 12fps, than Track 1, which deals with
24fps sequences. The participants are asked to interpolate
the given frames across spatial and time domains jointly,
which is called spatio-temporal super-resolution (STSR).

This challenge is one of the NTIRE 2021 associated
challenges: nonhomogeneous dehazing [2], defocus de-
blurring using dual-pixel [1], depth guided image relight-
ing [12], image deblurring [39], multi-modal aerial view
imagery classification [28], learning the super-resolution
space [33], quality enhancement of heavily compressed
videos [64], video super-resolution, perceptual image qual-
ity assessment [13], burst super-resolution [5], high dy-
namic range [49].

2. Related Works

Video super-resolution. Different from the SISR model,
VSR utilizes neighboring frames in a video to reconstruct
the high-resolution sequence. Since images from differ-
ent timesteps are not aligned in spatial domain, one of the
primary interests of various VSR models is to predict an
accurate alignment between adjacent frames. Early ap-
proaches [6, 56] explicitly deal with the issue by flow es-
timation models in their framework. In TOFlow [63], a
concept of task-oriented flow is proposed which is lighter
and designed to handle various video processing problems.
However, such explicit flow models have several limitations
as LR images may not contain enough information to pre-
dict the accurate flow. Therefore, DUF [20] introduce dy-
namic upsampling module without including explicit mo-
tion compensation in the VSR framework.

As the winner of NTIRE 2019 Video Super-Resolution
and Deblurring Challenges [43, 42, 37], EDVR [58] com-
bines several novel components such as PCD alignment and
TSA fusion to achieve state-of-the-art reconstruction qual-
ity. Recent methods adopt various techniques such as re-
current structure-detail network [16], multi-correspondence
aggregation [25], temporal group attention [17], or tempo-
rally deformable alignement [57]. In Track 1 of NTIRE
2021 Video Super-Resolution Challenge, we promote par-
ticipants to construct effective and novel frameworks for
VSR problem.

Video frame interpolation. Earlier methods are con-
structed on phase-based methods [35, 34], where the tem-
poral change of neighboring frames is represented as shifts
of phase. Recently, most of the frame interpolation methods
consider motion dynamics with neural networks rather than
directly synthesize intermediate frames [32, 9]. Among
them, flow-based approaches are one of the most popular
solutions. DVF [31] and SuperSloMo [19] adopt piece-
wise linear models which estimate optical flow between
two input frames and warp them to the target intermedi-
ate time. The accuracy can be improved by cycle con-
sistency loss [51]. With additional image synthesis mod-

ules, TOF [63], CtxSyn [44], and BMBC [47] improve the
warped frame. IM-Net [48] achieves faster speed by consid-
ering multi-scale block-level horizontal/vertical motions.

Toward more sophisticated motion modeling, several
novel approaches [19, 65, 3, 45], as well as higher-order
representations, are proposed. Quadratic [62, 23] and cu-
bic [8] flows are estimated from multiple input frames. On
the other side, several methods introduce kernel-based mod-
eling [46, 44] to flow-based formulations. DAIN [3] and
MEMC-Net [4] implement adaptive warping by integrat-
ing the kernel and optical flow. AdaCof [22] further unifies
the combined representation in a similar formulation as de-
formable convolution [10]. Using patch recurrency across
spatial and time dimensions, Zuckerman et al. [68] have
constructed a temporal SR model from a single video.
Spatio-temporal super-resolution. A straightforward ap-
proach for STSR problem is to sequentially apply VSR and
frame interpolation to a given video. While this formulation
handles spatial and temporal information separately, earlier
methods [52, 53] have solved the joint problem of STSR
by optimizing very large objective terms. Mudenagudi et
al. [36] adopt graph-cut, and Li er al. [24] utilize group
cuts prior to deal with the problem. Recently, STARnet [15]
has proposed an end-to-end learnable framework for STSR
problem using deep CNNs. Xiang et al. [60] introduce a
deformable ConvLSTM to effectively deal with the highly
ill-posed problem of estimating smoother HR frames from
a given low-frame-rate LR sequence. In Track 2 of NTIRE
2021 Video Super-Resolution Challenge, we encourage par-
ticipants to develop state-of-the-art models for the challeng-
ing STSR task.

3. The Challenge

We have hosted NTIRE 2021 Video Super-Resolution
Challenge to encourage participants to develop state-of-
the-art VSR and STSR methods. Following the previ-
ous NTIRE 2020 Challenge on Video Deblurring [40]
and AIM 2019/2020 Challenge on Video Temporal Super-
Resolution [41, 38], we adopt the REDS [37] dataset to pro-
vide large-scale video frames for training and evaluation.

3.1. REDS Dataset

The REDS [37] dataset contains 24,000, 3,000, and
3,000 HD-quality (1280 x 720) video frames for train-
ing, evaluation, and test, respectively. Each sequence
in the dataset consists of 100 consecutive frames, e.g.,
‘00000000.png’—00000099.png,” that are sampled in 24{ps.
From the ground-truth HR examples, we synthesize two
datasets for the following challenge tracks.

Trackl: Video Super-Resolution. We synthesize input x4
LR frames using MATLAB imresize function. In other
words, the conventional bicubic interpolation is used to gen-
erate the LR-HR pairs similar to existing SISR and VSR



Team PSNRT SSIM™ LPIPS; Runtime  Team PSNRT SSIM" LPIPS; Runtime
NTU-SLab 33.36  0.9218 0.1115 7.3 Imagination 27.68 0.7772 0.2703 12.0
Imagination 3296 0.9164 0.1247 7.5 VUE 27.39 0.7681 0.3230 20.2
model 32.67 09121 0.1345 8.7  TheLastWaltz 27.01 0.7680 0.2777 2.1
Noah_Hisilicon_SR 32.65 09116 0.1358 22.6  sVSRFI 26.92  0.7590 0.3231 52
VUE 3245 0.9085 0.1425 29.1  T955 26.81 0.7617 0.2959 6.9
NERCMS 32.13 0.9025 0.1491 2.2 BOE-IOT-AIBD 26.59 0.7570 0.2683 33
Diggers 31.97 0.9008 0.1565 1.2 NaiveVSR 26.46 0.7504 0.2967 2.8
withdrawn team 31.92 0.9010 0.1464 6.2  VIDAR 2632 0.7613 0.3186 0.3
MT.Demacia 31.81 0.8914 0.1703 19.3  DeepBlueAl 26.06 0.7413 0.3312 2.7
MiG_CLEAR 30.80 0.8774 0.1869 0.2  Team Horizon 25.77 0.7341 0.3282 0.3
VCL_super_resolution 30.66 0.8746 0.1898 0.5 MiGMaster_XDU 25.75 0.7335 0.3367 2.0
SEU_SR 30.58 0.8722 0.1927 2.5  superbeam 25.61 0.7259 0.2893 22
CNN 29.67 0.8477 0.2164 14 CNN 25.58 0.7284 0.3242 1.3
Darambit 28.65 0.8223 0.2621 13.8  DSST 2492 0.7052 0.3813 2.5
bicubic upsampling 26.48 0.7505 0.4393 - upsample & overlay 23.11 0.6393 0.4978 -

(a) Track 1. Spatial SR

(b) Track 2. Spatio-Temporal SR

Table 1: NTIRE 2021 Video Super-Resolution Challenge results measured on the REDS [37] test dataset. Teams are
ordered by ranks in terms of PSNR(dB). The running time is the average test time (sec) taken to generate a single output image
in reproduction process using 1 Quadro RTX 8000 GPU with 48GB VRAM. We note that the reported timing includes 1I/0
and initialization overhead due to the difficulty in measuring pure model inference time by modifying each implementation.

methods [26, 58]. The goal of Track 1 is to reconstruct the
ground-truth (GT) HR videos from the LR sequences.
Track2: Video Spatio-Temporal Super-Resolution.
From LR videos in Track 1, we remove odd-numbered
frames, e.g., ‘00000001.png,’ ‘00000003.png, and so on,
to formulate the STSR problem. Therefore, the input se-
quences have x2 lower frame rate (12fps) than the original
videos. The goal of Track 2 is to perform STSR and re-
construct GT 24fps videos from the LR inputs. Since the
dataset for Track 2 is a subset of Track 1, all participants are
requested not to use the odd-numbered frames from Track
1 when training their Track 2 methods.

3.2. Metric and Evaluation

We adopt two standard metrics to evaluate the submitted
methods: PSNR and SSIM [59]. Teams are sorted by the
PSNR scores to determine the winner. For reference, we
also provide the LPIPS [66] score to quantitatively measure
the perceptual quality of result images. The score is a type
of distance function between reconstructed and GT frames
defined on learned feature space. We note that the LPIPS
score is not considered for final ranking, but results with
lower LPIPS tend to show better visual quality.

4. Challenge Results

In the NTIRE 2021 Image Super-Resolution Challenge,
each track has 247 and 223 registered participants, respec-
tively. During the final testing phase, 14 teams have sub-

mitted their solutions both for Track 1 and 2. All teams are
required to include full test frames, reproducible code, and
corresponding fact sheets. Table 1 demonstrates the result
of the challenge sorted by PSNR values. To compare effi-
ciency of the submitted solutions, we also measure runtime
of each methods by executing the attached source code un-
der the same environment.

4.1. Challenge winners

In Track 1: Video Super-Resolution, NTU-SLab team
got the first place with BasicVSR++ architecture. The ma-
jor advance of BasicVSR++ from the baseline BasicVSR
is a novel second-order grid propagation strategy. Please
check Section 5.1 for more detail.

In Track 2: Video Spatio-Temporal Super-Reoslution,
Imagination team got the first place with a combination
of Local to Context Video Super-Resolution (LCVR) and
Multi-scale Quadratic Video Interpolation (MQVI). Specif-
ically, the multi-scale interpolation method is used to refine
the odd frames that are not provided as inputs. Please refer
to Section 5.2 for more explanation.

4.2. Visual comparison

In this section, we provide a visual comparison between
top-ranked teams. Figure | shows super-resolved outputs
from an input LR REDS image. Figure 2 illustrates HR in-
terpolated frames from several methods, where only neigh-
boring LR frames are given to the STSR models.
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Figure 1: Comparlson between top-ranked results in ’ﬁ'ack 1. (b) NTU—SLab team. (c) Imagmatlon team. (d) model

team. (e) Noah_Hisilicon_SR team. (f) VUE team. Patches are cropped from REDS (test) ‘006/00000097.png’ and
‘008/00000099.png,’ respectively.
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Figure 2: Comparison between top-ranked results in Track 2. (b) Imagination team. (c) VUE team. (d) TheLastWaltz
team. (e) sSVSRFI team. (f) T955 team. We note that the inputs are provided for timesteps t — 1 and ¢ + 1 only, while the

output frame corresponds to the timestep ¢. For simplicity, we only visualize the input at ¢ — 1. Patches are cropped from
REDS (test) ‘006/00000001.png’ and ‘013/00000009.png,’ respectively.

5. Challenge Methods and Teams NTU-SLab team proposes BasicVSR++ framework
which is an enhanced version of BasicVSR [7]. Follow-
ing the same basic methodology as BasicVSR, the propa-
gation and alignment methods are modified by introducing
5.1. NTU-SLab second-order grid propagation and flow-guided deformable
alignment. Figure 3 shows the overall architecture of Ba-
sicVSR++. The feature sequences are extracted from the
image using residual blocks, and they are propagated un-
der the second-order grid propagation scheme. Inside the
propagation block, the flow-guided deformable alignment
module is added for better performance.

In this section, we describe the submitted solution and
details based on the challenge fact sheets.

To overcome the limit that the features can be propagated
only once in BasicVSR, the second-order grid propagtaion
scheme enables the features to be refined multiple times.
Through the multiple bidirectional propagation layers, the
features of different time steps are revisited to make each
feature include more useful information. The second-order
] - ‘ connection (red dotted lines in Figure 3), the information is
Flgure 3: NTU-SLab team (Track 1). BasicVSR++ more aggregated from different spatio-temporal locations.
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Figure 4: The flow-guided deformable alignment module
from NTU-SLab Team.

Flow-guided deformable alignment uses deformable
convolution instead of flow-based alignment. Deformable
convolution shows better performance than flow-based
alignment as deformable convolution has offset diversity.
They use optical flow to alleviate the training instability
of deformable convolution. The architecture of the flow-
guided deformable alignment is shown in Figure 4.

5.2. Imagination team

Imagination team proposes a Local to Context Video
Super-Resolution, LCVR in short, to conduct video super-
resolution, and combined it with Multi-scale Quadratic
Video Interpolation, MQVI, to conduct video spatial-
temporal super-resolution.

LCVR framework consists of three modules: local net
module, context net module, and upsample module. The
EDVR network [58] with channel attention is used for the
local net module. The local feature and the super-resolved
frame are generated from the local net module. The context
net module is composed of backward and forward branch
and its output is converted to the frame residual by passing
through the upsample module. The final SR result is made
by summing the SR frame output of the local net module
and the frame residual estimated by the context net mod-
ule and the upsample module. The additional self-ensemble
strategy is used to boost the performance by 0.2 dB. The
overview of LCVR framework is shown in (a) of Figure 5.

In the video spatio-temporal super-resolution track, the
MQVI module is attached after the LCVR module. At first,
the HR-size images of even frame indices are generated by
the LCVR module and the odd frames are interpolated using
MQVI module. They adopt Quadratic frame interpolation
since it can handle more complex motion than linear frame
interpolation. In addition, the multi-scale structure applied
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Figure 5: Imagination team (Track 1 & 2). Local to
Context (Multi-level Quadratic model for) Video Super-
Resolution

to refine the feature in coarse-to-fine manner. The MQVI
and overall structure is illustrated in (b) of Figure 5.

5.3. model

model team suggests a framework combining flow align-
ment module, bidirectional encoding module and adap-
tive upsampling module. They use flow estimation from
SpyNet [50] to warp features. The concatenated and warped
features are put into bidirectional encoding layers, loading
some useful context information from other timesteps. Fi-
nally the adaptive upsampling module reconstructs the final
output using routing block. Routing block plays role as the
spatial attention of the feature. In Figure 6, the overview
of the model is shown in (A), and the adaptive upsampling
module is shown in (B), (C).

5.4. Noah_Hisilicon_SR

Noah_Hisilicon_SR team proposes LGFFN, Local and
Global Feature Fusion Network. Based on BasicVSR
framework, they improve it in two aspects. First, they com-
bine the global propagation feature and local propagation
feature. Second, they incorporate unsupervised learning
scheme into flow estimation module for better performance.

Figure 7 describes the feature fusion architecture of pro-
posed framework. The blue and the red box indicates the
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Figure 6: model team (Track 1). Flow-Alignment + Bi-
directional Encoding + Adaptive Up-sampling

forward and the backward propagation, respectively. While
the two blocks imply the global propagation, the local prop-
agation feature extractor estimates the local feature. The
two features are combined by local and global fusion block
for better reconstruction performance.

There is also an improvement in flow estimation mod-
ule. Since the previous SR methods bring flow estimation
module which is trained using synthesized flow dataset, the
pretrained module usually suffers from the discrepancy be-
tween the synthesized flow dataset and REDS dataset. To
resolve the issue, they adopt the unsupervised scheme like
to train the flow estimation module in REDS dataset di-
rectly. The two images in 3 adjacent frames are put into
the network and warped to each other using the estimated
optical flow. To be specific, given the two image Iy, Io,
the network estimates the forward and the backward flow
Ui2,U21 and the estimated warped frame is generated as
I (p) = I2(p + Ui2(p)), where p is a pixel of the image.
Then the model is trained using the distance between the
original image and the warped image from the other frame.

5.5. VUE

VUE team proposes two-stage algorithms in both tracks
as shown in Figure 8. In track 1, BasicVSR [7] model is
used in both stages, and the output of the first stage is fed
into the second stage. The coarse super-resolved images are
generated at first, and they are refined by passing through
the second network. In both stages, the self-ensemble strat-
egy is used for better performance.

In track 2, the two stages are run in parallel and the sec-
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Figure 7: Noah_Hisilicon_SR team (Track 1). Local and
Global Feature Fusion Network

ond stage is replaced with Zooming Slow-mo [60] model.
The BasicVSR model estimates the super-resolved output
of even frames, and Zooming Slow-mo model estimates the
super-resolved output of odd frames. Self-ensemble is also
applied to both stages for higher PSNR.
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Figure 8: VUE team (Track 1 & 2). Two-Stage BasicVSR
framework

5.6. NERCMS

NERCMS team proposes omniscient video super-
resolution network (OVSR), which is composed of two sub-




networks: precursor network and successor network. The
precursor network scans the LR input frames and generate
SR frames and hidden states of all time steps, and the suc-
cessor network refines the SR frames using the two outputs
of precursor network. They use progressive fusion residual
blocks to build both networks.

5.7. Diggers

Diggers team reproduces BasicVSR [7] network as
shown in Figure 9.

(a) BasicVSR architecture

(b) Forward and backward propagation branches

Figure 9: Diggers team (Track 1). basicVSR

5.8. MT.Demacia

The proposed framework consists of two stages. At the
first stage, the context information of temporally adjacent
frames are aggregated using the PCD and TSA module pro-
posed in EDVR [58]. In order to explore the useful in-
formation and remove the redundant information, the non-
local block is added to each frame, separately. Finally, the
stacked channel-attention residual block is applied for the
reconstruction. The second stage is image SR stage, and
the details of the image is added from the output of the first
stage.

5.9. MiG_CLEAR

MiG_CLEAR team improves EDVR [58] architecture in
two ways. They adopt self-calibrated convolution at the
PCD module of EDVR network. The self-calibrated con-
volution can help estimating the offset better in deformable
convolution. There is also an improvement in TSA mod-
ule. They replace TSA module to the integration of Tempo-
ral Group Attention (TGA) module and channel attention.
Since REDS dataset has large movements, computing the
correlation of each time step might not be accurate. The
group attention module before computing the temporal at-
tention can alleviate the issue. Finally, the channel attention
enable the model to achieve better performance.

5.10. VCL _super _resolution

The framework proposed by VCL _super_resolution team
is similar to RBPN [14] has two processes: motion com-
pensation and super-resolution. Using the characteristic of
video super-resolution task, motion compensation process
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Figure 10: VCL _super _resolution team (Track 1). Quan-
tized Warping and Residual Temporal Integration for Video
Super-Resolution on Fast Motions

is a warping from the neighbor frame to the current frame
using integer interpolation. The fractional part of the dis-
placement is not applied in warping, but it is provided to
the next stage as input. After the compensation of features,
super-resolution is applied to make HR-size outputs. The
target image is generated by adding the extra information
from neighbor frames using the back-projection process.
The shallow feature which is extracted from the LR input
data is fed into the back-projection module. After aggre-
gating the information from other time steps in the module,
the output at each cell is passed to the reconstruction mod-
ule, and the super-resolved output is estimated. The super-
resolution process is shown in Figure 10.

5.11. SEU_SR

SEU_SR team applies RBPN [14] network to REDS
dataset, and the architecture is depicted in Figure 11. Using
the input image and the flow maps from the other time steps,
the projection module aggregates the information from dif-
ferent time steps. The outputs of projection modules are
put through the layers to generate the HR-size image at the
current time step.
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Figure 11: SEU_SR team (Track 1). Recurrent Back-
Projection Network

5.12. CNN

CNN team applies STARNet [15] model to REDS
dataset in both tracks. The top image of Figure 12 is the
architecture used in track 1 and the bottom corresponds to
track 2.
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Figure 12: CNN team (Track 1 & 2). Space-Time-Aware
Multi-Resolution Video Enhancement

5.13. Darambit
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Figure 13: Darambit team (Track 1). Multi-frame Feature
Combination Network for Video Super-Resolution

Darambit team proposes U-net like architecture to esti-
mate the target image. Five consecutive frames are put into
the network, and the frames at the center are concatenated

to make the local features, and the features are propagated
through the network to generate the final output. The whole
process is shown in Figure 13.

5.14. TheLastWaltz
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Figure 14: TheLastWaltz team (Track 2).
framework for spatio-temporal super-resolution

Separated

TheLastWaltz team divide the video super-resolution
task into three parts: video frame interpolation (VFI), nor-
mal frame super-resolution (Normal-VSR), and interpo-
lated frame super-resolution (InterpSR). The As and Bs
in Figure 14 (a) are the frames arranged in following or-
der: Ay, By, Ay, Bi, ..., A,, B,. The A frames are given
even frames and Bs are frames to be interpolated. After
LR-size odd frames are interpolated, the interpSR model
estimates the super-resolved version of B, SR_B. When
super-resolving the odd frames, four neighbor even frames
are used to provide relevant information. In other words,
A9, Aj—1,Air1, Ajro are used when making B;. They
use quadratic video interpolation technique [62] for the in-
terpolation module. Then, the interpolated frame and the
inputs used for the interpolation are put into the interpSR
model, generating the super-resolved of B;.

The super-resolution of odd frames, denoted as normal
VSR, is composed of two stages. Similar to the two-stage
training technique mentioned in EDVR [58], the architec-



ture of the second stage is modified. Instead of directly add
the concatenated input to the final summation, the input is
processed by passing through two CNN layers. The author
argues that the input of the normal-VSR stage 2 is the output
of the normal-VSR stage 1, which is sufficiently optimized
by training the stage 1 model. Thus, directly put the out-
put to the network makes the optimization difficult, and the
CNN layers can alleviate the problem. The modified archi-
tecture of the normal-VSR stage 2 is illustrated in (b) of
Figure 14.

5.15. sVSRFI

sVSRFI team proposes a framework, which is a combi-
nation of video super-resolution and video frame interpola-
tion. Contrary to the previous team, the super-resolution is
executed before the frame interpolation. BasicVSR model
is used for super-resolving LR inputs. They propose the
bidirectional warping method for video frame interpolation.
Using the edge map, optical flow and contextual features are
warped and the synthesis network generates the interpolated
frames. The video frame interpolation architecture is shown
in Figure 15.
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Figure 15: sVSRFI team (Track 2). A two-stage method
for video spatio-temporal super-resoution

5.16. T955

T955 team proposes a combination of FLAVR [21] and
BasicVSR [7]. The odd frames are estimated by FLAVR,
and the whole sequence is super-resolved by BasicVSR.
Figure 16 describes the overall procedure.
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Figure 16: T955 team (Track 2). BasicVSR after FLAVR

5.17. BOE-IOT-AIBD

The framework of BOE-IOT-AIBD team consists of
two stages, video super-resolution and temporal super-
resolution network. They adopt EDVR [58] as the video
super-resolution and Multi Scale Quadratic Interpolation
(MSQI) [54] approach as temporal super-resolution net-
work The illustration of two networks is shown in Figure 17.
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Figure 17: BOE-IOT-AIBD team (Track 2). Two-Stage
Video Spatial & Temporal Super-Resolution Algorithm

5.18. NaiveVSR
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Figure 18: NaiveVSR team (Track 2). Quadratic Space-
Time Video Super-Resolution

NaiveVSR team proposes the network which executes
the video frame interpolation first, followed by the video
super-resolution. Figure 18 shows the overview of their
method. Iy — I3 is four consecutive images among the
given even frame low-resolution inputs and the interpolated
time step, t, is set to 1.5 in this work. They use Enhanced
Quadratic video interpolation model [30] for interpolation,
but they remove residual contextual synthesis module in
their method since the following super-resolution network
can restore the detail of the interpolated image. Using the
5 low-resolution images, Iy, I1, I+, I2, I3, the video-super
resolution network generates the HR-size images of two
frame indices (Iy, I3). First they warp the other frames to
I, I, respectively, and the concatenated aligned inputs are
put into the network. They adopt TSA fusion module of



EDVR [58] to obtain the feature at frame t, 2. The features
are put through the reconstruction module and the refine-
ment module. Before the refinement module, the two fea-
tures are aligned and the aligned features are fed into the re-
finement module. Finally, they upsample the feature to get
the super-resolved images. The overall process is shown in
Figure 18.

5.19. VIDAR

VIDAR team proposes a three-stage network, one for
joint video super-resolution and interpolation and two for
optimizing and refining the outputs. The overall structure
is shown in Figure 19 (a). I, I3, Is and I7 are the in-
put frames. fisl, fis2 and fiSS (¢ € [1,7]) are the output
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(a) Overall structure of the three-stage network.
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(b) Detailed structure of temporal-aware feature extractor
(TAFE)

Figure 19: VIDAR team (Track 2). Enhanced Tempo-
ral Alignment and Interpolation Network for Space-Time
Video Super-Resolution

frames from stage 1, stage 2 and stage 3, respectively. The
core components of the network are the temporal-aware fea-
ture extractor (TAFE) and the temporal-aware feature fusion
(TAFF) module. Figure 19 (b) shows the detailed structure
of TAFE. The only difference between TAFE and TAFF is
the number of inputs: 4 are put into TAFE and 7 are put
into TAFF. To better exploit the temporal information, they
adopt the temporal profile loss proposed in [61]. In stage
1, they use 8 TAFEs, 3 TAFFs and 12 residual channel at-
tention blocks [67]. They use 10 TAFFs and 30 enhanced
residual channel attention asymmetric blocks [29] in stage
2, and 30 residual channel attention blocks in stage 3.

5.20. DeepBlueAl

DeepBlueAl team proposes the model ensemble strat-
egy. There are three models to be ensembled: PCA + up-
sample, PCA + EDVR [58], NoFlow + EDVR. PCA, which
stands for pyramid correlation alignment, plays roles for
the feature alignment and it is used for the frame interpola-
tion. Figure 20 describes the PCA module. First, the multi-
level features are extracted from an image using CNN lay-
ers. Multi patch correlation (MPC) layer, which consists of
patch correlation layer and convolution layer, calculates the
offsets and the grid sampling layer uses the offset to warp
the image, similar to spatial transformer network [18]. Af-
ter the interpolation is done, they use EDVR network for the
video super-resolution. This method corresponds to PCA +
EDVR model. PCA + upsample model does not use EDVR,
but they consider upsampled the output of PCA the final re-
sult. NoFlow + EDVR substitutes PCA module to the sim-
ple convolution layers to get the inerpolated result.

Figure 20: DeepBlueAl team (Track 2). Pyramid
Correlation Alignment for Video Spatio-Temporal Super-
Resolution

5.21. Team Horizon

Team Horizon proposes efficient space-time super-
resolution using flow upsampling method. Given the 4
consecutive LR frames, they use quadratic frame interpo-
lation [62] model to get the center odd frame image as well



as the flow maps and the blending mask. Also, they adopt
RSDN network [17] for video super-resolution. Note that,
they apply RSDN to the even frames only. For estimating
the HR-size odd frames, they use the output of quadratic
video interpolation. The upsampled flowmaps, upsampled
blending mask and super-resolved even frames are used to
make the HR images of odd frame indices. The whole pro-
cess is illustrated in Figure 21. More details could be found
in[11].
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Figure 21: Team Horizon (Track 2). Efficient Space-time
Super-Resolution using Flow Upsampling
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5.22. MiGMaster _XDU

MiGMaster_XDU team proposes multi-stage deformable
spatio-temporal video super-resolution framework. The
main contribution comes from the temporal deformable
alignment (TDA) module. They expand the PCD, TSA
modules of EDVR with the recurrent neural network. By
using bidirectional PCD, TSA modules, the features of
neighbor frames can be aligned to any time steps, not only
to the center frame index. They use two bidirectional PCD
modules to achieve coarse-to-fine temporal feature align-
ment. After the alignment, the outputs of TDA module
are sent to CAIN [9] model, and they use bidirectional de-
formable convLSTM [60] for feature aggregation. Finally
MSCU [27] network is adopted for video super-resoltuion.
The whole process is shown in Figure 22.
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Figure 22: MiGMaster_XDU team (Track 2). Multi-Stage
Deformable Spatio-Temporal Video Super-Resolution

5.23. superbeam

superbeam team proposes a framework including flow
refinement, max-min warping and max-min select. The

given frames are put into RCAN [67] for super-resolution.
The flow maps are estimated using PWCNet [55] and re-
fined by U-net architecture. At warping stage, they apply
max-min warping for overlapped regions. The max warp-
ing means the value of the strongest motion is applied to the
overlapped pixels, and the min warping means the value of
the weakest motion is applied. Finally the densenet struc-
ture, max-min selection is conducted and the final output is
generated. The procedure is illustrated in Figure 23
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Figure 23: superbeam team (Track 2). Video Interpola-
tion Using Deep Motion Selection Network / min-max se-

lect net

5.24. DSST

DSST team proposes the fusion network of two frame-
works. The both frameworks consist of video frame interpo-
lation and video super-resolution, but one of them processes
interpolation first and the other processes super-resolution
first. They adopt enhanced quadratic video interpolation
model [30] for the frame interpolation. The architecture of
the super-resolution network is similar to EDVR [58], but
the PCD module is replaced with flow align module. The
flow map outputs of the frame interpolation is refined by the
flow refinement network and the images are aligned using
the flow information. The fusion module combines the two
results to achieve higher performance. Given the two im-
ages of two network streams, they generate the mask map
and the final output is generated by the weighted sum of the
two images. The whole process is depicted in Figure 24.

Figure 24: DSST team (Track 2). Dual-Stream Spatio-
Temporal Video Enhancement Network
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