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Abstract

Shadow removal is an important computer vision task

aiming at the detection and successful removal of the

shadow produced by an occluded light source and a photo-

realistic restoration of the image contents. Decades of re-

search produced a multitude of hand-crafted restoration

techniques and, more recently, learned solutions from shad-

owed and shadow-free training image pairs. In this work,

we propose a single image shadow removal solution via

self-supervised learning by using a conditioned mask. We

rely on self-supervision and jointly learn deep models to re-

move and add shadows to images. We derive two variants

for learning from paired images and unpaired images, re-

spectively. Our validation on the recently introduced ISTD

and USR datasets demonstrate large quantitative and quali-

tative improvements over the state-of-the-art for both paired

and unpaired learning settings.

1. Introduction

In an image, a shadow [35] is the direct effect of the oc-

clusion of a light source. By inducing a steep variation in

an image region, the shadow impacts the performance of

other vision tasks such as image segmentation [7, 1], se-

mantic segmentation [32, 10], object recognition [36, 2, 15]

or tracking [21, 24, 4]. In contrast to the unshadowed pixels,

the shadow alters the observation of the scene contents by

a combination of degradations in illumination, color, detail,

and noise levels. The shadow removal task is, essentially,

an image restoration task aiming at recovering the underly-

ing content. Many methods [31, 28] have been proposed for

detecting and removing shadows from images.

The introduction of large datasets of shadowed and

shadow-free image pairs such as SRD [30], ISTD [38]

or USR [17] allowed the formulation of the shadow re-

moval process as a regression problem. One of the ma-

jor challenges is to learn a physically plausible transforma-

tion, regardless of the semantic or illumination inconsisten-

cies that may be encountered in the data. Thanks to the

advent of Generative Adversarial Networks (GANs) [13]

and its flexibility in learning complex distributions, re-

cent efforts [17, 40] have modeled the shadow removal

task as an image-to-image translation problem [19]. How-

ever, it has been found [29] that the learned transforma-

tions are highly prone to artifacts produced in the downsam-

pling/upsampling phases of the translation encoder/decoder

model, and moreover, the tendency of the deshadowed im-

age regions to be blurry [17, 41]. In order to circumvent

these problems, recent solutions [38, 17, 25] have proposed

carefully designed robust loss functions, producing photo-

realistic deshadowed results with low pixel-wise restoration

errors. However, generally the results are still affected by

strong artifacts.

As the shadow removal is a perceptual transformation,

the usage of a perceptual score based on learned features,

on different levels of complexity [42], enables the exploita-

tion of some invariants over the shadow removal or addi-

tion transformation. Increasing the amount of information

used in training is expected to induce additional degrees of

control such that the learning procedure can be faster, and

the results produced will be better, both in terms of fidelity

metrics and perceptual scores. As collecting paired images

is cumbersome and costly, learning from unpaired shadow

and shadow-free images, much cheaper to acquire, is a ne-

cessity.

In this work, we propose a single image shadow removal

solution via self-supervised learning and derive two vari-

ants for learning either from paired or from unpaired train-

ing images. Our method exploits several observations made

on the shadow formation process and employs the cyclic

consistency and the GAN paradigms as inspired by the Cy-

cleGAN [43], a seminal work for learning image-to-image

translations between two image domains from unpaired im-
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(a) Forward step

(b) Reconstruction step

Figure 1: The forward (top) and the reconstruction step

(bottom). As a convention, red lines were used for the ma-

nipulation involving shadow affected input, blue lines for

the shadow free input, and the black lines for the mask com-

putation operations. u and v could or could not be paired

data. Our training framework uses v’s mask (m) to insert it

in Gs. In a paired setting v̂ should resemble v, while not the

case for an unpaired one.

ages. An overview of our method is depicted in Figure 1.

Given a dataset with shadow images and respective masks,

either on paired or unpaired settings, the core of our method

is to exploit the given mask information in a self-supervised

fashion by using, in the unpaired setting, randomly sampled

shadow masks into the training framework ( replacing m
by m̂∗ during the forward step in Figure 1.a), and recon-

structing the original input, imposing the cycle-consistency

(Figure 1.b). Sampling from intermediary results implies

a need to control their quality, using all the information

available, and imposing phenomenon characteristic proper-

ties during training. A critical observation is that we do not

need to impose strong pixel-wise fidelity losses in our so-

lution, but rather capture contents and general texture and

colors, which are inherently perceptual.

2. Related Work

Shadow removal is not a recent problem in the computer

vision field, and despite recent efforts in deep learning and

generative modeling it is still a challenging problem.

Early methods tackled this problem by using the under-

lying physical properties of the shadow formation. They

were based on image decomposition as a combination of

shadow and shadow-free layers [9, 8], or on an early shadow

detection followed by a color transfer from the shadow-free

region to the shadow affected region in the local neighbor-

hood [39, 33, 37].

The variety of shadow generation systems (e.g. shapes,

size, scale, illumination, etc.) implies an increased com-

plexity in shadow model parameters computation, and con-

sequently, models parameterized with these properties are

known for not being able to handle shadow removal in

complex situations [23]. A step forward in this direc-

tion is a two-stage model for shadow detection and re-

moval, respectively, thus increasing the generalization per-

formance. In order to successfully detect the shadow, earlier

works [14, 12] proposed to include hand-crafted features

such as image intensity, texture, or gradients.

The evolution of the Convolutional Neural Networks

(CNNs) enabled the propagation of these learnable features

along with the layers of the model, and [23, 22] proposed

solutions using CNNs for shadow detection and a Bayesian

model for shadow removal. Moreover, [12] pioneered us-

ing an unsupervised end-to-end auto-encoder model to learn

a cross-domain mapping between shadow and shadow-free

images. However, the need for manual labeling in the pre-

processing step in order to produce an estimation over the

shadow mask limits this method, both in terms of the com-

plexity of the addressed light-occluder systems and the bias

injection.

Qu et al. [30] proposed a model based on three networks

extracting relevant features from multiple views and aggre-

gating them to recover the shadow-free image. The impor-

tance of the localization information is acknowledged by

Hu et al. [16], where the shadows were detected and re-

moved using the idea of a Spatial Recurrent Neural Net-

work [3] by exploring the direction-aware context.

Subsequently, since the introduction of GANs, the dom-

inant strategy is to learn an image-to-image mapping func-

tion using an encoder/decoder architecture. The de-facto

methodologies for image-to-image translation for paired

and unpaired data are pix2pix [19] and CycleGAN [43], re-

spectively. In the former, it is assumed a single transfor-

mation between shadow and deshadowed regions, while in

the latter, in order to deal with the unsupervised nature of

the data, there are two different models for shadow removal

and addition, and a cycle-constraint loss ensures the flow

from one domain to another.

Following this trend, [38] proposed a model based on
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Conditional GANs [27] using paired data, where they de-

ployed 2 stacked conditional GANs aiming detection and

then using the partial results for shadow removal. Recently,

Le et al. [25, 26] proposed a model based on two neural

networks able to learn the shadow model parameters and

the shadow matte. The main limitation of the model is the

usage of a simple linear relation as the light model. How-

ever, by using the same occluder there can be multiple light

sources to produce non-homogeneous shadow areas that can

not be described by a linear model, and therefore, the per-

formance of the model is expected to drop. Nonetheless,

if the assumption made about the uniqueness of the light

source holds, the method is able to produce realistic results.

Despite the recent effort in shadow removal literature,

all prior methods rely on the assumption of paired datasets

for shadow and shadow-free images. Going in an unsuper-

vised direction, [17] developed MaskShadowGAN using a

vanilla CycleGAN [43] approach, where the shadow masks

are computed as a binarization of the image difference, by

thresholding it using Otsu’s algorithm. This estimation over

the shadow mask is used in order to compute the recon-

structed images, then enforcing a cycle consistency over the

produced outputs. Later, in [6], authors proposed the usage

of a learnt attention map to provide the information over

the properties of the shadow affected area, used to recover

a shadow-free image in a residual learning setting.

In contrast, we formulate a component in the training

objective that is going to offer guidance over the quality

of the synthetically-generated shadow masks used as input

in the step. The control over the properties of the shadow

mask will be proven to be crucial in order to learn a realistic

mapping, and so, using such a component will increase the

degree of control in the training procedure.

3. Proposed Method

3.1. Problem Formulation

Considering the shadow image domain X and the

shadow-free image domain set Y , we are mainly interested

to learn the mapping function Gf : X → Y . Existing tech-

niques [19] rely on a critical dataset assumption of having

access to paired images, i.e. the same scene with/without

shadows. As we will show in Section 4, this assumption

does not always hold, and having an unsupervised approach

leads, surprisingly, to better performance. To this end, we

assume a subset of unpaired images T = {(u, v)|u ∈ Y, v ∈
X}.

3.2. Overall scheme

The overall scheme of our method is presented in Fig-

ure 1. Our system is based on the CycleGAN approach [43],

where, for each domain, a generator learns the transfor-

mation to the other domain, and a discriminator is used to

guide the learning procedure. The shadow addition gener-

ator receives two inputs: a shadow free image and a binary

mask providing the information about the position, size, and

shape of the hallucinated area. The shadow removal net-

work only receives the shadow affected image, learning to

localize the affected area and then, to restore the contents.

Formally, û = Gf (v) and v̂ = Gs(u,m), for removal and

addition respectively (Figure 1a), m being either the pro-

vided mask, if available, or a randomly sampled mask from

a collection of synthetically generated masks, computed

using the previous partial results in the forward shadow

removal step. To close the cycle-consistency loop, we

use self-supervision to reconstruct the original inputs (Fig-

ure 1b), using the mask computed in the forward shadow

removal to attempt a successful reconstruction. We exten-

sively explain this process in Section 3.3.7.

Besides our self-supervised training framework, an im-

portant ingredient of our method relies on the carefully de-

signed loss functions we proceed to explain in the following

section. The loss objective is carefully developed in order to

adapt the learning procedure to the unpaired setting, where

the information regarding the properties of the shadow af-

fected area is not available. Thus, the shadow detection has

to be learnt by the shadow removal generator, using only the

partial information available on the shadow addition track

of the cycle (e.g. synthetical shadow mask used to produced

the reconstructed result, and how successful the reconstruc-

tion was, using the provided synthetical mask). Here, we

rely on deep feature based loss terms, used either to exploit

the content invariance along the suffered transformations,

or to enhance the visual properties of the results.

3.3. Objectives and losses

For simplicity and sake of clarity, it is important to men-

tion that we define our losses regardless of the training set-

tings (paired or unpaired) and the transformation mapping

(inserting or removing shadow), and instead we use place-

holders. We will make a clear distinction at the end of this

section.

3.3.1 Pixel-wise losses

Our main motivation to build an unsupervised shadow re-

moval comes from an observation we illustrate in Figure 2.

On the one hand, there are pixel-wise inconsistencies (e.g.,

different lighting conditions outside the shadow or content

misalignment) for paired images in the ISTD dataset [38],

so building a model under this assumption compromises

the performance. On the other hand, using loss functions

based solely on a pixel-wise level (L1, L2, etc.) is also not a

suitable learning indicator, as it can lead to producing quite

blurry outputs while minimizing the function.
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3.3.2 Perceptual losses

We aim at removing shadows while preserving the non-

shadowed areas as unaltered as possible. Therefore, in-

spired by recent literature in photo-enhancement [18], style

transfer [11] and perceptual super resolution [20], we form

a perceptual ensemble loss for color, style, and content, re-

spectively. The parameters used were empirically chosen in

relation to the amplitude of each loss on a subset of the train

data: α1 = 1, α2 = 0.1 and α3 = 10000.

Lperceptual = α1 ·Lcolor+α2 ·Lcontent+α3 ·Lstyle, (1)

3.3.3 Color loss

The introduction of a color loss can be explained, firstly, by

the need to capture and preserve color information in the im-

age. Under ideal settings, this could be done by imposing a

pixel-level loss (e.g., L1, L2, MSE). However, we consider

that the color is a lower frequency component than the tex-

tural information of the image (our eyes are less sensitive to

color than to intensity changes) and the pixel-level observa-

tions are generally noisy (e.g., pixel-wise inconsistencies in

ISTD image pairs). To this end, inspired by [5], we perform

a Gaussian filter over the real and fake image, and compute

the Mean Squared Error (MSE),

Lcolor = MSE(I1smoothed, I
2

smoothed) (2)

3.3.4 Content loss

Building on the assumption that an image with shadows and

that one without shadows should have similar content in

terms of semantic relevant regions, the Lcontent is defined

as
Lcontent =

1

Nl

Nl∑

i=1

MSE(Ci
I1 , Ci

I2), (3)

where Ci is the feature vector representation extracted in

the i-th target layer of the ImageNet pretrained VGG-16

network [34], for each input image In.

3.3.5 Style loss

Lstyle, is defined as

Lstyle =
1

Nl

Nl∑

i=1

MSE(Hi
I1 , Hi

I2) (4)

H l
I i,j =

D∑

k=1

Cl
I i,kC

l
Ik,j (5)

where the Gram matrix H l
I of the feature vector extracted

by every i-th layer of the VGG-16 net. The Gram matrix

Hi
I defines a style for the feature set extracted by the i-th

layer of the VGG-16 net, using as input the I image. By

minimizing the mean square error difference between the

a) illumination changes b) semantic changes (check corner)

Figure 2: Examples of ISTD paired images that are not per-

fectly aligned and consistent.

styles computed for feature sets at different levels of com-

plexity, the results produced will be characterized by better

perceptual properties.

3.3.6 Adversarial Losses

The formulation of the problem using adversarial learning

implies the introduction of two new components, Df and

Ds. The main idea behind the learning procedure is that,

for each domain, the discriminator will distinguish between

the synthetic and the real results, forcing the counterpart

generator to produce a better output in terms of semantic

content and image properties.

As the discriminators are characteristic to the shadow

domain X and the shadow free domain Y , the adversar-

ial losses are defined, for the synthetic results produced in

the forward step (Îf ,Îs), as stated in Equation 6 and 7. The

image pair (Is, If ) is the ground truth shadow-shadow free

pair used as input, and (Îs
∗

, Îf
∗

) is a pair of randomly sam-

pled synthetic results.

Ls
GAN (Is, If ) =

1

2
(MSE(J,Ds(Îs, Is))

+MSE(O,Ds(Îf
∗

, Is))), ∀Îf
∗

/∈ X

(6)

Lf
GAN (Is, If ) =

1

2
(MSE(J,Df (Îf , If ))

+MSE(O,Df (Îs
∗

, If ))), ∀Îs
∗

/∈ Y

(7)

The standard output for the discriminators for the posi-

tive and negative examples used in training was defined as

J and O, as a consequence of the usage of the patchGAN

concept. So, J and O are defined as the all one matrix, and

all zero matrix, respectively, with a size equal to the size of

the output size of the discriminator.

3.3.7 Self-Supervised Shadow Loss

The last and core ingredient of our system is the self-

supervised shadow loss (S3 loss). In order to generate an

image with shadows, we couple the shadow insertion gen-

erator to receive both a binary mask in addition to the RGB

image. Our rationale comes from realizing that shadow ad-

dition can be at any random shape, scale, size, and position,

then tackling this problem in an unconditional way is ill-

posed. Additionally, by guiding the shadow insertion using
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a conditional mask, we can use a randomly inserted shadow

mask into a deshadowed image in order to perform a cycle

consistency loss to recover the mask.

Considering u the shadow free image and v the shadow

image, then the generated images have the form of û =
Gf (v) and v̂ = Gs(u,m), where m is the shadow mask

between the images u and v. Similarly, we compute the

reconstructed cycle-consistency images as ur = Gf (v̂) and

vr = Gs(û, m̂f ), where m̂f = Bin(û− v) is the synthetic

shadow mask computed, as the median value binarization

of the difference between the synthetic shadow free image

and the true shadow image. As the generator uses this result

in the reconstruction step, the quality of this result is crucial

for a qualitative reconstruction. Even if a good mask will

be the result of a realistic transformation, the usage of this

proxy loss will enable faster learning, and also, the learning

of more realistic mappings.

In the unpaired setting, since the u and v images don’t

represent the same scene, the mask used for the forward

shadow addition, m̂∗, is sampled from a fixed size memory

buffer. This contains masks produced in the forward step

of the shadow removal process. So, m̂∗ = Bin(û∗ − v∗),
where v∗ is the shadow affected input image used to com-

pute the synthetic shadow free image û∗. The quality of

the used shadow masks can be directly linked to a realistic

looking output. As a result, the mask loss Lmask was in-

troduced, exploiting the invariance property of the shadow

mask during the transformations performed along the cy-

cles. Lmask was defined as the L1 difference between either

the provided mask in the paired setup, or the randomly sam-

pled mask in the unpaired, and the masks computed with the

synthetically generated images, after the forward pass, con-

ditioning on the input images. Additional terms were added

to enforce the consistency of the shadow mask also for the

reconstruction procedure, conditioning on the outputs of the

forward step.

3.3.8 Total Loss

As the images that are to be fed to the model in the unpaired

setting do not represent the same scene, the loss function

has to be carefully chosen such that the equilibrium point

can be reached, and so, the learning procedure will con-

verge to the required solution. As we defined the GAN loss

in Equation 6 and 7, we are using replay buffers such that

the discriminators are less likely to rely on the simple differ-

ence between frames representing similar contents. Thus,

the degree of control is weaker, as we are sampling from in-

termediary results to feed the negative samples Î∗f and Î∗s in

the binary classification problem. So, additional available

information can be exploited by using different complexity

features extracted by a pretrained neural network, to guide

the learning to a natural transformation.

Moreover, another crucial goal is controlling, as much

as possible, the quality of the intermediary results, by the

way of minimizing the distance between the topology infor-

mation localizing the hallucinated area in the forward pass,

to the one observed in the reconstruction pass of the train-

ing step. So, we are exploiting the observation that, under

convergence conditions, both shadow removal and shadow

addition procedures are inverse to each other, as we stated

shadow removal as a bijectivity in the problem formulation.

Lgen(u, v) = γ1 · (L
f
GAN (û, u) + Ls

GAN (v̂, v)

+ Lf
GAN (ur, u) + Ls

GAN (vr, v))

+ γ2 · (Lcontent(u, v̂) + Lcontent(v, û))

+ γ3 · (Lpix(u, ur) + Lpix(v, vr))

+ γ4 · (Lperceptual(u, ur) + Lperceptual(v, vr))

+ γ5 · (Lmask(m̂f ,mf
r ) + Lmask(m̂s,ms

r)

+ β2Lmask(m̂
∗, m̂f ))

(8)

So, we choose the total loss for the unpaired case as a

linear combination of the losses described, where γ and β
parameters control the contribution of each loss. Note that

each component is easily extracted from Figure 1. As the

shadow position and shape are invariant under the transfor-

mations implied, by adding this term in the training objec-

tive, the transformations will be naturally plausible. As the

datasets are not characterized by a high variation in terms of

shadow regions shapes and positions, the model will benefit

from adding a loss term such that the mask produced in the

reconstruction procedure is similar to the sampled mask m̂∗

3.3.9 Total Loss for Paired Data

As our method can be extended for paired datasets, in Equa-

tion 9 we show the modifications to the loss functions in this

scenario.

Lgen(u, v) = γ1 · (L
f
GAN (û, u) + Ls

GAN (v̂, v)

+ Lf
GAN (ur, u) + Ls

GAN (vr, v))

+ γ2 · (Lcontent(u, v̂) + Lcontent(v, û))

+ γ3 · (Lpix(u, ur) + Lpix(v, vr) + β1Lpix(u, û))

+ γ4 · (Lperceptual(u, ur) + Lperceptual(v, vr))

+ γ5 · (Lmask(m̂f ,mf
r ) + Lmask(m̂s,ms

r)

+ β2Lmask(m, m̂f ))

(9)

When training using paired data, a constraint can be used

to speed-up the convergence process, by adding the term

Lpix(u, û) as the L1 pixel-wise loss between the input

shadow free image and the shadow free image generated in
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the forward step of the cycle. The β2 parameter is needed

to force the model to create a suitable transformation in

the forward step of the cycle, as the reconstruction process

will be using this intermediate representation of the shadow

free image. As the mask shape and position should be the

same, the shadow masks would not differ along the cycle,

so Lmask, the L1 distance between the two shadow masks,

was introduced. The weights used in the linear combination

of GAN, L1, perceptual, or mask losses were determined

with respect to the magnitude of each term, and their speed

of decrease. Exact values were provided in Table 1, for both

the paired and the unpaired settings.

Table 1: Parameters of the total loss function (Equation 8

and 9) defined for our training framework.

Setting γ1 γ2 γ3 γ4 γ5 β1 β2

Unpaired training 250 10 100 30 60 0 100

Paired training 250 20 60 50 60 10 100

3.4. Implementation details

Generator. The generator consists of eight pairs of down-

sampling/upsampling blocks, with skip-connections from

the downsampling block to the upsampling module, on

the same dimensionality level. As operations, the di-

rect/transposed convolution with kernel size 4 and zero

padding 1 was used. The result is passed through a

LeakyReLU activation (α = 0.2) for the downsampling

blocks, and ReLU for the upsampling part. The final out-

put is passed through a tanh activation. Dropout with 50%

probability was used in order to improve the behaviour of

the generators during training.

The discriminator. consists of four convolutional

blocks, each having the convolution operator with k = 4,

instance normalization and LeakyReLU as activation (α =
0.2). The final output size of the discriminator will be the

size of the patch described as the “perceptive field” of the

model. The depth of the initial input tensor can be explained

by the fact that the discriminator will receive as input a pair

of images, each of them with three channels, as they are

RGB images.

Initialization. As the initialization, the weights in both

the discriminators and the generators were drawn from a

Gaussian distribution with 0 mean and 0.2 variance.

4. Experimental Results

4.1. Setup

Datasets. We validate our system over ISTD [38], and

USR [17] datasets. On the one hand, the ISTD dataset

contains paired data for shadow and shadow-free im-

ages. Given the illumination inconsistency problem in this

dataset, Le et al. [25] proposed a compensation method, cre-

ating thus the ISTD+ dataset. On the other hand, the USR

dataset is a collection of unpaired shadow and shadow free

images used for unsupervised tasks. For unpaired training

and testing on the ISTD dataset, the shadow and shadow

free images were randomly sampled. The random mask in-

serted in each iteration comes from a buffer bank of syn-

thetic masks.

Experimental Framework. We train our system during

100 epochs, learning rate 0.005 with λ-decay scheduling

after the first 40 epochs. We use Adam optimizer with β =
(0.9, 0.999).

For both the paired and unpaired settings, the masks were

computed as a binarization of the difference between the

shadow free image and the shadow image, by a thresholding

procedure using the median value of the difference.

Evaluation measures. For the quantitative evaluation of

our method, we use the Root Mean Square Error (RMSE)

and Peak Signal to Noise Ratio (PSNR) between the output

deshadowed image and the reference/ground truth image.

We compute these pixel-wise fidelity measures in both RGB

and Lab color space, respectively. It is well established

that RMSE and PSNR do not correlate well with percep-

tual quality, so complementary to the fidelity measures, we

also employ LPIPS [42] score in order to assess the photo-

realism of the produced deshadowed images with respect to

the ground truth.

Compared methods. We directly compare our proposed

solution to two other methods capable to learn from un-

paired data: CycleGAN [43] and Mask Shadow GAN [17].

Moreover, in order to compare with prior systems in paired

learning, we report qualitative and quantitative results for

the following methods:DSC [16], ST-CGAN [38] and De-

ShadowNet [30].

4.2. Ablation Study

In Table 2 we report our results on ISTD for different

settings. Each configuration was trained for 100 epochs,

on ISTD dataset. When switching from a learning proce-

dure based on both fidelity and perceptual losses to an only-

fidelity loss based objective (γ4 = 0) the results improve

in fidelity and lack in perceptual terms. The removal of the

mask loss (γ5 = 0) produces similar results in terms of both

perceptual and fidelity measures, but the standard deviation
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Table 2: The impact of various loss function parameters on

the performance.

LPIPS↓ RMSE↓ PSNR↑
Method avg stddev RGB Lab RGB Lab

Paired setting 0.031 0.025 15.05 4.18 26.88 37.91

Paired setting (γ2 = 0) 0.032 0.029 14.75 4.15 27.1 38.05

Paired setting (γ4 = 0) 0.033 0.022 14.07 4.01 27.39 38.31

Paired setting (γ5 = 0) 0.031 0.027 13.80 3.90 27.70 38.58

Paired setting (β2 = 0) 0.035 0.019 14.70 4.11 27.26 38.2

Paired setting1 (β1 = 0) 0.021 0.046 5.96 2.61 34.27 41.67

over the LPIPS score is higher due to a more pronounced

difficulty of the model to deal with more complex textures.

The forward pixel-wise loss (β1 = 0) is very important

in order to produce realistic results in the forward step of

the cycle, even though the latent representation learnt (û, v̂),

for both shadow and shadow free domains, produce the best

results in terms of reconstruction error (either fidelity loss

or perceptual score). As a better mask is a consequence of

a better reconstruction, the dropping of the forward mask

(β2 = 0), produce results characterized by similar pixel-

wise properties, but lacking in perceptual terms.

Table 3: Ablative results in terms of pixel-wise loss (RMSE

and PSNR, both on Lab space) and perceptual quality loss

(LPIPS) for different settings of the loss function.

Setting description RMSE↓ PSNR↑ LPIPS↓
default set of parameters 5.73 33.40 0.045

default and γ2 = 0 5.34 34.35 0.082

default and γ3 = 10 5.98 32.87 0.104

default and γ4 = 0 3.71 37.31 0.056

default and γ5 = 0 4.42 36.56 0.074

In Table 3, we investigated the behaviour of our model

under different configurations of the unpaired setting. A

trade-off between improving in terms of fidelity score vs.

the perceptual properties can be observed, concluding that

both the mask loss and the perceptual loss yield better re-

sults in terms of perceptual score.

4.3. Quantitative results

To quantitatively evaluate the performance of our

shadow removal solution, we adhere to the ISTD and USR

benchmarks [17, 38] and report the results in Table 4. For

all the reported results, we used our models trained on the

training partition of the ISTD dataset, for 100 epochs for

both the paired and the unpaired settings. For the unpaired

setting, the shadow and shadow free training images were

sampled without replacement.

1This configuration was not considered, due to learning a non-realistic

mapping.

Table 4: Comparison with state-of-the-art methods on ISTD

and USR datasets.

ISTD test images USR test images

LPIPS↓ RMSE↓ PSNR↑ LPIPS↓ RMSE↓ PSNR↑
Method avg stddev RGB Lab RGB Lab avg stddev RGB Lab RGB Lab

Unpaired data training

MaskShadowGAN[17] 0.25 0.09 28.34 7.32 19.78 31.65 0.31 0.11 27.53 7.06 19.97 31.76

CycleGAN [43] 0.118 0.07 25.4 6.95 20.59 31.83 0.147 0.07 30.04 9.66 19.04 29.06

ours (unpaired) 0.041 0.033 7.58 5.12 31.18 34.45 0.009 0.004 5.70 2.21 33.26 41.06

Paired data training

DeShadowNet [30] 0.080 0.055 31.96 7.98 19.30 31.27 - - - - - -

DSC [16] 0.202 0.087 23.36 6.03 21.85 33.63 - - - - - -

ST-CGAN [38] 0.067 0.043 22.11 5.93 22.66 34.05 - - - - - -

ours (paired) 0.031 0.025 15.05 4.18 26.88 37.90 - - - - - -

Table 5: Lab color space results for both shadow and

shadow-free pixels on ISTD[38] and ISTD+[25] datasets.
Setup All Shadow Shadow free

Method Train Test RMSE PSNR RMSE PSNR RMSE PSNR

ARGAN[6] ISTD ISTD 5.89 N/A 6.65 N/A 5.41 N/A

ours (unpaired) ISTD ISTD 5.12 34.45 6.98 32.65 4.94 34.71

ours (paired) ISTD ISTD 4.18 37.90 4.63 36.87 4.07 38.22

ours (paired) ISTD+ ISTD+ 3.04 41.10 4.15 38.16 2.77 42.05

[25] (paired) ISTD+ ISTD+ 3.8 N/A 7.4 N/A 3.1 N/A

The USR dataset provides a collection of shadow free

images and two splits of shadow images, for training and

validation, which are not representing the same scene as the

shadow-free images. The same sampling procedure was de-

ployed for the USR dataset.

As shown in Table 4 our models largely improve the

state-of-the-art in both fidelity (RMSE, PSNR) and percep-

tual measures (LPIPS) on both benchmarks.

4.4. Qualitative results

Figure 3 shows visual results obtained on randomly

picked ISTD test images. We note that the results achieved

by our solutions are the closest to the reference shadow free

images, while the other methods generally produce strong

artifacts. Our results clearly improve over the unpaired

state-of-the-art Mask Shadow GAN, producing more ap-

pealing and artifact-free images. On the paired counterpart,

our method completely removes the shadow while the re-

lated methods produce visible traces.

4.5. Discussion

For both paired and unpaired settings, our system pro-

duces the best perceptual metrics (lower LPIPS) and the

best pixel-wise error metrics (PSNR and RMSE) with re-

spect to state-of-the-art methods by large margins.

Figure 4 shows results and the square L2 norm of the

residuals in the image space for our models. We observe

that the paired version of the model has problems in recov-

ering the unshadowed region on the neighborhoods charac-

terized by sharp variations in terms of color and illumina-

tion variations. This could be due to the ISTD dataset used

for training the model. ISTD has a limited shadow forma-

tion diversity in its pairs. Therefore, the model provides

poorer results on images representing much more complex

scenes.
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input Unpaired data training Paired data training ground truth
shadow Mask Shadow GAN ours (unpaired) ours (paired) DeShadowNet DSC ST-CGAN shadow free

Figure 3: Visual results for the proposed solution and comparison with state-of-the-art learned methods. Best zoom in on

screen for better details.

input ours (unpaired) ours (paired) input ours (unpaired) ours (paired)

ground truth error heatmap error heatmap ground truth error heatmap error heatmap

Figure 4: Visual results for the proposed solutions

trained with unpaired and paired, and corresponding error

heatmaps. Best zoom in on screen for better details.

Furthermore, as we show in Figure 2, the semantic dif-

ferences and the differences in illumination are expected to

induce a certain degree of uncertainty when using largely

weighted L1 loss terms between ground truth images and

the synthetically generated images in the same domain.

Therefore, as it can be seen in Figure 4, the error is not

concentrated in the shadow affected area, but, in steep vari-

ations in terms of texture, and some peaks in error can be

observed in that area. When training in an unpaired manner,

by simply dropping this loss term we can overcome this is-

sue, improving our results on the ISTD dataset, compared

to the paired setting.

The unpaired version also benefits from both sampling

processes deployed, i.e., for the shadow mask (using a mask

buffer) and the negative examples for discriminator train-

ing. Since the sample sets are dynamically generated from

synthetic data, the variation of the provided examples is ex-

pected to be higher. Therefore, the generalization ability

of the model increases (as it can be observed in Table 4)

producing better results in terms of both pixel-wise loss

and perceptual metrics. This behaviour can be explained

by the model benefiting from the variety of random local-

ization/shape combinations characterising the shadowed re-

gion.

Although the degree of control is weak under the un-

paired setting, the exploitation of both deep features, and

the proxy loss defined for the transformed region provides

sufficient information for the learnt mapping to be realistic.

5. Conclusions

In this work we proposed a novel single image shadow

removal solution. We rely on self-supervision and jointly

learn shadow removal from and shadow addition to images.

Even if the degree of control is significantly weaker in the

unpaired setting, using learnt deep-features, we are able

to control the learning procedure to converge to a realis-

tic mapping. As our experimental results show on ISTD

and USR datasets, we set a new state-of-the-art in sin-

gle image shadow removal, by largely outperforming prior

works in both fidelity (RMSE, PSNR) and perceptual qual-

ity (LPIPS) for both paired and unpaired settings.
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