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Abstract

Image light source transfer (LLST), as the most challeng-

ing task in the domain of image relighting, has attracted

extensive attention in recent years. In the latest research,

LLST is decomposed three sub-tasks: scene reconversion,

shadow estimation, and image re-rendering, which provides

a new paradigm for image relighting. However, many prob-

lems for scene reconversion and shadow estimation tasks,

including uncalibrated feature information and poor se-

mantic information, are still unresolved, thereby resulting in

insufficient feature representation. In this paper, we propose

novel down-sampling feature self-calibrated block (DFSB)

and up-sampling feature self-calibrated block (UFSB) as

the basic blocks of feature encoder and decoder to cali-

brate feature representation iteratively because the LLST is

similar to the recalibration of image light source. In ad-

dition, we fuse the multi-scale features of the decoder in

scene reconversion task to further explore and exploit more

semantic information, thereby providing more accurate pri-

mary scene structure for image re-rendering. Experimen-

tal results in the VIDIT dataset show that the proposed ap-

proach significantly improves the performance for LLST.

Codes have been released at https://github.com/

mdswyz/MCN-light-source-transfer.

1. Introduction

Transferring the current light source setting of given im-

age to the target light source setting is a domain-specific

image relighting task, which have many potential applica-

tions in data augmentation, photo editing, and gaming in-

dustry. Inappropriate light source usually causes various

visual degradation problems, such as undesired shadows,

distorted colors, and unrealistic textures.

Some early methods have been proposed that to reduce

the degradation caused by improper illumination condi-

tions. For example, Wu et al. [25] improved the image

quality by increasing the dynamic range of the low-contrast
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regions, which can be regarded as a refinement of local

light conditions. Retinex-based methods [24] assumed that

the images can be decomposed reflectance and illumination

components, where the reflectance component stored the in-

herent scene structure that is unchangeable in different illu-

mination conditions. By refining the global illumination, it

can improve the visual quality of the images.

Despite the great success in image relighting, aforemen-

tioned methods can not manipulate the light source settings

(e.g., direction, color temperature) to achieve more realistic

image quality. Compared with the traditional image relight-

ing task, image light source transfer (LLST) is an extremely

challenging task because it is difficult to remove and re-

cast shadows, and it is also difficult to relight and re-darken

specific regions, which increases the difficulty of producing

satisfactory image.

In view of the above problems, some researchers have

explored the manipulation and transfer of image light

source in latest VIDIT dataset [4]. Puthussery et al. [3]

proposed a encoder-decoder network with discrete wavelet

transform based decomposition and transferred an image

from a source illumination setting to a target setting. The

YorkU team [5] defined the task as two parts: image normal-

ization and image relighting, and used two encoder-decoder

networks to infer the target results. Wang et al. [21] de-

signed a deep relighting network with three parts: scene re-

conversion, shadow prior estimation, and re-renderer. Scene

reconversion part aimed to restore the primary scene struc-

ture, shadow prior estimation part predicted light effect

from the target light direction, and re-renderer part com-

bined the primary structure with the recast shadow to re-

construct target light source setting. This novel paradigm

had achieved the best PSNR in the “AIM2020 - One-to-one

relighting challenge” [5].

However, since LLST is a task of recalibrating the light

source settings [3], the above method ignores the effective

calibration of the feature information during feature extrac-

tion, resulting in insufficient feature representation, and ren-

dering unsatisfactory results ultimately.

To address the above issues effectively, we design novel

down-sampling feature self-calibrated block (DFSB) and



Figure 1. Overall architecture of the proposed method includes three parts: scene reconversion subnetwork, shadow estimation subnetwork,

and image re-rendering subnetwork.

up-sampling feature self-calibrated block (UFSB) as the ba-

sic blocks of feature encoder and decoder in scene reconver-

sion and shadow estimation tasks. By generating the input

feature weight of each basic block, the output feature of

each block is calibrated iteratively.

In addition, in order to further explore and exploit more

semantic information, we fuse the multi-scale features of

the decoder in scene reconversion task to better reveal pri-

mary scene structure of input image, thereby re-rendering

better results with recast shadow. The proposed method fo-

cuses on transferring the direction and color temperature of

the light source. Experimental results show that our method

exceed the current state-of-the-arts. The contributions of

the proposed method can be summarized as follows:

(i) Considering that LLST is a task of recalibrating the

light source settings, we propose novel DFSB and UFSB as

the basic blocks of feature encoder and decoder to calibrate

feature information for scene reconversion and shadow es-

timation tasks iteratively, thereby improving feature repre-

sentation ability.

(ii) To further explore and exploit more semantic infor-

mation, we design the multi-scale feature fusion method

to the feature decoder structure of scene reconversion task,

which provides more accurate primary scene structure for

image re-rendering task.

2. Related Work

Image relighting is a popular topic in computer vision.

In some early studies, researchers have often worked on

enhancing low-light images. Histogram equalization [18]

restrain the histograms of the output images to increases

the discrimination of the low-contrast regions. The high-

dynamic-range methods [2] can increase the dynamic range

of the low-contrast regions and refine local contrast, thereby

improving the image quality. Retinex theory [11] decom-

poses the input image into the reflection component and the

illumination component, and the illumination of the image

can be changed by adjusting the illumination component.

Convolutional neural networks (CNNs) has achieved

great success in computer vision recently due to its powerful

feature representation capacity, which has been widely used

in a variety of upstream and downstream tasks, like image

super-resolution [15, 9], image defogging [12], object de-

tection [20, 22], etc. Considering the advantages of CNNs,

the CNNs-based image relighting methods have also made



considerable progress. Lore et al. [14] designed an auto-

encoder architecture for low-light image enhancement. Wei

et al. [24] combines CNNs with retinex theory to improve

the performance of image relighting significantly. Jiang et

al. [10] proposed an unsupervised generative adversarial

network (GAN) to relight the whole image.

Although the above studies have achieved satisfactory

performance in low light image enhancement, these meth-

ods can only adjust the brightness of the image globally

or locally. In recent studies, some researchers manipulate

and transfer light source on portrait scenes [27, 17]. These

methods require some prior information (e.g., face land-

marks, geometric priors) that can not be obtained in general

scenes. In the latest research, researchers began to explore

the light source transfer in general scenes due to the release

of VIDIT dataset [4] that is a novel virtual image dataset for

light source transfer in general scenes. Das [1] proposed a

multi-scale relighting network to transfer an image from a

original light source setting to a target light source setting.

The YorkU team [5] defined the task as two parts: image

normalization and image relighting, and used two encoder-

decoder networks to infer the target results. Wang et al.

[21] decomposed LLST into three parts: scene reconver-

sion, shadow prior estimation, and re-renderer. This novel

paradigm achieved satisfactory performance.

However, a vital issue was ignored by previous work.

Since LLST is similar to the image light source recalibra-

tion task, it is necessary to calibrate the features effectively

during the feature encoding and decoding to obtain the bet-

ter feature representation. The proposed method creatively

designs DFSB and UFSB to calibrate the feature represen-

tation effectively.

3. Image light source transfer via multi-scale

self-calibrated network

Similar to [21], the proposed method consists of three

parts: scene reconversion subnetwork, shadow estimation

subnetwork, and image re-rendering subnetwork, the over-

all architecture of the proposed method is shown in Figure

1. Firstly, the input image is processed in the scene recon-

version subnetwork to extract primary scene structures by

removing the light effects. At the same time, the shadow

estimation subnetwork aims to the change of the lighting

effect, which recasts shadows according to the target light

source setting. Finally, the image re-rendering subnetwork

learns the target color temperature and perceives the global

light source effect, and re-renders the image with the sup-

port of the primary scene structure information and the pre-

dicted shadow.

Both the scene reconversion subnetwork and shadow

estimation subnetwork have a similar deep auto-encoder

structure and use the proposed DFSB and UFSB as the basic

blocks for feature encoding and decoding. In addition, we

fuse multi-scale features in the feature decoding part of the

scene reconversion subnetwork to enrich the semantic infor-

mation of the output features. For the image re-rendering

subnetwork, we use the re-renderer component proposed in

the previous work [21] as the backbone.

3.1. Modeling of image light source transfer

LLST is a challenging low-level vision task that focuses

on reconstructing input image X (under any light source σ)

with the target light source setting θ. Inspired by the pre-

vious work [19, 24, 21], we model that the images can be

decomposed into two components, primary scene structure

P that is unchangeable in different light conditions and light

source setting σ that provides global illumination , shadow

effects, and color temperature. The input image can be for-

mulated as:

X = Hσ(P ), (1)

where Hσ(.) denotes a lighting operation. To re-render the

image X with light source setting θ, it firstly needs to re-

move σ, reconverting the primary scene structure P from

the input image X . Then, with the target lighting operation

Hθ(.), the image Y with the target light source setting can

be obtained by:

Y = Hθ(P ) = Hθ(H
−1
σ (X)). (2)

The key point of the reconversion process H−1
σ (.) is to elim-

inate the shadows, while the lighting operation Hθ(.) is to

recast shadows for the target light source setting. However,

it is difficult to construct the lighting operation Hθ(.) be-

cause the geometric information is unavailable in the single

image relighting task. Hence, instead of finding the light-

ing operation Hθ(.) directly, the proposed method aims to

construct a transferring operation H(σ→θ)(.) that transfer

the target light effects (e.g., shadows, light source direction,

color temperature) from the input image to target image.

The above transferring process can be formulated as:

Y = Hre−rendering(H
−1
σ (X), H(σ→θ)(X)), (3)

where the Hre−rendering(.) denotes a a re-rendering pro-

cess.

3.2. Feature self­calibrated block for feature encod­
ing and decoding

The objective of the LLST is to transfer the light effects

from the input image to target image, which is similar to

the recalibration of image light source. Hence, we propose

novel DFSB and UFSB as the basic blocks of feature en-

coder and decoder in scene reconversion and shadow esti-

mation subnetworks to calibrate feature representation iter-

atively. Figure 2 shows the architecture of proposed DFSB

and UFSB, which consist of encoding and decoding oper-

ations that map the feature information between the input

and latent spaces.



Figure 2. Architecture of DFSB (top) and UFSB (bottom)

To take the DFSB for example, it firstly maps the input

feature Finput to small-scale space through a 3×3 convolu-

tion layer with stride of 2. The small-scale feature Flr can

be formulated as:

Flr = H3×3Conv(Finput), (4)

where H3×3Conv(.) denotes a 3×3 convolution layer. Then,

a 4×4 deconvolution layer with stride of 2 maps Flr back

to the input scale space, which is formulated as:

Fhr = H4×4Deconv(Flr), (5)

where H4×4Deconv(.) denotes a 4×4 deconvolution layer.

At the same time, another branch generates calibration

weight weightcalibration through a 1×1 convolution layer

and Sigmiod function. weightcalibration is formulated as:

weightcalibration = Sigmiod(H1×1Conv(Finput)), (6)

where H1×1Conv(.) denotes a 1×1 convolution layer.

This weightcalibration is multiplied by Fhr to obtain

the calibrated feature F calibration
hr with input scale space.

F calibration
hr is formulated as:

F calibration
hr = weightcalibration × Fhr. (7)

Finally, the feature F calibration
hr is remapped to a small-

scale space by a 3×3 convolution layer and fused with Flr

through an element-wise summation operation to obtain the

output feature Foutput. Foutput is formulated as:

Foutput = HSum[H3×3Conv(F
calibration
hr ), Flr], (8)

where HSum[.] denotes the element-wise summation oper-

ation.

Similar to the above process, the whole process of UFSB

can be formulated as:

Foutput = HSum[H4×4Deconv(F
calibration
lr ), Fhr]. (9)

3.3. Scene reconversion subnetwork

The purpose of the scene reconversion subnetwork is to

extract the primary scene structure information from the in-

put image so that the light effects should be removed. As

shown in Figure 1, the proposed subnetwork refers to the

auto-encoder structure [13]. The feature encoding and de-

coding parts of the whole subnetwork use DFSB and UFSB

as basic blocks, and fuse the multi-scale features in decod-

ing parts to enrich semantic information.

Firstly, we use one convolutional layer with a kernel size

of 7×7 to extract the shallow feature Fshallow from the

input images. Then, the Fshallow is downsampled by the

DFSB four times to find the discriminative features for the

scene. The channels are doubled after each downsampling

process to preserve feature information as much as possible.

The encoded feature is formulated as:

Fencoder = H4
DB(H

3
DB(H

2
DB(H

1
DB(Fshallow)))), (10)

where HDB(.) and Fencoder denote the function of DFSB

and output of fourth DFSB, respectively. After feature en-

coding, we design a ResBlocks module, which consists of

nine residual blocks, to remove the light effects. The re-

moved feature FRes is formulated as:

FRes = HRes(Fencoder), (11)

where HRes(.) denotes the ResBlocks module. Next, four

UFSBs upsample the feature map back to the original size

gradually.

Fdecoder = H4
UB(H

3
UB(H

2
UB(H

1
UB(FRes)))), (12)

where HUB(.) and Fdecoder denotes the function of UFSB

and the output of fourth UFSB, respectively; and the outputs

of the other three UFSBs are denoted as F 1
UFSB , F 2

UFSB ,

and F 3
UFSB , respectively. Meanwhile, we fuse multi-scale

features from first to fourth UFSB into a single one. Specif-

ically, the deconvolution layers are adopted to make multi-

scale features with the same resolution as Fdecoder, and

these multi-scale features are concatenated along the chan-

nel dimension. The concatenated feature Fconcat is formu-

lated as:

F 1
up = H8×8Deconv(F

1
UFSB), (13)

F 2
up = H4×4Deconv(F

2
UFSB), (14)

F 3
up = H4×4Deconv(F

3
UFSB), (15)

Fconcat = Hc[F
1
up, F

2
up, F

3
up, Fdecoder], (16)

where Hc[.] denotes the concatenating feature operation

along the channel dimension. Fconcat contains rich seman-

tic information, which lays a solid foundation for image re-

rendering. Finally, in order to obtain rich semantic infor-

mation while maintaining structural information, we con-

catenate Fconcat with shallow feature Fshallow by a skip

connection, and reduces the channels through a convolution

layer from 64 to 32 as the input of image re-rendering sub-

network.



To train the scene reconversion subnetwork, it need pri-

mary scene structure image as the ground-truth. However,

the primary scene structure image is difficult to define be-

cause we have only the target image. Inspired by the pre-

vious work, we use the shadow-free image generated by

exposure fusion method [16] as the ground-truth, which is

provided by [21]. For the scene reconversion subnetwork,

the shadow-free image is reconstructed by a convolutional

layer, which transfers the latent feature space back to the

image space. In the training phase, a discriminator is at-

tached to assist the training of the scene reconversion sub-

network. The discriminator structure is proposed in [8] to

extract the global representations hierarchically. The de-

tailed parameter settings of the discriminator and loss func-

tion are reported in [21].

3.4. Shadow estimation subnetwork

To produce the light effects from the target light source,

we design a shadow estimation subnetwork with the archi-

tecture as shown in Figure 1, which is similar to the pro-

posed scene reconversion subnetwork. Compared with the

scene reconversion network, the shadow estimation subnet-

work discards the skip connection and multi-scale feature

fusion, which makes the network pay more attention to the

global light effect.

To train the shadow estimation subnetwork, the ground-

truth is the image under the target light source setting. In

the training phase of network, in order to make the network

focus on shadow regions, we add an additional shadow dis-

criminator, which uses the same structure as the previous

discriminator. Specifically, it is firstly rectified to give focus

to the low-intensity regions (such as dark regions, shadow

regions) by z = min(x, y), where the y denotes the es-

timated pixel intensity. The z represents rectified value

that is inputted to the discriminator. The x is a hyper-

parameter to pre-define threshold for the sensitivity of the

shadows. Referring to the previous work [21], it is set to

0.059 = 15/255.

3.5. Image re­rendering subnetwork

After the processing of the scene reconversion and

shadow estimation tasks, the predicted primary scene struc-

ture and light effects are fused to re-render the output image

with target light source setting. Figure 1 shows structure

of the image re-rendering subnetwork, we firstly uses sev-

eral convolution layer with different kernel sizes from 3×3

to 25×25 to utilize the information of different perception

scales, which extracts rich multi-scale features for the sub-

sequent process. Second, these features are concatenated

into a single one. Third, the concatenated feature is recali-

brated by a recalibration module, which is similar to [7], to

explore the recalibration weights for different scale space.

Finally, a convolutional layer with kernel size of 7×7 re-

render the recalibrated feature from the feature space to the

image space.

4. Experiments

4.1. Dataset and Implementation Details

The performance of our method is evaluated on the novel

VIDIT (Virtual Image Dataset for Illumination Transfer)

dataset [4]. The VIDIT dataset contains 390 different vir-

tual scenes, where there are 300 scenes for training, 45

scenes for validation and 45 scenes for testing separately.

Each scene is captured with 40 different light source set-

tings, which are all the combinations of 5 color tempera-

tures (2500K, 3500K, 4500K, 5500K, and 6500K) and 8

light source directions (N, NE, E, SE, S, SW, W, NW). All

scenes are rendered with a resolution of 1024×1024 pix-

els, include metal, wood, water, etc. We participated the

“NTIRE 2021 Depth Guided Relighting Challenge Track

1: One-to-one relighting” [6]. The objective of competi-

tion is that, given an input image under any light source

settings, the method should give the result under a specific

light source setting (color temperature is 4500k and light

source direction is from east). We use all possible pairs

from the 300 training scenes to train the network, and the

provided 45 validation images for evaluation.

Our model is trained by Adam optimizer with the mo-

mentum of 0.5 and learning rate of 2 × 10−4, and the

training images were resized from 1024×1024 to 512×512.

All experiments were conducted through PyTorch with two

NVIDIA RTX 2080Ti GPUs.

4.2. Evaluation Metrics

The results are evaluated with standard evaluation met-

rics like Peak Signal to Noise Ratio (PSNR) and Structural

Similarity (SSIM) [23]. Furthermore, we use novel percep-

tual metrics like Learned Perceptual Image Patch Similarity

(LPIPS) [26] and Mean Perceptual Score (MPS) [5]. LPIPS

measures the perceptive quality of image, in which a smaller

value means more perceptual similarity. MPS is the average

of the SSIM and LPIPS, which is formulated as:

MPS = 0.5× (SSIM + (1− LPIPS)). (17)

The above four evaluation metrics ensure the credibility of

the evaluation results.

4.3. Effect of the proposed self­calibrated block and
multi­scale feature fusion

In this subsection, we conduct the ablation studies on

the VIDIT dataset to demonstrate the effectiveness of self-

calibrated block and multi-scale feature fusion.

First, we remove all feature self-calibration processes of

UFSBs and DFSBs, and remove the multi-scale feature fu-

sion on the scene reconversion subnetwork to form the first



Figure 3. Visual results on a selected test sample (image with ID “300” of the validation dataset). The images in row (A) include the input

image, target image, and the results inferred by different methods. The images in row (B) are the results after contrast enhancement to

highlight the light effects and the red arrows indicate the directions of the light source.

experiment. Then we add the feature self-calibration pro-

cess of UFSBs and DFSBs to the first experiment to form

the second experiment. Finally, we add multi-scale fea-

ture fusion in the scene reconversion subnetwork to form

the third experiment based on the first experiment. Table

1 shows the quantitative results of the above experiments,

we can conclude that the feature self-calibration and multi-

scale feature fusion can lead to considerable performance

improvements, and the best performance is achieved when

both are used.

Table 1. Quantitative comparison of different methods. MCN as an

abbreviation for our proposed method. Cal and MS denote feature

self-calibration and multi-scale feature fusion, respectively. The

best results are highlighted.

Methods PSNR SSIM LPIPS

MCN without Cal and MS 17.55 0.6206 0.4087

MCN without Cal 17.64 0.6234 0.4091

MCN without MS 17.80 0.6407 0.3827

MCN 17.86 0.6487 0.3794

4.4. Comparison with State­of­the­Arts

Since LLST is a novel topic in the domain of image

relighting, there are only two methods that can be pub-

licly used for our comparison currently, namely DRN [21]

and NRUNet [5]. Besides comparing with the above two

methods, we have also made comparison with RetinexNet

[24], which is a representative relighting method based on

Retinex theory. We retrained these above methods in the

unified dataset with publicly available codes provided by

authors, and the comparison was made using the VIDIT val-

idation dataset.

Table 2 lists the quantitative results of different methods,

it is obviously that our method outperforms state-of-the-

arts in PSNR, SSIM, LPIPS, and MPS significantly. These

quantitative results demonstrate that the proposed method

can better re-render the target light source setting and ob-

tain better perceptual similarity through calibrating features

iteratively and fusing multi-scale features.

Table 2. Comparison with the state-of-the-arts on VIDIT valida-

tion dataset. The best results are highlighted.

Methods PSNR SSIM LPIPS MPS

RetinexNet [24] 12.15 0.1659 0.5686 0.2987

NRUNet [5] 16.24 0.5805 0.4147 0.5829

DRN [21] 17.59 0.6088 0.3920 0.6084

MCN (Ours) 17.86 0.6487 0.3794 0.6347

In terms of visual performance, Figure 3 shows the qual-

itative results of these methods. Row (A) in Figure 3 shows

the input image, target image, and the re-rendering results

of each method. In order to highlight the lighting effects, we

perform contrast enhancement on all images in row (A) to

generate images in row (B), and use red arrows to mark all

the light source directions in each image. From the Figure

3 we can find that RetinexNet can not change the color tem-

perature of the image and the direction of the light source

because it only considers enhancing the global illumination.

NRUNet can change to correct color temperature for the tar-

get light source, but it fails to transfer the light direction, and

the light source disappears in the contrast-enhanced image.

The possible reason for the disappearance of the light source

is that NRUNet fails to re-render the target light source set-

tings well after normalizing the image. The DRN can trans-

fer to correct light source setting but produces some un-



Figure 4. Visual results on a selected challenging test sample (image with ID “318” of the validation dataset). The blue circles represent

the shadow regions of the input image, and the red circles represent the shadow regions of the target image. Compared to other methods,

our method can effectively remove the shadows of the input image and recast the shadows of the target image.

realistic artifacts, which lead to additional light source in

the image and degrade the visual quality. In contrast, our

method re-renders correct light direction and color temper-

ature with a good perceptual quality.

The scene of the above test sample is relatively simple.

To further demonstrate the effectiveness of the proposed

method, we select a challenging test sample in the valida-

tion dataset for experiment. Figure 4 shows the visual re-

sults on the challenging test sample. From the input image

and the target image, it can be concluded that the difficulty

of this scene is to remove the shadow regions of the input

image and recast the shadow regions of the target image. To

clearly distinguish the differences between the visual results

of different methods, we first mark the shadow regions on

the input image (blue circles) and the target image (red cir-

cles), respectively. Then, the results obtained by different

methods are marked with the shadow regions of the input

image (blue circles) and the shadow regions of the target

image (red circles). The purpose of this is to show that the

shadow in the blue circle region need to be removed, while

the shadow in the red circle region need to be recast.

From the Figure 4 we can conclude that RetinexNet,

NRUNet, and DRN can not remove the shadows of the in-

put image and recast the shadows for the target regions. In

contrast, the proposed method not only removes the shad-

ows of the input image, but also recasts the shadows of the

target image, which benefits from the effective calibration

of feature representation by the proposed DFSB and UFSB.

5. Conclusion

In this paper, a novel multi-scale self-calibrated network

is proposed to solve the problem of uncalibrated features

and poor semantic information in LLST task. We design

DFSB and UFSB to calibrate the features effectively, and

design multi-scale feature fusion to explore and exploit

more semantic information, thereby improving the LLST

performance from the input light source setting to the tar-

get light source setting. However, our proposed method

also has some limitations. For example, after removing the

shadow regions of the input image, the texture information

of the these regions can not be rendered well, resulting in

the visual quality degradation. Therefore, this point will be

the focus of recent research.
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