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Abstract

Although recent years have witnessed the great advances

in stereo image super-resolution (SR), the beneficial infor-

mation provided by binocular systems has not been ful-

ly used. Since stereo images are highly symmetric under

epipolar constraint, in this paper, we improve the perfor-

mance of stereo image SR by exploiting symmetry cues in

stereo image pairs. Specifically, we propose a symmetric

bi-directional parallax attention module (biPAM) and an in-

line occlusion handling scheme to effectively interact cross-

view information. Then, we design a Siamese network e-

quipped with a biPAM to super-resolve both sides of views

in a highly symmetric manner. Finally, we design sever-

al illuminance-robust losses to enhance stereo consistency.

Experiments on four public datasets demonstrate the supe-

rior performance of our method. Source code is available at

https://github.com/YingqianWang/iPASSR.

1. Introduction

With recent advances in stereo vision, dual cameras are

commonly adopted in mobile phones and autonomous ve-

hicles. Using the complementary information (i.e., cross-

view information) provided by binocular systems, the reso-

lution of image pairs can be enhanced. However, it is chal-

lenging to achieve good performance in stereo image super-

resolution (SR) due to the following issues: 1) Varying par-

allax. Objects at different depths have different disparity

values and thus locate at different positions along the hor-

izontal epipolar line. It is challenging to capture reliable

stereo correspondence and effectively integrate cross-view

information for stereo image SR. 2) Information incorpo-

ration. Since context information within a single view (i.e.,

intra-view information) is crucial and contributes to stereo

image SR in a different manner, it is important but chal-

lenging to fully incorporate both intra-view and cross-view

information. 3) Occlusions & boundaries. In occlusion and

boundary areas, pixels in one view cannot find their corre-
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spondence in the other view. In this case, only intra-view

information is available for stereo image SR. It is challeng-

ing to fully use cross-view information in non-occluded re-

gions while maintaining promising performance in occlud-

ed regions.

Recently, several methods have been proposed to address

the above issues. Wang et al. [23, 25] addressed the vary-

ing parallax issue by proposing a parallax attention module

(PAM), and developed a PASSRnet for stereo image SR. Y-

ing et al. [32] addressed the information incorporation is-

sue by equipping several stereo attention modules (SAMs)

to the pre-trained single image SR (SISR) networks. Song

et al. [19] addressed the occlusion issue by checking stere-

o consistency using disparity maps regressed by parallax

attention maps. Although continuous improvements have

been achieved, the inherent correlation within stereo im-

age pairs are still under exploited, which hinders the per-

formance of stereo image SR.

Since super-resolving left and right images are highly

symmetric, the inherent correlation within an image pair

can be fully used by exploiting its symmetry cues. In this

paper, we improve the performance of stereo image SR by

exploiting symmetries on three levels. 1) On the module

level, we design a symmetric bi-directional parallax atten-

tion module (biPAM) to interact cross-view information.

With our biPAM, occlusion maps can be generated and used

as a guidance for cross-view feature fusion. 2) On the net-

work level, we propose a Siamese network equipped with

our biPAM to super-resolve both left and right images. Ex-

perimental results demonstrate that jointly super-resolving

both sides of views can better exploit the correlation be-

tween stereo images and is contributive to SR performance.

3) On the optimization level, we exploit symmetry cues

by designing several bilateral losses. Our proposed losses

can enforce stereo consistency and is robust to illuminance

changes between stereo images. We perform extensive ab-

lation studies to validate the effectiveness of our method.

Comparative results on the KITTI 2012 [4], KITTI 2015

[14], Middlebury [17] and Flickr1024 [27] datasets have

demonstrated the competitive performance of our method

as compared to many state-of-the-art SR methods.
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Figure 1: An overview of our iPASSR network.

Our proposed method is named iPASSR since it is an

improved version of our previous PASSRnet [23, 25]. The

contributions of this paper are as follows: 1) We propose

to exploit symmetry cues for stereo image SR. Different

from PASSRnet, our iPASSR can super-resolve both sides

of views within a single inference. 2) We develop a sym-

metric and bi-directional parallax attention module. Com-

pared to PAMs in [23, 25], our biPAM is more compact

and can effectively handle occlusions. 3) As demonstrated

in the experiments, our iPASSR can achieve significant per-

formance improvements over PASSRnet with a comparable

model size.

The rest of this paper is organized as follows. In Sec-

tion 2, we briefly review the related work. In Section 3,

we introduce our proposed method including network ar-

chitecture, occlusion handling scheme, and loss functions.

Experimental results are presented in Section 4. Finally, we

conclude this paper in Section 5.

2. Related Work

Single Image SR. SISR is a long-standing problem and

has been investigated for decades. Recently, deep learning-

based SISR methods have achieved promising performance

in terms of both reconstruction accuracy [33, 35, 22, 24] and

visual quality [11, 26, 1, 34]. Dong et al. [3] proposed the

first CNN-based SR network named SRCNN to reconstruct

high-resolution (HR) images from low-resolution (LR) in-

puts. Kim et al. [8] proposed a very deep network (VDSR)

with 20 layers to improve SR performance. Afterwards, SR

networks became increasingly deep and complex, and thus

more powerful in intra-view information exploitation. Lim

et al. [12] proposed an enhanced deep SR network (EDSR)

using both local and global residual connections. Zhang et

al. [38, 39] combined residual connection with dense con-

nection, and proposed residual dense network (RDN) to ful-

ly exploit hierarchical feature representations. More recent-

ly, the performance of SISR has been further improved by

RCAN [36], RNAN [37] and SAN [2].

Stereo Image SR. Compared to SISR which exploits

context information within only one view, stereo image SR

aims at using the cross-view information provided by stereo

images. Jeon et al. [6] proposed a network named Stere-

oSR to learn a parallax prior by jointly training two cascad-

ed sub-networks. The cross-view information is integrated

by concatenating the left image and a stack of right images

with different pre-defined shifts. Wang et al. [23, 25] pro-

posed a parallax attention module to learn stereo correspon-

dence with a global receptive field along the epipolar line.

Ying et al. [32] proposed a stereo attention module and em-

bedded it into pre-trained SISR networks for stereo image

SR. Song et al. [19] combined self-attention with parallax

attention for stereo image SR. Furthermore, stereo consis-

tency was addressed by using disparity maps regressed from

parallax attention maps. Yan et al. [29] proposed a domain

adaptive stereo SR network (i.e., DASSR). Specifically, they

first explicitly estimated disparities using a pretrained stere-

o matching network [7] and then warped views to the other

side to incorporate cross-view information. More recent-

ly, Xu et al. [28] incorporated bilateral grid processing into

CNNs and proposed a BSSRnet for stereo image SR.

3. Method

In this section, we introduce our method in details. We

first introduce the architecture of our network in Section 3.1,

then describe the inline occlusion handling scheme in Sec-

tion 3.2. Finally, we present the losses in Section 3.3.

3.1. Network Architecture

Our network takes a pair of LR RGB stereo images I
input
L

and I
input
R as its inputs to generate HR RGB stereo images

I
SR
L and I

SR
R . As shown in Fig. 1(a), our network is highly

symmetric and the weights of its left and right branches are

shared. Given LR input stereo images, our network sequen-

tially performs feature extraction, cross-view interaction,

and reconstruction.
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Feature Extraction. In our feature extraction module,

input stereo images I
input
L , Iinput

R ∈ R
H×W×3 are first fed

to a convolution layer (i.e., Conv-0) to generate initial fea-

tures F0
L,F

0
R ∈ R

H×W×64, which are then fed to 4 cascad-

ed residual dense blocks (RDBs)1 for deep feature extrac-

tion. As shown in Fig. 1(b), 4 convolutions with a growth

rate of 24 are used within each RDB to achieve dense fea-

ture representation. Note that, features from all the layers

in an RDB are concatenated and fed to a 1×1 convolution

to generate fused features for local residual connection.

Cross-view Interaction. We propose a bi-directional

parallax attention module (biPAM) to interact cross-view

information of stereo features. Since hierarchical feature

representation is beneficial to stereo correspondence learn-

ing [23], we form the inputs of our biPAM by concatenating

the output features of each RDB in our feature extraction

module. As shown in Fig. 1(c), the input stereo features are

first fed to a batch-normalization (BN) layer and a transition

residual block (i.e., ResB), and then separately fed to 1×1

convolutions to generate FU, FV ∈ R
H×W×64. To achieve

disentangled pairwise parallax attention, we follow [31] and

feed FU and FV to a whiten layer to obtain normalized fea-

tures F′
U and F

′
V according to

F
′
U(h,w, c) = FU(h,w, c)−

1

W

∑W

i=1
FU(h, i, c), (1)

F
′
V(h,w, c) = FV(h,w, c)−

1

W

∑W

i=1
FV(h, i, c). (2)

To generate left and right attention maps, F
′
V is first

transposed to F
′
V

T
∈ R

H×64×W , and then batch-wisely

multiplied (see Section 3.2) with F
′
U to produce an initial

score map S ∈ R
H×W×W . Then, softmax normalization is

applied to S and S
T along their last dimension to generate

attention maps MR→L and ML→R, respectively. To achieve

cross-view interaction, both left and right features (gener-

ated by Conv-1f in Fig. 1(a)) need to be converted to the

other side by taking a batch-wise matrix multiplication with

the corresponding attention maps, i.e.,

F
′
R→L = MR→L ⊗ FR, (3)

F
′
L→R = ML→R ⊗ FL, (4)

where ⊗ denotes the batch-wise matrix multiplication.

To avoid unreliable correspondence in occlusion and

boundary regions, we propose an inline occlusion handling

scheme to calculate valid masks VL and VR. The final con-

verted features FR→L and FL→R can be obtained by

FR→L = VL ⊙ F
′
R→L + (1−VL)⊙ FL, (5)

1The insights of using RDBs for feature extraction are two-folds: First,

RDB can generate features with large receptive fields and dense sampling

rates, which are beneficial to stereo correspondence estimation. Second,

RDB can fully use features from all the layers via local dense connection.

The generated hierarchical features are beneficial to SR performance.
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Figure 2: A toy example to depict the stereo correspon-

dence. The gray, red, and green regions in IL and IR denote

objects with a disparity of 0, 5, and 10 pixels, respectively.

For simplicity, only a profile of MR→L at height h is visu-

alized, which corresponds to the regions marked by yellow

strokes in (a). Occlusions (colored in black on the strokes)

are implicitly encoded in the attention maps as empty inter-

vals. (b) The right stroke can be converted into the left side

by multiplying it with MR→L.

FL→R = VR ⊙ F
′
L→R + (1−VR)⊙ FR, (6)

where ⊙ represents element-wise multiplication. Note that,

values in VL and VR range from 0 (occluded) to 1 (non-

occluded). According to Eqs. (5) and (6), occluded regions

of converted features (i.e., FR→L, FL→R) can be filled with

the corresponding features from the target view (i.e., FL,

FR), resulting in continuous spatial distributions.

Reconstruction. Similar to the feature extraction mod-

ule, we use RDB as the basic block in our reconstruction

module. Taking the left branch as an example, FR→L is first

concatenated with FL and then fed to an RDB (i.e., RDB-

F) for initial feature fusion. The output feature F
init f
L ∈

R
H×W×128 is then fed to a channel attention layer (i.e.,

CALayer [36]) and a convolution layer (i.e., Conv-2f ) to

produce the final fused feature F
f
L ∈ R

H×W×64. After-

wards, Ff
L is fed to 4 cascaded RDBs, a convolution layer

(i.e., Conv-3f ), and a sub-pixel layer [18] to generate the

super-resolved left image I
SR
L .

3.2. Inline Occlusion Handling Scheme

By using biPAM, the stereo correspondence can be gen-

erated in a symmetric manner. More importantly, the oc-

clusions can be derived by checking the stereo consistency

using the attention maps MR→L and ML→R.

Here, we use a toy example in Fig. 2 to illustrate how

occlusions are implicitly encoded in the parallax attention

maps. Given a pair of stereo images IL and IR ∈ R
H×W ,

parallax attention maps MR→L,ML→R ∈ R
H×W×W can

be generated. As illustrated in Fig. 2(a), we visualize a

profile of MR→L at height h (i.e., MR→L(h, :, :)), which

corresponds to the yellow strokes in the left and right im-

ages. Note that, black strokes represent occluded regions.
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It can be observed from Fig. 2(a) that: 1) Occlusions occur

near object edges where the depth values change sudden-

ly, or occur near image boundaries (more specifically, left

boundary of the left view and right boundary of the right

view). 2) The occluded regions correspond to the empty in-

tervals in the attention maps since their counterparts in the

other view are unavailable. These two observations demon-

strate that occlusions are implicitly encoded in the parallax

attention maps and can be calculated by checking the cy-

cle consistency using MR→L and ML→R. Specifically, the

right image can be converted into the left side according to

IR→L = MR→L ⊗ IR, where ⊗ represents the batch-wise

matrix multiplication. As shown in Fig. 2(b), the product

of a slice of the right image (i.e., IR(h, :)) and the corre-

sponding profile of the attention map (i.e., MR→L(h, :, :))
determines the slice of the converted left image at the same

height (i.e., IR→L(h, :)). All these resulting slices are con-

catenated to produce IR→L.

Note that, softmax normalization has been performed a-

long the third dimension of MR→L and ML→R. Therefore,

MR→L(h,w1, w2) can be considered as the matching pos-

sibility between IR(h,w2) and IL(h,w1). Furthermore, the

possibility that IL(h,w1) is first converted to IR and then

re-converted to IL(h,w1) can be calculated according to

PL(h,w1) =

W
∑

w2=1

MR→L(h,w1, w2) ·ML→R(h,w2, w1).

(7)

Note that, PL(h,w1) is close to 0 if point (h,w1) is oc-

cluded in the right view. Consequently, PL can be used to

represent occlusions in the left image. Due to noise and rec-

tification errors in stereo images, we relax the constraint in

Eq. 7 by ±2 pixels in this work:

P
′
L(h,w1) =

2
∑

δ=−2

W
∑

w2=1

MR→L(h,w1 + δ, w2)·

ML→R(h,w2, w1).

(8)

To maintain training stability, the left valid mask VL is

calculated according to VL = tanh(τP′
L), where τ was em-

pirically set to 5 in our implementation. The right valid

mask VR can be generated following a similar way. Fig-

ure 3 shows some examples of the generated valid masks.

3.3. Losses

The overall loss function of our network is defined as:

L = LSR + λ(Lres
photo + Lres

cycle + Lsmooth + Lres
cons), (9)

where LSR, Lres
photo, Lres

cycle, Lsmooth, and Lres
cons represent SR

loss, residual photometric loss, residual cycle loss, smooth-

ness loss, and residual stereo consistency loss, respectively.

λ represents the weight of the regularization term and was

Middlebury KITTI2015

Flickr1024

left

left

left

left left

right

right right

right

right

Figure 3: An illustration of valid masks generated by our

occlusion handling scheme. Red regions have small values

and represent heavy occlusions.

empirically set to 0.1 in this work. The SR loss is defined as

the L1 distance between the super-resolved and groundtruth

stereo images:

LSR =‖ I
SR
L − I

HR
L ‖1 + ‖ I

SR
R − I

HR
R ‖1, (10)

where ISR
L and I

SR
R represent the super-resolved left and right

images, IHR
L and I

HR
R represent their groundtruth HR images.

Due to exposure difference and non-Lambertain sur-

faces, the illuminance intensity between stereo images can

vary significantly (see Fig. 4). In these cases, the photo-

metric loss and cycle loss used in [25, 23, 32, 19] can lead

to a mismatch problem. To handle this problem, we cal-

culate these losses using residual images to improve their

robustness to illuminance changes. Specifically, we intro-

duce XL =
∣

∣I
HR
L − I

LR
L ↑

∣

∣ ↓ and XR =
∣

∣I
HR
R − I

LR
R ↑

∣

∣ ↓,

where ↑ and ↓ represent bicubic upsampling and downsam-

pling, and XL and XR represent the absolute values of the

left and right residual images, respectively. Consequently,

the residual photometric loss and residual cycle consistency

loss can be formulated as:

Lres
photo =‖ VL ⊙ (XL −MR→ L ⊗XR) ‖1

+ ‖ VR ⊙ (XR −ML→R ⊗XL) ‖1,
(11)

Lres
cycle =‖ VL ⊙ (XL −MR→L ⊗ML→R ⊗XL) ‖1

+ ‖ VR ⊙ (XR −ML→R ⊗MR→L ⊗XR) ‖1 .
(12)

Residual photometric and cycle losses introduce two

benefits. First, since illuminance components can be e-

liminated, more consistent and illuminance-robust stereo

correspondence can be learned by our biPAM. Second, s-

ince residual images mainly contain high-frequency com-

ponents, our biPAM can pay more attention to texture-rich

regions, which is contributive to SR performance.

Apart from the aforementioned losses, we also employ s-

moothness loss to encourage smoothness in correspondence

space. That is,

Lsmooth =
∑

M

∑

i,j,k

(‖ M(i, j, k)−M(i+ 1, j, k) ‖1

+ ‖ M(i, j, k)−M(i, j + 1, k + 1) ‖1),

(13)
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Figure 4: An illustration of illuminance changes in stereo

image pairs. View our demo video for better visualization.

where M ∈ {MR→L,ML→R}. Here, ‖ MR→L(i, j, k) −
MR→L(i+1, j, k) ‖1 enforces the correspondence between

IR(i+1, k) and IL(i+1, j) to be close to the correspondence

between IR(i, k) and IL(i, j).
Finally, we introduce residual stereo consistency loss to

achieve stereo consistency between super-resolved left and

right images. Specifically, the LR residuals between super-

resolved images and groundtruth images are calculated ac-

cording to YL =
∣

∣I
HR
L − I

SR
L

∣

∣ ↓ and YR =
∣

∣I
HR
R − I

SR
R

∣

∣ ↓,

respectively, and the residual stereo consistency loss is de-

fined as

Lres
cons =‖ VL ⊙ (YL −MR→L ⊗YR) ‖1

+ ‖ VR ⊙ (YR −ML→R ⊗YL) ‖1 .
(14)

4. Experiments

In this section, we first introduce the datasets and imple-

mentation details, then perform ablation studies to validate

our design choices. Finally, we compare our iPASSR to sev-

eral state-of-the-art SISR and stereo image SR methods.

4.1. Datasets and Implementation Details

We used 800 images from the training set of Flickr1024

[27] and 60 images from Middlebury [17] as the training

data. For images from the Middlebury dataset, we followed

[6, 25, 32] to perform bicubic downsampling with a fac-

tor of 2 to generate HR images. For test, we followed

[6, 25, 32] to generate our test set by using 5 images from

Middlebury [17], 20 images from KITTI 2012 [4] and 20

images from KITTI 2015 [14]. Moreover, we used the test

set of Flickr1024 [27] for additional evaluation. We used

the bicubic downsampling approach to generate LR images.

During the training phase, the generated LR images were

cropped into patches of size 30 × 90 with a stride of 20,

and their HR counterparts were cropped accordingly. These

patches were randomly flipped horizontally and vertically

for data augmentation.

Peak signal-to-noise ratio (PSNR) and structural simi-

larity (SSIM) were used as quantitative metrics. To achieve

fair comparison with [6, 25, 32], we followed these methods

to calculate PSNR and SSIM on the left views with their left

boundaries (64 pixels) being cropped. Moreover, to com-

prehensively evaluate the performance of stereo image SR,

Table 1: Results achieved on the KITTI 2015 dataset by our

method with different cross-view information incorporation

schemes for 4×SR. Here, PSNR/SSIM of the cropped left

views are reported.

Models Inputs PSNR/SSIM

iPASSR with single input Left 25.316/0.7753

iPASSR with replicated inputs Left-Left 25.400/0.7775

Asymmetric iPASSR Left-Right 25.548/0.7829

iPASSR Left-Right 25.615/0.7850

we also report the average PSNR and SSIM scores on stere-

o image pairs (i.e., (Left + Right) /2) without any boundary

cropping.

Our network was implemented in PyTorch on a PC with

two Nvidia RTX 2080Ti GPUs. All models were optimized

using the Adam method with β1 = 0.9, β2 = 0.999 and a

batch size of 36. The initial learning rate was set to 2×10−4

and reduced to half after every 30 epochs. The training was

stopped after 80 epochs since more epochs do not provide

further consistent improvement.

4.2. Ablation Study

Cross-view information. We removed biPAM and re-

trained a single branch of our iPASSR on the same training

set as our original network. In addition, we also used pairs

of replicated left images as inputs to directly perform infer-

ence using our original network. As shown in Table 1, the

network trained with single images (i.e., iPASSR with sin-

gle input) suffers a decrease of 0.299 dB in PSNR as com-

pared to the original network. If replicated left images were

used as inputs, the performance of the variant (i.e., iPASSR

with replicated inputs) is also notably inferior to our orig-

inal network. These results demonstrate the importance of

cross-view information for stereo image SR.

Siamese network architecture. We investigate the ben-

efits introduced by our Siamese network architecture by re-

training the network with stereo images as inputs but only

super-resolving the left view (i.e., Asymmetric iPASSR). It

can be observed in Table 1 that the PSNR score achieved by

Asymmetric iPASSR is marginally lower than our iPASS-

R (25.548 v.s. 25.615). That is because, the symmetric

Siamese network structure can help to better exploit the

cross-view information to improve the SR performance.

Losses. We retrained our network using different loss-

es to validate their effectiveness. As shown in Table 2, the

PSNR value of our network is decreased from 25.615 to

25.527 if only the SR loss is considered. That is, our net-

work cannot well incorporate cross-view information with-

out using the additional losses for regularization. In con-

trast, the SR performance is gradually improved if the pho-

tometric loss, cycle loss, smoothness loss, and stereo con-

sistency loss are added. Note that, a 0.159 dB PSNR im-

provement is introduced when the network is trained with

5
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Table 2: Results achieved on the KITTI 2015 dataset [14]

by iPASSR with different losses for 4×SR. “Res” represents

Lphoto, Lcycle, and Lcons calculated on residual images. Here,

PSNR/SSIM values of the cropped left views are reported.

LSR Lphoto Lsmooth Lcycle Lcons Res PSNR/SSIM

X 25.527/0.7827

X X X 25.535/0.7815

X X X X 25.481/0.7795

X X X X 25.552/0.7839

X X X X X 25.570/0.7839

X X X X X 25.456/0.7775

X X X X X X 25.615/0.7850

(a1) (b1) (c1) (e1) (f1)

(a2) (b2) (c2) (e2) (f2)

Motorcycle

Sword2

(d1)

(d2)

Figure 5: Visualization of attention maps generated by our

iPASSR trained with different losses. (a) LSR, (b) LSR +
λLres

photo, (c) LSR +λ(Lres
photo +Lsmooth), (d) LSR +λ(Lres

photo +
Lres

cycle), (e) LSR + λ(Lres
photo + Lsmooth + Lres

cycle), (f) LSR +
λ(Lres

photo + Lsmooth + Lres
cycle + Lres

cons).

these losses calculated on residual images. As demonstrat-

ed in Section 3.3, by applying these residual losses, the illu-

minance changes between stereo images can be eliminated

and the high-frequency texture regions can be focused on.

Moreover, we visualize the attention maps of scene Mo-

torcycle and Sword2 [17] in Fig. 5. It can be observed

that the attention maps trained only with the SR loss suffer

from heavy noise (Fig. 5 (a1)) and missing correspondence

(Fig. 5 (a2)). When the residual photometric loss is intro-

duced, the noise can be reduced but the problem of miss-

ing correspondence cannot be handled. That is because, the

initial score map S has similar values at different location-

s in textureless regions (e.g., regions marked by the blue

stroke in scene Sword2). Consequently, a single point in the

left view can be correlated to a number of points along the

epipolar line in the right view, resulting in ambiguities in at-

tention maps. When the smoothness loss is added, noise can

be eliminated but the problem of missing correspondence

becomes more severe (Figs. 5(c1) and (c2)). In contrast, if

the residual cycle loss is added, the missing correspondence

problem can be handled but the noise cannot be reduced

(Fig. 5(d1)). This problem can be handled by introducing

both smoothness loss and residual cycle loss (Figs. 5 (e1)

and (e2)). Finally, the proposed residual stereo consistency

loss can further enhance the stereo consistency to produce

accurate and reasonable attention maps.

Whiten layer. We validate the effectiveness of whiten

layers by removing them from our biPAM (i.e., iPASSR w/o

whiten layer). As shown in Table 3, the average PSNR value

Table 3: Results achieved on the KITTI 2015 dataset by i-

PASSR with different settings in biPAM for 4×SR. Here,

PSNR/SSIM values of the cropped left images (i.e., Left)

and a pair of stereo images (i.e., (Left + Right) /2) are re-

ported.

Models Left (Left + Right) /2
iPASSR w/o whiten layer 25.535/0.7830 26.125/0.8037

iPASSR w/o using valid mask 25.574/0.7843 26.179/0.8051

iPASSR 25.615/0.7850 26.316/0.8084

Bicubic EDSR RDN RCAN StereoSR PASSRnet iPASSR HR

Bicubic EDSR RDN RCAN StereoSR PASSRnet iPASSR HR
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Figure 6: Visual results (2×) achieved by different methods

on the KITTI 2015 (top) and Middlebury datasets (bottom).

suffers a decrease of 0.191 dB if whiten layers are removed.

That is because, the whiten layers can help to generate ro-

bust pairwise correspondence which is beneficial to stereo

image SR.

Valid mask. We demonstrate the effectiveness of valid

mask by removing it from both our network and losses (i.e.,

iPASSR w/o valid mask). That is, the converted features in

biPAM are directly concatenated with the original features

on the target side. Meanwhile, all the losses are applied

equally to all spatial locations without considering occlu-

sions. It can be observed in Table 3 that the average PSNR

value suffers a decrease of 0.137 dB (26.179 v.s. 26.316) if

the valid mask is not used.

4.3. Comparison to stateofthearts methods

In this section, we compare our iPASSR to several state-

of-the-art methods, including four SISR methods i.e., VD-

SR [8], EDSR [12], RDN [38], RCAN [36]) and three stereo

image SR methods2 (i.e., StereoSR [6], PASSRnet [25], SR-

Res+SAM [32]). Note that, we retrained all SISR methods

[8, 12, 38, 36] on our training set for fair comparison.

Quantitative results. As shown in Table 4, our iPASSR

achieves the highest PSNR and SSIM values on the KIT-

TI 2012 and KITTI 2015 datasets for 2× and 4× SR. For

the Middlebury and Flickr1024 datasets, our iPASSR out-

2We do not compare our method to SPAMnet [19] and DASSR [29]

because: (1) their codes and models are unavailable, (2) The evaluation

schemes in [19, 29] are different from those in [6, 25, 32], so that we

cannot directly copy the PSNR and SSIM scores in their papers.
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Table 4: Quantitative results achieved by different methods for 2× and 4×SR. #Params. represents the number of parameters

of the networks. Here, PSNR/SSIM values achieved on both the cropped left images (i.e., Left) and a pair of stereo images

(i.e., (Left + Right) /2) are reported. The best results are in red and the second best results are in blue.

Method Scale #Params.
Left (Left + Right) /2

KITTI 2012 KITTI 2015 Middlebury KITTI 2012 KITTI 2015 Middlebury Flickr1024

Bicubic 2× — 28.44/0.8808 27.81/0.8814 30.46/0.8979 28.51/0.8842 28.61/0.8973 30.60/0.8990 24.94/0.8186

VDSR [8] 2× 0.66M 30.17/0.9062 28.99/0.9038 32.66/0.9101 30.30/0.9089 29.78/0.9150 32.77/0.9102 25.60/0.8534

EDSR [12] 2× 38.6M 30.83/0.9199 29.94/0.9231 34.84/0.9489 30.96/0.9228 30.73/0.9335 34.95/0.9492 28.66/0.9087

RDN [38] 2× 22.0M 30.81/0.9197 29.91/0.9224 34.85/0.9488 30.94/0.9227 30.70/0.9330 34.94/0.9491 28.64/0.9084

RCAN [36] 2× 15.3M 30.88/0.9202 29.97/0.9231 34.80/0.9482 31.02/0.9232 30.77/0.9336 34.90/0.9486 28.63/0.9082

StereoSR [6] 2× 1.08M 29.42/0.9040 28.53/0.9038 33.15/0.9343 29.51/0.9073 29.33/0.9168 33.23/0.9348 25.96/0.8599

PASSRnet [25] 2× 1.37M 30.68/0.9159 29.81/0.9191 34.13/0.9421 30.81/0.9190 30.60/0.9300 34.23/0.9422 28.38/0.9038

iPASSR (ours) 2× 1.37M 30.97/0.9210 30.01/0.9234 34.41/0.9454 31.11/0.9240 30.81/0.9340 34.51/0.9454 28.60/0.9097

Bicubic 4× — 24.52/0.7310 23.79/0.7072 26.27/0.7553 24.58/0.7372 24.38/0.7340 26.40/0.7572 21.82/0.6293

VDSR [8] 4× 0.66M 25.54/0.7662 24.68/0.7456 27.60/0.7933 25.60/0.7722 25.32/0.7703 27.69/0.7941 22.46/0.6718

EDSR [12] 4× 38.9M 26.26/0.7954 25.38/0.7811 29.15/0.8383 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285

RDN [38] 4× 22.0M 26.23/0.7952 25.37/0.7813 29.15/0.8387 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295

RCAN [36] 4× 15.4M 26.36/0.7968 25.53/0.7836 29.20/0.8381 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286

PASSRnet 4× 1.42M 26.26/0.7919 25.41/0.7772 28.61/0.8232 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195

SRRes+SAM [32] 4× 1.73M 26.35/0.7957 25.55/0.7825 28.76/0.8287 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233

iPASSR (ours) 4× 1.42M 26.47/0.7993 25.61/0.7850 29.07/0.8363 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287

Note: We do not present 2×SR results of SRRes+SAM [32] and 4×SR results of StereoSR [6] since their models are unavailable.

Bicubic EDSR RDN RCAN PASSRnet SRRes+SAM iPASSR HR

Bicubic EDSR RDN RCAN PASSRnet SRRes+SAM iPASSR HR
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Figure 7: Visual results (4×) achieved by different methods

on the KITTI 2015 (top) and Flickr1024 datasets (bottom).

performs all stereo image SR methods, but is slightly infe-

rior to EDSR, RDN, and RCAN. Note that, the model sizes

of our iPASSR are comparable to PASSRnet but significant-

ly smaller than EDSR, RDN and RCAN3. Although a large

model enables rich and hierarchical feature representation

which can boost the SR performance, we decided to keep

our iPASSR lightweight and improve SR performance by

exploiting cross-view information in stereo images.

Qualitative results. Qualitative results for 2× and 4×
SR are shown in Figs. 6 and 7, respectively. Readers can

view this demo video for better comparison. Since input L-

R images are degraded by the downsampling operation, the

SR process is highly ill-posed especially for 4×SR. In such

cases, SISR methods only use spatial information and can-

3It is worth noting that DRCN [9], DRRN [20] and LapSRN [10] which

have comparable number of parameters as our iPASSR were not included

for comparison since they have already been outperformed by PASSRnet

as demonstrated in [25]. In this paper, we investigate the performance gap

between our method and the top-performing SISR methods [12, 38, 36],

which is the first attempt in this area. We hope these comparative results

can inspire the future research of stereo image SR.

Bicubic EDSR RDN RCAN StereoSR PASSRnet iPASSR

Bicubic EDSR RDN RCAN StereoSR PASSRnet iPASSRFlickr1024_test_0023

Le
ft

R
ig
h
t

Le
ft

R
ig
h
t

Figure 8: Visual results achieved by different methods on

real-world images [27] for 2×SR.

not well recover the missing details. In contrast, our iPASSR

use cross-view information to produce more faithful details

with fewer artifacts. Moreover, the images generated by our

iPASSR are more stereo-consistent than those generated by

PASSRnet and SRRes+SAM.

Performance on real-world images. We test the perfor-

mance of different methods on real-world stereo images by

directly applying them to an HR image pair from the Flick-

r1024 dataset [27]. As shown in Fig. 8, our iPASSR achieves

better perceptual quality than the compared methods. It is

worth noting that, left and right views of an image pair may

suffer different degrees of degradation in real-world cases

(e.g., in the region marked by the red box, the left image

suffers more severe blurs than the right one). SISR meth-

ods cannot well recover the missing details by using the

intra-view information only. In contrast, our iPASSR ben-

efits from the cross-view information and produce images

with less blurring artifacts.

Benefits to disparity estimation. As stereo-consistent

and HR image pairs are beneficial to disparity estimation,

we investigate this benefit by using the super-resolved stere-

o images for disparity estimation. We performed 4× down-

sampling on the images from the test sets of the Scene-
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Table 5: Quantitative results achieved by GwcNet [5] on 4×
SR stereo images. All these metrics were averaged on the

test set of the SceneFlow dataset [13], where lower values

indicate better performance. Best results are in red and the

second best results are blue.

Method EPE >1px (%) >2px (%) >3px (%)

Bicubic 1.196 11.5 5.96 4.28

VDSR [8] 1.068 10.8 5.37 3.80

PASSRnet [25, 23] 1.019 11.5 5.44 3.72

SRRes+SAM [32] 0.991 11.1 5.18 3.57

iPASSR (ours) 0.949 10.0 4.79 3.35

HR 0.667 6.77 3.34 2.38

GT VDSR PASSRnet SRRes+SAM iPASSR HRTEST-C-0003

EPE=1.002 EPE=0.763EPE=0.890EPE=0.983EPE=0.991

GT VDSR PASSRnet SRRes+SAM iPASSR HRTEST-C-0112

EPE=1.488 EPE=0.991EPE=1.295EPE=1.499EPE=1.738

GT VDSR PASSRnet SRRes+SAM iPASSR HRTEST-C-0115

EPE=1.025 EPE=0.631EPE=0.863EPE=1.027EPE=1.050

GT VDSR PASSRnet SRRes+SAM iPASSR HRTEST-C-0148

EPE=1.600 EPE=1.007EPE=1.414EPE=1.856EPE=1.548

GT VDSR PASSRnet SRRes+SAM iPASSR HRTEST-C-0139

EPE=1.265 EPE=0.863EPE=1.048EPE=1.320EPE=1.304

GT VDSR PASSRnet SRRes+SAM iPASSR HRTEST-C-0054

EPE=0.885 EPE=0.509EPE=0.697EPE=0.858EPE=0.883

Figure 9: Qualitative results achieved by GwcNet [5] using

4×SR stereo images generated by different SR methods.

Flow dataset4 [13], and used different methods to super-

resolve these LR images to their original resolution. Then,

we applied GwcNet [5] to these super-resolved stereo im-

ages for disparity estimation. The original HR images and

bicubicly upsampled images were used to produce the up-

per bound and the baseline results, respectively. End-point-

error (EPE) and t-pixel error rate (> tpx) were used as

quantitative metrics to evaluate the estimated disparity. As

shown in Table 5, a 0.529 (i.e., 79.3%) increase in EPE

is introduced when HR input images are replaced with the

bicubicly interpolated ones. It demonstrates that the details

(e.g., edges and textures) in the stereo images are impor-

tant to disparity estimation. Note that, our iPASSR can bet-

ter reduce the error by providing high-quality and stereo-

consistent stereo images. The visual examples in Fig 9

demonstrate that the disparity map corresponding to our

method is more accurate and close to the one estimated from

HR stereo images.

4.4. Discussion

During the retraining of SISR methods, we noticed that

the training dataset has an influence on the SR performance.

To investigate the influence of training datasets, we used

EDSR and RCAN developed on different datasets to perfor-

4All 145 scenes under path “./TEST/C/” were used as the test set in

this paper. For stereo images of each scene, only the first frame (i.e.,

“./left/0006.png” and “./right/0006.png”) was used.

Table 6: Comparative results achieved by EDSR and RCAN

with different training sets for both 2× and 4×SR.

Method KITTI2012 KITTI2015 Middlebury Flickr1024

EDSR div2k 2× 31.06/0.925 30.77/0.935 35.34/0.951 28.58/0.909

EDSR stereo 2× 30.95/0.923 30.73/0.934 34.95/0.949 28.66/0.908

RCAN div2k 2× 31.16/0.926 30.88/0.945 35.42/0.952 28.64/0.910

RCAN stereo 2× 31.02/0.923 30.77/0.934 34.90/0.949 28.63/0.908

EDSR div2k 4× 26.62/0.809 26.39/0.814 29.48/0.842 23.58/0.735

EDSR stereo 4× 26.35/0.802 26.04/0.804 29.23/0.840 23.46/0.729

RCAN div2k 4× 26.65/0.809 26.45/0.814 29.56/0.845 23.60/0.737

RCAN stereo 4× 26.44/0.803 26.22/0.807 29.30/0.840 23.48/0.729

Table 7: No-reference perceptual quality scores of different

SR datasets. Both the average value and the standard devi-

ation are reported. Lower scores of BRISQUE [15], NIQE

[16] and higher scores of CEIQ [30] indicate better quality.

Dataset BRISQUE (↓) NIQE (↓) CEIQ (↑)

KITTI 2012 17.30 (± 6.60) 3.22 (±0.42) 3.31 (±0.14)

KITTI 2015 26.41 (± 5.26) 3.23 (±0.48) 3.34 (±0.19)

Middlebury 14.88 (± 9.19) 3.77 (±0.99) 3.31 (±0.21)

Flickr1024 19.10 (±13.57) 3.40 (±0.99) 3.25 (±0.36)

DIV2K 11.40 (±11.98) 2.99 (±1.05) 3.36 (±0.30)

m stereo image SR. As shown in Table 6, EDSR and R-

CAN achieve better performance when trained on the DI-

V2K dataset [21]. That is because, the DIV2K dataset was

specifically developed for SISR and has higher-quality im-

ages than existing stereo image datasets. To demonstrate

this claim, we use three no-reference image quality assess-

ment metrics [15, 16, 30] to evaluate the image quality of

these datasets. As shown in Table 7, the DIV2K dataset

achieves the best results in terms of all the metrics. It

demonstrates that high-quality training images can intro-

duce a notable performance gain to deep SR networks.

5. Conclusion

In this paper, we proposed a method to exploit symmetry

cues for stereo image SR. We first proposed a bi-directional

parallax attention module (biPAM) and an inline occlusion

handling scheme to effectively interact cross-view informa-

tion, and then equipped biPAM to a Siamese network to de-

velop our iPASSR. Moreover, we proposed several residual

losses to achieve robustness to illuminance changes. Exten-

sive ablation studies were performed to validate the effec-

tiveness of our design choices, and comparative results on

four public datasets demonstrated the state-of-the-art per-

formance of our method. Furthermore, we made an in-depth

analysis on the benefits of stereo image SR to disparity esti-

mation, and the influence of training datasets to image SR.
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