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Abstract

Many deep learning based video compression artifact

removal algorithms have been proposed to recover high-

quality videos from low-quality compressed videos. Re-

cently, methods were proposed to mine spatiotemporal in-

formation via utilizing multiple neighboring frames as ref-

erence frames. However, these post-processing methods

take advantage of adjacent frames directly, but neglect the

information of the video itself, which can be exploited. In

this paper, we propose an effective reference frame proposal

strategy to boost the performance of the existing multi-

frame approaches. Besides, we introduce a loss based on

fast Fourier transformation (FFT) to further improve the ef-

fectiveness of restoration. Experimental results show that

our method achieves better fidelity and perceptual perfor-

mance on MFQE 2.0 dataset than the state-of-the-art meth-

ods. And our method won Track 1 and Track 2, and was

ranked the 2nd in Track 3 of NTIRE 2021 Quality en-

hancement of heavily compressed videos Challenge.

1. Instruction

To handle the problems of huge storage cost and lim-

ited bandwidth while storing and transmitting multimedia

data, lossy compression algorithms are commonly used to

compress multimedia data (e.g. images, audios and videos).

These irreversible compression algorithms often introduce

compression artifacts that degrade the quality of experience

(QoE), especially for videos. Accordingly, video compres-

sion artifact removal, which aims to reduce the introduced

artifact and recover details for lossy compressed videos, be-

comes a hot topic in the multimedia field [11, 28, 7].

With the success of deep learning in text, image, and

video processing, many deep neural network based com-
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Figure 1. Examples of high-frequency recovery. These vi-

sual cases are compressed frame (top left), prediction of

STDF (top right), prediction of a model trained with L1 + FFT

loss (ours) (bottom left), and the ground truth (bottom right).

pression artifact removal works have emerged and achieved

significant performance improvement. The rapid progress

in this low-level task can be attributed to deep neural net-

works [8, 37, 15, 4, 12], various video compression pri-

ors [6, 14, 33], and additional temporal information [34, 18,

29, 11, 28, 19, 7], respectively. Among them, [8, 15, 37]

are designed for JPEG compression artifact removal and

can be adopted for videos by restoring each frame indi-

vidually. [6, 33, 14] are proposed based on the fact that

I/P/B frames are compressed with different strategies and

should be restored by individual models. These methods

utilize a single frame as input but neglect temporal depen-

dency with neighboring frames. To remedy this drawback,

[34, 11] exploit two motion-compensated nearest peak-



quality frames (PQFs) as reference frames, [18, 19] develop

the deep Kalman filter network and capture spatiotemporal

information from preceding frames, and [28, 7] employ the

non-local ConvLSTM and deformable convolution respec-

tively, to capture dependency among multiple neighboring

frames. However, using only preceding frames omits the

information from the followings; restoration with a pair of

nearby PQFs leads to the missing of high-quality details

from some other frames (as mentioned in [28]). Recent

methods [28, 7] circumvent this problem but directly utilize

the multiple adjacent frames as reference frames.

This paper is a summary of our method developed for

NTIRE 2021 Quality enhancement of heavily compressed

videos Challenge. We formulate an effective Reference

Frame Proposal (abbreviated as RFP) strategy as an incre-

mental technique equipped for methods incorporating mul-

tiple frames in this task. It is natural for RFP to be applied

to [28, 7]. Considering that [28] suffers severe computation

and memory costs and is hard to be extended to very deep

models used for the Challenge, we applied our RFP to an-

other state-of-the-art method STDF [7] during the competi-

tion. Besides, as shown in Fig. 1, over-smoothing harms

the performance of enhanced frames a lot. Details and

textures are almost removed after enhanced by STDF. The

over-smoothing phenomenon indicates that high-frequency

details are dropped [4, 5, 20, 17], thus we introduce an ad-

ditional optimization objective based on fast Fourier trans-

formation (FFT) to supervise the learning of frequency do-

main information. That is, we exploit both spatial and fre-

quency supervision signals to train the model and comple-

ment missing details. Empirical experiments show that both

the RFP strategy and the FFT loss lead to significant perfor-

mance improvement, and combining these two techniques

can further boost the performance. Moreover, we adopt

a very deep Quality Enhancement (QE) module based on

[36, 9] in the competition. In summary, the contributions of

this work are as follows:

1. We propose an effective Reference Frame Proposal

strategy by utilizing the neighboring compressed

frames, which can be directly equipped for existing

multi-frame approaches.

2. We introduce a loss based on FFT in this task to com-

plement the missing high-frequency details.

3. We adopt an effective architecture for QE module,

which can perform superior results with similar FLOPs

and be extended to very deep models.

4. We conduct extensive experiments over MFQE 2.0

dataset and achieve state-of-the-art performance. Our

solution is the winner of Track 1 and Track 2 - (Fixed

QP, Fidelity / Perceptual), and won the 2nd place in

Track 3 - (Fixed bit-rate Fidelity) of NTIRE 2021

Quality enhancement of heavily compressed videos

Challenge.

2. Related Work

In this section, we review the related work of compres-

sion artifact reduction based on deep-learning techniques.

Following the success of deep learning on ImageNet [21],

many methods with neural networks have been proposed in

this long-standing low-level task. According to the utiliza-

tion of domain knowledge and the number of input frames,

existing methods can be categorized into three groups:

image-based approaches, single-frame, and multi-frame ap-

proaches, respectively.

Image-based Approaches. These approaches are pro-

posed for image compression artifact removal [8, 37, 15,

10, 35, 4, 13, 16, 39]. When applied to the compressed

videos, these methods are fed with a single frame and en-

hance it without knowledge of the video compression algo-

rithms. For example, ARCNN [8] is the first work proposed

for reducing JPEG compression artifacts. There are four

convolutional layers without any pooling or fully connected

layers. DnCNN [37] is another typical method that ex-

ploits deeper networks with batch normalization and resid-

ual learning. More recently, [35, 4] enhance visual quality

via wavelet/frequency domain information. [16, 39] utilize

the non-local mechanism for restoration in low-level tasks.

Single-frame Approaches. Some of such ap-

proaches [25, 6, 33, 32] employ knowledge of different

coding modes in video compression algorithms, e.g. I/P/B

frames. However, these methods omit the temporal infor-

mation in frame sequence, and they are ineffective in han-

dling some kinds of temporal noise, such as mosquito noise,

edge floating, and flickering. Specifically, DS-CNN [33]

and QE-CNN [32] were proposed with two independent

models, and they are responsible for intra coding and inter

coding modes, respectively.

Multi-frame Approaches. [18, 19] model this vision

task as a Kalman filtering procedure, enhancing the frame

sequence recursively and capturing temporal information

from enhanced preceding frames. [18, 19] further incor-

porate quantized prediction residual in compressed code

streams as strong prior knowledge. However, exploiting

temporal information from only preceding frames is incom-

plete because B frames are compressed via preceding and

following frames. Given that the quality of compressed

frames in videos fluctuates dramatically, [34, 11] proposed

MFQE to build temporal dependency with nearby higher-

quality frames. In the MFQE series methods, a classifier is

first employed for detecting PQFs, then PQFs are enhanced

without reference frames, while non-PQFs take these PQFs

as reference frames, compensate reference frames with op-

tical flow and utilize a slow-fused strategy to capture spatial
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Figure 2. The framework of our method.

and temporal information from PQFs. Later, [29] was pro-

posed with a modified convolutional LSTM. Due to the lim-

itation of motion flow and the observation that high-quality

patch also exists in nearby low-quality frames, [28, 7] uti-

lize the non-local mechanism or deformable convolutional

network for capturing spatiotemporal dependency in multi-

ple adjacent frames.

Difference between Our Method and the Existing

Multi-frame Ones. Mining spatiotemporal information

from multiple frames becomes a trend for the quality en-

hancement of compressed videos. However, the state-of-

the-art methods select reference frames in a naive form. In

our method, a guidance technique is introduced for refer-

ence frame proposals in the preliminary step. Besides, to

remedy the over-smoothing phenomenon in this task, an

additional loss based on FFT is developed to help recover

high-frequency details. Furthermore, we utilize a very deep

model based on [36, 9] in the QE module.

3. Method

As for multi-frame approaches, most of them can be

concluded as three essential components: Reference Frame

Proposal (RFP) module, Spatio-Temporal Feature Fusion

(STFF) module, and Quality Enhancement (QE) module.

Recently, multi-frame approaches focus on improving the

STFF module but still employ a naive reference frame pro-

posal strategy in the RFP module. Thus, in this paper, we

pay more attention to the other modules and loss function.

3.1. Reference Frame Proposal

The goal of video compression artifact reduction is

to produce a high-quality frame Ŷt from a compressed

frame Xt of the original frame (the ground truth) Yt,

where Xt ∈ R
C×H×W , C is the number of chan-

nels of a single frame, H and W are the width and

height of input videos. In the RFP module, we need

to select 2R frames from the compressed sequence

X = {X1, X2, · · · , Xt, · · · , XT } as reference frames

{Xt+t1 , · · · , Xt+t2R} for the target frame Xt. Here,

the first R frames {Xt+t1 , · · · , Xt+tR} are the preceding
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Figure 3. The architecture of Ada-WDSR-A-Block.

frames of the target frame Xt, {Xt+tR+1
, · · · , Xt+t2R} are

the following frames, and R is the number of reference

frames in one direction. For the sake of simplicity, we take

the preceding frames as example in the following.

Assume that {Xt+t1 , ..., Xt+tR} is an ordered sequence,

and t1 < · · · < tR < 0. Then, the rules of RFP can be

described as follows:

1) As the preliminary step, we first extract the metadata

from the HEVC bit-stream with HM-Decoder. The encoder

configurations in Track 1/2 and Track 3 are different. Thus,

we obtain the candidate frames for RFP with different meta-

data from bit-stream. In Track 1/2, we set the frame whose

QP score is lower than that of the two adjacent frames as

candidate frame. While in Track 3, all I/P frames are re-

garded as candidate frames.

2) We fixedly select adjacent frame Xt−1 of Xt as the

first reference frame by setting tR = −1.

3) We recursively take the next preceding candidate

frame of the last selected reference frame as a new refer-

ence frame until there are R reference frames or no candi-

date frames are left.

4) If there is no more candidate frame and the number of

selected reference frames is smaller than R, then repeatedly

pad it with the last selected frame until there are R frames.

3.2. Improved Quality Enhancement Module

The gist of the QE module is to take the fused feature

from the STFF module (i.e., the STDF module in Fig. 2) as

input and produce a residual, which is used together with

the compressed frame to reconstruct the enhanced frame.

Apart from the STFF module, the QE module is another



critical factor for artifact reduction because it needs to ex-

plore spatiotemporal information and complement intro-

duced artifacts. For a fair comparison, we employ the same

QE module on the benchmark dataset MFQE 2.0. Further-

more, we adopt an Improved Quality Enhancement (IQE)

module, which is extended to a very deep version to achieve

better results in the challenge.

The framework of the IQE module is shown in Fig. 2.

First, we utilize a global residual connection between

the head and tail convolutional layers. Parallel to the

global connection, the architecture consists of a down-

sample module, a deep backbone, and an up-sample mod-

ule. Among them, the down-sample module is composed

of an inverse pixel shuffle layer [22] and a convolutional

layer to decrease the spatial resolution, and the up-sample

module utilizes an architecture contrast to that of the down-

sample module. Between them, there is a skip connection

with fixed residual scale β = 0.2 and a stack of Adaptive

WDSR-A-Blocks [36] (Ada-WDSR-A-Block) followed by

a convolutional layer.

The Ada-WDSR-A-Blocks are utilized to explore the

complementary information for the compressed frame in

our paper. The structure of Ada-WDSR-A-Block is illus-

trated in Fig. 3. For all Ada-WDSR-Blocks, scale r is set to

4. Comparing with WDSR-A-Blocks, there are two addi-

tional learnable parameters α and β in Ada-WDSR-Block,

which are initialized with 1 and 0.2, respectively. Addi-

tionally, we deploy a channel-attention layer [38] before re-

scaling the body stream in Ada-WDSR-A-Blocks.

3.3. Fast Fourier Transformation loss

To complement the missing high-frequency details

caused by over-smoothing, we introduce a novel supervi-

sion signal based on fast Fourier transformation as a com-

plementary loss. Concretely, we apply the fast Fourier

transformation to both the ground truth Yt and the predic-

tion of the QE module, and then employ L1 loss on both

amplitude and phase of them. The amplitude A(·) and the

phase P (·) of a given frame X are calculated as follows:

Xf (u, v) =
H
∑

x

W
∑

y

X(x, y)e−j 2π(u∗x
H

+ v∗y

W
),

A(X) =
√

Re(Xf )2 + Im(Xf )2,

P (X) = atan(Im(Xf )/Re(Xf )),

(1)

where X(x, y) denotes the value at spatial position (x, y),
Re(·) and Im(·) are the real and imaginary parts of Xf .

Accordingly, we have the following loss function:

LFFT = ‖A(Ŷ )−A(Y )‖2 + λ‖P (Ŷ )− P (Y )‖2, (2)

where λ is a trade-off hyper-parameter between amplitude

and phase (λ = 1 in our implementation). With the FFT

loss as a complementary supervision signal, our model is

more powerful in high-frequency detail recovery.

4. Experiments

Actually, our techniques can be used in most multi-frame

approaches. Here, we take the state-of-the-art STDF [7]

as an example for evaluating our techniques. We conduct

extensive experiments on the MFQE 2.0 dataset and the

dataset provided by the competition. Our evaluation con-

sists of three parts: 1) Ablation study on NTIRE 2021

Dataset [30]; 2) Comparison with state-of-the-art methods

on MFQE 2.0 dataset [11] with five QPs; 3) Performance of

our method on three tracks in NTIRE 2021 [31].

4.1. Datasets and Settings

MFQE 2.0 dataset [11]. It consists of 126 video se-

quences collected from Xiph.org [27], VQEG [24] and JCT-

VC [3]. Resolutions of these video sequences vary from

352×240 to 2560×1680. For a fair comparison, we follow

the settings in [11, 7]: 108 of them are taken for training and

the remaining 18 for testing. All sequences are encoded in

HEVC Low-Delay-P (LDP) configuration, using HM 16.20

with QP=22, 27, 32, 37 and 42.

NTIRE 2021 Dataset [30]. It is provided in NTIRE

2021 Quality enhancement of heavily compressed videos

Challenge [31]. There are 200 videos for training in the

competition, 20 for validation, and 20 for the final test.

However, only videos in the training data are provided with

uncompressed videos. Thus, in this paper, we split 200

videos into two parts: 190 for training and 10 for valida-

tion. Sequences are encoded in HEVC LDP configuration

with QP=37 in Track 1 and 2, and encoded by FFmpeg sup-

ported with libx265 with fixed bit-rate 200kbps in Track 3.

Our ablation study in Sec. 4.3 is evaluated with the settings

in Track 1.

4.2. Implementation Details

In this paper, we take the state-of-the-art method

STDF [7] as our baseline and conduct experiments by fol-

lowing the scheme of STDF. To achieve similar FLOPs of

the IQE module to that of the QE module (R3L in STDF),

we implement a shallow IQE module with 30 Ada-WDSR-

A-Blocks, features in Ada-WDSR-Blocks are implemented

with {32, 128, 32} channels in Sec. 4.3 and Sec. 4.4. For

all datasets, models are trained by the Adam optimizer with

an initial learning rate of 10−4, which is decreased by half

when 60% and 90% iterations are finished.

4.3. Ablation Study

As mentioned in Sec. 4.1, experiments of ablation study

in this paper are conducted on the dataset from NTIRE 2021

with settings in Track 1. Experimental results included in



Table 1. Ablation study of our method at QP=37 over STDF. Ex-

periments are presented with ∆PSNR (dB) and ∆SSIM (×10
−2)

on validation sequences from NTIRE2021.

RFP L1 L2 FFT PSNR / SSIM

- - X - 0.72 / 1.572

X - X - 0.74 / 1.607

- X - - 0.68 / 1.497

- - X X 0.74 / 1.581

- X - X 0.74 / 1.610

X X - X 0.76 / 1.639

179 181 182

183 185 189

180-Compressed 180-w/o RFP

180-with RFP 180-GT

(a) Visual case of RFP

Compressed w/o FFT Loss

with FFT Loss GT

(b) Visual case of FFT loss

Figure 4. Visual examples of ablation study. a) Results of RFP.

Frames with the yellow box are the reference frames used by the

original STDF. Frames with the red box are the references pro-

posed by RFP. Reference frames from RFP provide additional de-

tails of the tree to enhance the compressed frame. b) Results of

the FFT loss. Improvement by the FFT loss in visual perspective

is bounded with rectangles.

Tab. 1 are STDF and STDF with our techniques. Among

them, results with L2 loss in the second row of Tab. 1 is the

performance of baseline STDF. As listed in Tab. 1, all ex-

periments except that for the loss function and RFP strategy

follow the same setting as STDF.

Effect of reference frame proposal. Here, we evalu-

ate the effectiveness of utilizing our RFP strategy. First, we

compare the performance between STDF (using L2 loss)

and STDF with our RFP strategy (using RFP + L2 loss).

The results in the 2nd and 3rd row in Tab. 1 show that uti-

lization of RFP in STDF can improve the performance ef-

fectively. Visual examples in Fig. 4(a) also show that uti-

lizing RFP brings benefit by learning missing details from

adjacent 2R frames. Then, we further verify the effective-

ness of RFP on the model trained with L1 and FFT loss. As

shown in the last row in Tab. 1, PSNR/SSIM achieves im-

provement over that with L1 and FFT loss (in the 6th row).

A similar conclusion can also be obtained on the MFQE 2.0

dataset. Thus, the results indicate that utilizing RFP makes

the model achieve superior performance of restoration.

Effect of FFT loss. Considering that L1 loss achieves

better performance than L2 loss in recently proposed low-

level methods (e.g. [36, 38]) for the super-resolution task,

we investigate the combination of L1/L2 loss and FFT loss

to evaluate the effectiveness of FFT loss. Different from the

conclusion in [36, 38], models trained with L2 loss achieve

better performance than L1 loss in the 2nd and 4th rows in

Tab. 1. However, the combination of L1 loss and FFT loss

(in the 6th row) achieves a better result than the combination

of L2 and FFT loss (in the 5th row). Besides the example

illustrated in Fig. 1, we present additional visual examples

in Fig. 4(b) for a further validation on the FFT loss.

4.4. Comparison with State­of­the­art Methods

To demonstrate the advantage of our method, we com-

pare the performance of our method and state-of-the-art

approaches, including image-based [8, 37, 15], singe-

frame [25, 32] and multi-frame approaches [34, 11, 7]. For a

fair comparison, our model is trained by following the train-

ing scheme of STDF. Results of video quality enhancement

methods are cited from [11, 7].

Overall enhancement. Results of PSNR / SSIM im-

provement are presented in Tab. 2. Here, same QE in Tab. 2

indicates the model follows the same architecture of the

QE module in STDF, which means that the differences be-

tween same QE and STDF are the REP strategy and the

FFT loss. The improvement of same QE over STDF can

be regarded as the benefit from the REP strategy and the

FFT loss. Meanwhile, the variant IQE denotes the model

with the improved QE module introduced in Sec. 3.2, from

which a deeper version is designed as the final architecture

used by us in the competition.

From Tab. 2, we can see that all multi-frame approaches

outperform the methods for images or single frames due to

the benefit of utilizing spatiotemporal information. More-

over, the fact that STDF with an effective RFP strategy and

FFT loss achieves better results than all the existing meth-

ods further proves the importance of filtering input informa-

tion and the limitation of the L2 loss function. Moreover,

IQE further improves the performance on the benchmark



Table 2. Overall comparison for ∆PSNR (dB) and ∆SSIM (×10
−2) over test sequences at five QPs.

QP Approach
AR-CNN DnCNN Li et al. DCAD DS-CNN MFQE 1.0 MFQE 2.0 STDF Ours Ours

[8] [37] [15] [25] [32] [34] [11] [7] same QE IQE

37

Metrics PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

A
Traffic 0.24 / 0.47 0.24 / 0.57 0.29 / 0.60 0.31 / 0.67 0.29 / 0.60 0.50 / 0.90 0.59 / 1.02 0.73 / 1.15 0.71 / 1.18 0.96 / 1.50

PeopleOnStreet 0.35 / 0.75 0.41 / 0.82 0.48 / 0.92 0.50 / 0.95 0.42 / 0.85 0.80 / 1.37 0.92 / 1.57 1.25 / 1.96 1.30 / 2.09 1.60 / 2.42

B

Kimono 0.22 / 0.65 0.24 / 0.75 0.28 / 0.78 0.28 / 0.78 0.25 / 0.75 0.50 / 1.13 0.55 / 1.18 0.85 / 1.61 0.98 / 1.85 1.09 / 2.01

ParkScene 0.14 / 0.38 0.14 / 0.50 0.15 / 0.48 0.16 / 0.50 0.15 / 0.50 0.39 / 1.03 0.46 / 1.23 0.59 / 1.47 0.62 / 1.58 0.79 / 2.00

Cactus 0.19 / 0.38 0.20 / 0.48 0.23 / 0.58 0.26 / 0.58 0.24 / 0.58 0.44 / 0.88 0.50 / 1.00 0.77 / 1.38 0.76 / 1.44 0.79 / 1.64

BQTerrace 0.20 / 0.28 0.20 / 0.38 0.25 / 0.48 0.28 / 0.50 0.26 / 0.48 0.27 / 0.48 0.40 / 0.67 0.63 / 1.06 0.65 / 1.08 0.67 / 1.16

BasketballDrive 0.23 / 0.55 0.25 / 0.58 0.30 / 0.68 0.31 / 0.68 0.28 / 0.65 0.41 / 0.80 0.47 / 0.83 0.75 / 1.23 0.86 / 1.43 0.91 / 1.90

C

RaceHorses 0.22 / 0.43 0.25 / 0.65 0.28 / 0.65 0.28 / 0.65 0.27 / 0.63 0.34 / 0.55 0.39 / 0.80 0.55 / 1.35 0.55 / 1.34 0.58 / 1.61

BQMall 0.28 / 0.68 0.28 / 0.68 0.33 / 0.88 0.34 / 0.88 0.33 / 0.80 0.51 / 1.03 0.62 / 1.20 0.99 / 1.80 1.08 / 2.00 1.25 / 2.26

PartyScene 0.11 / 0.38 0.13 / 0.48 0.13 / 0.45 0.16 / 0.48 0.17 / 0.58 0.22 / 0.73 0.36 / 1.18 0.68 / 1.94 0.67 / 1.91 0.83 / 2.37

BasketballDrill 0.25 / 0.58 0.33 / 0.68 0.38 / 0.88 0.39 / 0.78 0.35 / 0.68 0.48 / 0.90 0.58 / 1.20 0.79 / 1.49 0.82 / 1.51 0.91 / 1.90

D

RaceHorses 0.27 / 0.55 0.31 / 0.73 0.33 / 0.83 0.34 / 0.83 0.32 / 0.75 0.51 / 1.13 0.59 / 1.43 0.83 / 2.08 0.86 / 2.15 0.95 / 2.42

BQSquare 0.08 / 0.08 0.13 / 0.18 0.09 / 0.25 0.20 / 0.38 0.20 / 0.38 -0.01 / 0.15 0.34 / 0.65 0.94 / 1.25 0.72 / 1.03 1.28 / 1.86

BlowingBubbles 0.16 / 0.35 0.18 / 0.58 0.21 / 0.68 0.22 / 0.65 0.23 / 0.68 0.39 / 1.20 0.53 / 1.70 0.74 / 2.26 0.72 / 2.21 0.91 / 2.88

BasketballPass 0.26 / 0.58 0.31 / 0.75 0.34 / 0.85 0.35 / 0.85 0.34 / 0.78 0.63 / 1.38 0.73 / 1.55 1.08 / 2.12 1.12 / 2.23 1.29 / 2.65

E

FourPeople 0.37 / 0.50 0.39 / 0.60 0.45 / 0.70 0.51 / 0.78 0.46 / 0.70 0.66 / 0.85 0.73 / 0.95 0.94 / 1.17 1.00 / 1.28 1.24 / 1.50

Johnny 0.25 / 0.10 0.32 / 0.40 0.40 / 0.60 0.41 / 0.50 0.38 / 0.40 0.55 / 0.55 0.60 / 0.68 0.81 / 0.88 0.84 / 0.96 1.02 / 1.15

KristenAndSara 0.41 / 0.50 0.42 / 0.60 0.49 / 0.68 0.52 / 0.70 0.48 / 0.60 0.66 / 0.75 0.75 / 0.85 0.97 / 0.96 1.03 / 1.09 1.23 / 1.23

Average 0.23 / 0.45 0.26 / 0.58 0.30 / 0.66 0.32 / 0.67 0.30 / 0.63 0.46 / 0.88 0.56 / 1.09 0.83 / 1.51 0.85 / 1.58 1.03 / 1.90

42 Average 0.29 / 0.96 0.22 / 0.77 0.32 / 1.05 0.32 / 1.09 0.31 / 1.01 0.44 / 1.30 0.59 / 1.65 – / – 0.79 / 2.18 0.89 / 2.41

32 Average 0.18 / 0.19 0.26 / 0.35 0.28 / 0.37 0.32 / 0.44 0.27 / 0.38 0.43 / 0.58 0.516 / 0.68 0.86 / 1.04 0.93 / 1.16 1.08 / 1.36

27 Average 0.18 / 0.14 0.27 / 0.24 0.30 / 0.28 0.32 / 0.30 0.27 / 0.23 0.40 / 0.34 0.49 / 0.42 0.72 / 0.57 0.92 / 0.77 1.09 / 0.92

22 Average 0.14 / 0.08 0.29 / 0.18 0.30 / 0.19 0.31 / 0.19 0.25 / 0.15 0.31 / 0.19 0.46 / 0.27 0.63 / 0.34 0.83 / 0.46 0.96 / 0.53

* Video resolution: Class A (2560× 1600), Class B (1920× 1080), Class C (832× 480), Class D (480× 240), Class E (1280× 720).
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Figure 5. PSNR curves of HEVC baseline, STDF and ours on two

test sequences at QP=37. Top: ParkScene. Bottom: PartyScene.

Table 3. Average PVD/SD of test sequences for PSNR at QP=27,

32, 37 and 42.

Method 27 32 37 42

HEVC 1.07 / 0.83 1.38 / 0.82 1.42 / 0.79 1.21 / 0.74

AR-CNN [8] 1.07 / 0.83 1.38 / 0.82 1.44 / 0.80 1.24 / 0.75

DnCNN [37] 1.06 / 0.83 1.40 / 0.83 1.44 / 0.80 1.24 / 0.75

Li et al. [15] 1.06 / 0.83 1.38 / 0.83 1.44 / 0.80 1.24 / 0.76

DCAD [25] 1.07 / 0.83 1.39 / 0.83 1.45 / 0.80 1.26 / 0.76

DS-CNN [32] 1.07 / 0.83 1.39 / 0.83 1.46 / 0.80 1.24 / 0.75

MFQE 1.0 [34] 0.84 / 0.81 1.07 / 0.77 1.05 / 0.73 0.82 / 0.69

MFQE 2.0 [11] 0.77 / 0.74 0.98 / 0.70 0.96 / 0.67 0.74 / 0.62

Ours same QE 0.60 / 0.33 0.75 / 0.44 0.73 / 0.37 0.67 / 0.36

ours IQE 0.58 / 0.32 0.72 / 0.47 0.70 / 0.41 0.66 / 0.30

dataset and achieves impressive results of 1.029dB/0.0190
PSNR/SSIM improvement for QP=37, 23.9% and 25.8%

higher than that of STDF. Similar improvements can also

be observed for other QPs.

Quality fluctuation. Quality fluctuation is another ob-

servable measurement for the overall quality of enhanced

videos. Drastic quality fluctuation of frames accounts for

severe texture shaking and degradation of the quality of ex-

perience (QoE). Therefore, we present two PSNR curves of

test sequences compressed by HEVC, the corresponding se-

quences enhanced by STDF and our method in Fig. 5. Com-

paring with STDF, our method achieves larger PSNR im-

provement over the compressed frames, especially for non-

PQFs, which means that the quality of frames enhanced by

our method fluctuates less than that by STDF. Besides, we

also evaluate the fluctuation by Standard Deviation (SD),

and Peak-Valley Difference (PVD) of each test sequence as

in [28, 11, 34]. Results of PSNR are presented in Tab. 3,

and our method still achieves impressive results of SD and

PVD, which means that our method performs more stably

than the other methods.

Rate-distortion performance. We then evaluate the

rate-distortion of our method and compare it with state-of-

the-art methods. For a simple illustration, we present only

the results of compressed videos, the enhanced results of

two state-of-the-art methods (MFQE 2.0 and STDF) and

our method in Fig. 7. Here, we do not show the results

of STDF at QP=42 due to the lack of data in [7]. From

the curves in Fig. 7, we can see that our method performs

better than the state-of-the-art approaches in rate-distortion

performance. Following the experiments in [11], we also

evaluate the BD-bitrate (BD-BR) reduction, which is calcu-
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Figure 6. Qualitative examples at QP=37.
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Figure 7. Rate-distortion performance of four test sequences.

lated over five PSNR results at QP=22, 27, 32, 37 and 42,

while the result of STDF is obtained with four QPs. Aver-

age results of BD-BR reduction for MFQE 2.0, STDF, same

QE and IQE are 14.06%, 20.79%, 22.49% and 25.86%, re-

spectively. These results show the advantage of our tech-

niques, and the methods with our techniques can achieve

much better QoE under the same bit rate.

4.5. Qualitative Comparison

We also conduct qualitative comparison and present sev-

eral visual examples at QP=37 in Fig. 6. We can see that the

compressed frames suffer severe compression artifacts (e.g.

missing vertical stripes, blocking artifact on the basketball).

For the existing methods from the third to sixth columns,

the enhanced patches are distorted by over-smoothing and

temporal noise. However, our method restores much more

detail or texture than the other methods. Compared with the

baseline STDF, our method restores more details, especially

for high-frequency information, such as sharpening edges.

This means that by applying the technique introduced in our

paper, multi-frame approaches can do restoration better than

the original ones.

4.6. NTIRE 2021 Challenge

In the NTIRE 2021 Challenge on Quality enhancement

of compressed videos [31], we won Track 1 and Track 2,

and were the 2nd in Track 3. Detailed results are included

in Tab. 4. Besides the techniques introduced above, the per-

formance also relies on a much deeper IQE module and two

ensemble strategies, i.e., self-ensemble and gated fusion.

Deeper IQE module. In the competition implementa-

tion, we employ the IQE module with more Ada-WDSR-

A-Blocks and wider features. Specifically, the number of

channels for feature and blocks of Ada-Blocks in the deeper

IQE module are 128 and 96, respectively. Thus, the number

of feature channels in Ada-WDSR-A-Block is implemented

as {64, 256, 64}.

Self-ensemble. In the competition, we utilize the self-

ensemble strategy [2] that can boost the restoration through

multiple trails of inputs with different augmentation opera-

tions. Unlike the conventional ensemble strategies that in-

tegrate results from multiple models, self-ensemble takes

the frames transformed by different augmentation opera-

tions, and averages these different but related outputs with
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Figure 8. The architecture of gated fusion module.

Table 4. The final testing results of NTIRE Challenge on quality enhancement of heavily compressed videos.
Track 1 Track 2 Track 3

Ranking PSNR(dB) MS-SSIM Ranking MOS↑ LPIPS↓ FID↓ VID↓ VMAF↑ Ranking PSNR (dB) MS-SSIM

1 (Ours) 32.52 0.9562 1 (Ours) 71 0.0429 32.17 0.0137 75.69 1 30.37 0.9484

2 32.49 0.9552 2 69 0.0483 34.64 0.0179 71.55 2 (Ours) 29.95 0.9468

3 32.04 0.9493 3 67 0.0561 46.39 0.0288 68.92 3 29.69 0.9423

4 31.90 0.9480 4 63 0.0561 50.61 0.0332 69.06 4 29.64 0.9405

5 31.86 0.9472 5 60 0.1018 72.27 0.0561 78.64 5 29.56 0.9403

the original to obtain the final predictions. In the competi-

tion, eight augmentation operations are exploited for eval-

uation. Empirically, experimental results on the validation

dataset in Track 1 show that STDF with basic IQE mod-

ule (shallow model) and deeper IQE module (deep model)

can achieve 0.2 and 0.12 dB PSNR improvement by utiliz-

ing self-ensemble.

Gated Fusion module. Due to the limited official train-

ing data provided by the competition, models trained with

only these data are easily dominated by the bias of training

data. Meanwhile, limited clips mean rare scenes to be seen,

but many unseen patterns may appear in inference, which

restricts the performance of the model. However, directly

using large-scale data collected by ourselves will destroy

the original distribution of training data. To minimize the

offset between the two datasets and gain benefit from ex-

tra data, we propose a novel module to improve the perfor-

mance of enhancement at the bottom of the pipeline. As il-

lustrated in Fig. 8, though each model has the same architec-

ture (STDF with deeper IQE), one is trained on the official

training sets, and the other is on the extra videos crawled

from Bilibili and YouTube, named as BiliTube4k. Inspired

by [23], we exploit a stack of layers to output the mask and

aggregate the predictions of two models via produced mask.

As shown in the middle of Fig. 8, the mask M in gated fu-

sion module is of the same resolution of the target frame

ranging from [0, 1]. Thus, the output of gated fusion mod-

ule can be formulated as Ŷ = M
⊗

Ŷ1

⊕

(1 − M)
⊗

Ŷ2.

The detail of network architecture can be referred to Fig. 8.

Furthermore, such a structure of gated fusion module can

be used in more models.

Other details. In Track 3, we utilize the model pre-

trained in Track 1 as the pre-trained model, and then fine-

tune it on training data of Track 3 with early stopping.

As for Track 2, we reuse and freeze the models from

Track 1, and attach ESRGAN [26] at the bottom of them.

Specifically, we use the ESRGAN pre-trained on DIV2K

dataset [1], remove the pixel shuffle layer, and employ the

FFT loss. Then, two ESRGANs trained on different datasets

are integrated with the gated fusion module to produce the

final enhanced frames.

5. Conclusion

In this paper, we present a method for improving ex-

isting multi-frame approaches in video compression arti-

fact reduction via integrating multiple frames and frequency

domain information. Our method was developed for the

NTIRE 2021 Challenge on Quality enhancement of heavily

compressed videos Challenge, and won Track 1 and Track

2, and the 2nd place in Track 3. Through extensive exper-

iments, we show that both our proposed reference frame

proposal strategy and the FFT loss can achieve superior per-

formance over state-of-the-art methods. In the future, more

verification of our techniques is expected to be conducted

on other multi-frame approaches.
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