
KernelNet: A Blind Super-Resolution Kernel Estimation Network

Mehmet Yamac Baran Ataman Aakif Nawaz

Huawei Technologies Oy (Finland) Co. Ltd

{mehmet.yamac, baran.ataman, aakif.nawaz}@huawei.com

Abstract

Recently developed deep neural network methods have

achieved remarkable performance in the Super Resolution

problem when applied to Low Resolution (LR) images that

are obtained from High Resolution (HR) images with ideal

and predefined downsampling processing, i.e., convolution

with a known blurring kernel that is followed by subsam-

pling (e.g., Bicubic). However, when these algorithms are

applied to real-world images whose downsampling pattern

is unknown, unlike synthetically generated LR-HR image

pairs, their performance drops drastically. Blind SR prob-

lem can be defined as real-world image SR when the down-

sampling blurring kernel (SR kernel) is unknown. The re-

cent SR kernel estimation techniques like KernelGAN have

shown promising results in this direction. However, their

limited recovery performance and high computational com-

plexity make them unsuitable for real-time usage, like for

applications in mobile cameras. This paper proposes a

modular and interpretable neural network structure, Ker-

nelNet, for the blind SR kernel estimation problem. The

proposed model outperforms the state-of-the-art SR kernel

estimator, KernelGAN, by a significant margin in SR ker-

nel reconstruction accuracy. Moreover, to the best of our

knowledge, the proposed algorithm is the first one that can

estimate the SR kernel in real-time by performing O(1k)

times faster than KernelGAN.

1. Introduction

Single image super-resolution, or SR task for short, in-

volves generating a higher resolution image from the given

low resolution (LR) one by enhancing the natural high-

frequency details [4]. SR is a challenging ill-posed inverse

problem, and a prior about desired HR solution (a solu-

tion in natural HR image space) is needed in order to avoid

having infinitely many solutions [23]. The prior informa-

tion can be satisfied via a predefined model-based approach

[28, 34, 35] or directly learned from the training data.

Recent Convolutional Neural Network (CNN) based

methods have shown the state-of-the-art performance on

Figure 1. Comparison of the simple bicubic interpolation, one of

the state of the art non-blind SR model, EDSR, and KernelNet

together with a SR neural network model [40] in a real image from

Huawei P20 camera.

mapping from LR image to HR one [32, 25, 5, 20]. Most

of these CNN-based methods have been trained with LR

images that are degraded by convolution with a fixed blur-

ring kernel (SR kernel, e.g., bicubic or Gaussian) followed

by subsampling. They are also tested with similarly pro-

duced synthetic data; this is how they achieved the state-

of-the-art result. However, their performances come short

when it comes to real-world images whose degradation op-

eration may be more complex. As an example, it is eas-

ily observable that one of the state-of-the-art CNN-based

SR approaches, enhanced deep super-resolution network

(EDSR) [25], does not show any significant improvement

compared to the simple binary cubic interpolation [18] in

the real world view as shown in Figure. 1.

Unlike synthetically generated LR images with a fixed

SR kernel followed by decimation, when the SR kernel is

unknown and possibly more complex, the SR problem turns

into the blind SR problem. The literature that solely tar-

gets the blind SR problem is relatively short compared to

extensive studies on the aforementioned non-blind SR ap-

proaches. The authors of [6], for the first time, argued that



an accurate prediction of the SR kernel is more important

than any a priori about the image. Although there are sev-

eral recent studies [39, 8] making HR to LR degradation un-

supervised manner using a generative adversarial network

(GAN) [9], in this paper, we focus on the works that con-

sider ”SR kernel” either in the preparation of the realistic

training samples or use them explicitly during SR process.

Among the SR methods that use GAN-based degradation to

generate realistic training data, ESRGAN-FS [8] gives su-

perior performance and is the winner of the ”Real World

SR Challenge (AIM 2019)” [27]. Having the generated

training dataset, the authors of [8] also use another GAN-

based method, ESRGAN [36] for SR. They also separate

the low and high-frequency information and handle them

separately.

Recent works [17, 44] use pre-estimated SR kernels or

post-processed versions of them, e. g., data augmentation

via generative methods, to obtain LR-HR pairs to be used in

training. This way, they try to increase their CNN-based SR

networks’ generalization capabilities to achieve real-world

SR. On the other hand, a relative but still non-blind direc-

tion is to create solutions that are able to work under any

arbitrary SR kernels [40, 41]. These algorithms take GT or

estimated kernels and noise level as inputs as well as LR

image; then, they spit out an HR estimation. Whatever the

research direction is, which can be preparing a training set

with training samples degraded with a generalizable kernel

pool or using an algorithm that can handle multiple degra-

dations, estimating SR kernels accurately is still an open

research question. The authors of [14] worked on paramet-

ric Gaussian models for SR kernel estimation. Later, the

authors of [29] proposed a non-parametric solution to esti-

mate the SR kernel. Few works first apply bicubic interpo-

lation to LR image then estimate an approximate SR kernel

using an existing blind deblurring algorithm [44]. Recently,

the authors of [10] proposed an Iterative Kernel Correction

(IKC) scheme that iteratively refines the SR kernel estima-

tion and HR recovery. However, their analysis is restricted

to isotropic Gaussian SR kernels with different variances.

Moreover, the algorithm recovers the PCA coefficients of

the SR kernels instead of SR kernels. Recently proposed

Deep Alternating Network (DAN) [15] was also reported

to have improved performance over IKC but still estimates

PCA coefficients rather than SR kernels. On the other hand,

the most recent work that purely focuses on SR kernel es-

timation is Blind Super-Resolution Kernel Estimation us-

ing an Internal-GAN (KernelGAN) [3]. Kernel GAN is an

Internal-GAN [33] type network that produces downscaled

versions of test images in training to learn image-specific

SR kernels. Although KernelGAN provided state of the art

result in SR kernel estimation, their SR kernel recovery per-

formances are still limited, and there is still room for signif-

icant improvement in terms of kernel reconstruction accu-

racy. On the other hand, since they use an image-specific

training for their CNN-based SR solution, it is not feasible

to use it in real-time applications, such as SR on a mobile

device.

In this work, we introduce a real-time SR kernel esti-

mator network, KernelNet, that surpasses the state-of-the-

art SR kernel estimator, KernelGAN, by a significant gap

in terms of both SR kernel reconstruction accuracy and

computational complexity. Compared to model-based or

internal GAN-based solutions, KernelNet provides a non-

iterative solution, making it feasible to be used in real-time

SR solution when plugged in an SR solution that can work

in arbitrary any SR kernel [40]. The other merit of the pro-

posed neural network model is its explainable and efficient

design in which each module’s responsibility is easily ex-

plainable either mathematically or empirically.

2. Problem Definition and Related Work

Figure 2. A pictorial representation of the realistic SR degradation

process with an example SR kernel, k, and a HR image, s.

In the literature [6, 2, 7], the conventional single image

SR problem is defined as blurring with an SR kernel than

followed by a decimation operation. Mathematically speak-

ing, let s be our unknown HR image (the latent image) and

k be the unknown SR kernel, then the degradation from HR

to LR with a scale factor sf can be defined via

y = (s⊗ k)↓sf
+ n, (1)

where y is the observation, ↓sf standard decimation oper-

ation with scale factor sf , k is the SR kernel and n is the

possible additive noise (e.g., AWGN). A pictorial represen-

tation of the defined degradation process with an example of

(s,k,y) triple can be shown in Figure. 2. Unless otherwise

stated, throughout this article, we assume that the degrada-

tion model is noise-free, e.g., n = 0. Although there are

a few other aforementioned model-based solutions that di-

rectly deal with SR kernel estimation, their source code is

not available, and KernelGAN has made a significant gap

in terms of both reconstruction accuracy and computational

time these methods [3]. Therefore, in addition to Kernel-

GAN, we have also used a model-based SR kernel esti-

mation technique [44], which has recently been proposed

to obtain the realistic kernel pool and compare the perfor-

mance of our proposed solution, KernelNet. In [44], they



Figure 3. Model based approximate SR kernel estimation.

first obtain a coarse estimation of the HR image and then

obtain an approximate estimation of SR kernel using an ex-

isting blind deblurring algorithm. In the sequel, we will

explain these two types of strategies in more detail.

2.1. Model Based Approach

The degradation model in a deblurring problem can be

defined as

yb = s⊗ kb + n, (2)

which is slightly different from the SR degradation model in

Eq. (1) i.e., there is no decimation process [19]. Compared

to blind SR, the blind deblurring problem is well studied

in the literature [21, 11, 12]. Most of the literature works

are model-based and iteratively estimate both blur kernel

and latent images in an alternating manner [11, 12, 31]. A

model-based deblurring problem can be defined as

min
kb,s

Φ (kb, s) subject to Υ(yb) (3)

where minkb,s Φ (kb, s) is the regularization function and

Υ(yb) = {(s,kb) : s⊗ kb = yb} in the noise free case.

In the case of observation is also corrupted by an additive

noise, the optimization problem can be relaxed to Υ(yb) ={
(s,kb) : ‖s⊗ kb − yb‖p ≤ ǫ

}
where ǫ is a small enough

constant and ‖.‖p is ℓp-norm, e.g., ℓ2-norm.

The recent study [44] has proposed the idea of estimating

realistic SR kernels by first using bicubic interpolation to

observation then leveraging a state-of-the-art model-based

blurring technique. Mathematically speaking, they first ap-

ply bicubic interpolation by scale factor sf to LR observa-

tion, y to obtain a coarse estimation of HR image, i.e.,

yb = y ⊗ bsf , (4)

where bsf is the bicubic interpolation kernel with scale fac-

tor sf . Therefore, the relationship between the coarse esti-

mation of the latent image, yb, and ground truth HR image,

s, can be formulated via

yb = (s⊗ k)↓sf
⊗ bsf = s⊗ k′, (5)

where k′ = (k⊗ bsf )↓sf
. They used the model [30], which

jointly estimate the blurring kernel and the latent image us-

Figure 4. Kernel mismatch problem. Inaccurate estimatation of of

SR kernel leads to visible artifacts on HR estimation.

ing dark channel prior [13],

mins,k′ ‖∇s⊗ k′ −∇y‖
2
+ λ1 ‖k′‖2

2
+ λ2 ‖∇s‖

0

+λ3

∥∥∇sdark
∥∥
0
,

(6)

where sdark is the dark channel of the image. The pictorial

representation of this approximate SR kernel estimation can

be seen in Figure. 3.

2.2. Kernel GAN

KernelGAN [3] is a recently proposed state of the art SR

kernel estimation network. It is an Internal-GAN [33] tech-

nique that only uses the given test image in image-specific

training and does not require additional training data. Ker-

nelGAN composes of one generator and one discriminator

network. Given the test image to be upscaled, the generator

generates a lower scale image by degrading and downscal-

ing the test image. The discriminator tries to distinguish

whether the generated LR image has the same patch distri-

bution as the original one. The discriminator and generator

are trained by using the crops from the test image in an alter-

nating manner; the downscaled generator is trained to fool

the discriminator in each iteration. After convergence, the

generator can be used as the SR degradation model. The

generator has five fully convolutional layers and one down-

sampled layer with scale factor sf . Therefore, the impulse

response of the convolutional layers produces the SR kernel

estimation.

2.3. Drawbacks of Current Solutions

2.3.1 Kernel Mismatch Problem

We designed a small experiment to demonstrate the impor-

tance of accurate SR kernel prediction. An arbitrarily se-

lected GT HR image from the Div2k Dataset [1] was de-

graded with a previously known SR kernel as in Equation

1 to obtain the LR image. Later, the SR kernel was esti-

mated from this LR image by using both KernelGan and

the model-based scheme explained in Section 1. Together

with these estimated kernels, the LR image was given to an



Figure 5. Proposed SR Kernel Estimator Network, KernelNet.

SR solution [40] that can work on any SR kernel. In Figure

4, we can see the kernels that were estimated by these two

algorithms. Fig 4. reveals how sensitive the SR solution

is to inaccuracies in the SR kernel estimation; inaccurate

kernel estimation yields visible artifacts. Let the estimated

kernels by KernelGAN and model-based are k̂kerGan and

k̂dark, respectively. With a closer look, the estimated kernel

of the model-based scheme, k̂dark, causes over-smoothing

because the width of k̂dark is smaller than the one of GT

kernel, k. On the other hand, when it comes to kernelGAN

estimation SR kernel, k̂kerGan, its width is larger than the

width of GT, which results in oversharpening and ringing

artifacts. By using inaccurate SR kernel in any SR solution,

including training, the CNN based solutions with inaccurate

kernels may cause a similar complication, which is known

as the kernel mismatch problem [10].

2.3.2 Computational Complexity

As discussed, the state of the art SR kernel estimation

technique, KernelGAN, and aforementioned model-based

scheme are iterative algorithms like other existing ones

[14, 29]. Therefore, the current SR kernel estimation algo-

rithms are relatively slow and can not be used in a real-time

solution together with an SR solution [40] that requires the

SR kernel estimation. For example, the estimations of SR

kernel by model-based solution and KernelGAN are shown

in Figure 4, whose estimation process took approximately

1000 and 70 seconds, respectively.

3. Proposed Approach

Emprical Observation: As in [42], if we ease the SR

degradation problem to the deblurring one in low scale as

y = (s⊗ k)↓sf
+ n = s↓sf

⊗ kLR + n, (7)

where kLR is the effective blurring kernel in low scale

(original scale of the observation, y), then one can easily

use an existing blind debluring algorithm to estimate kLR.

Although working on low scale blurring kernel is easier as

deblurring is a well-studied problem, unfortunately, obtain-

ing k from kLR is a non-trivial task. Many times, the litera-

ture has observed that the lower scale blurring kernel width

is narrower than SR kernel [40]. We observe from the esti-

mated realistic SR kernels that by self convolutions on the

estimated kLR we can achieve a coarse estimation of SR

kernel, i.e., the coarse estimation kernel resembles ground-

truth SR kernel in shape, and it has the same width with the

one of the ground-truth. Particularly, we claim that the fol-

lowing coarse estimation can be refined for more accurate

SR kernel estimation,

k̂HR =

2
sf

︷ ︸︸ ︷
k̂LR ⊗ k̂LR ⊗ ...⊗ k̂LR . (8)

Since SR degradation is a linear process, one may expect

that the lower scale blurring kernel’s width will be inversely

proportional to the SR kernel’s width due to the decimation.

In ideal case, if kLR is the Gaussian kernel with variance

σ2
LR, then 2sf times self convolutions yield also a Gaussian

function with variance 2sf × σ2
LR. Therefore, if the width

kLR is wLR then the width of kHR will be
√
2sf × wLR

which completes the informal proof for the ideal Gaussian

SR kernel case. For instance, when the scale factor is 2, the

width of SR will be 2×wLR; for the case of scale factor 4,

it will be 4× wLR.

Although the statement is straightforward to prove for

the ideal Gaussian function, in the following section, we

will empirically show that for the realistic SR kernels, the

aforementioned self-convolutions idea can be utilized to

find a coarse estimation SR kernel. For instance, in Figure

6, we plot an estimated low scale kernel, k̂LR, the output of

self convolutions, k̂HR, and the ground truth SR kernel, k.

3.1. The Proposed SR Kernel Estimation Scheme

In light of the empirical observation explained above, we

propose an SR kernel estimation pipeline that consists of

three main steps. In the first step, we can estimate the effec-

tive blurring kernel in the low scale, kLR. After having the

estimation, k̂LR, a coarse estimation of SR kernel can be



Figure 6. Ideal Gaussian kernel vs. realistic SR kernel. (a) Ideal

Gaussian kernel with variance, σkG1
= 1.305, and its corre-

sponding higher resolution kernel for sf = 2, which yields the

Gaussian kernel, kG2, with variance kG2, σkG2
= 2 ∗ 1.305

(
√
2sf =

√
22 = 2). (b) A realistic SR kernel, k, from our kernel

pool, estimated effective blurring kernel in low resolution, k̂LR,

and its corresponding k̂HR after self-convolutions.

obtained by convolving k̂LR with itself 2sf times. And fi-

nally, a finer estimation of SR kernel, k̂, can be obtained by

refining this coarse estimation, k̂LR. The proposed pipeline

is shown in Figure 7.

Figure 7. Pictoral representation of the proposed SR kernel esti-

mation pipeline.

3.2. KernelNet

In order to realize the proposed SR kernel estimation

pipeline with a real-time algorithm, we developed a modu-

lar neural network, KernelNet. KernelNet has four models;

the first two are responsible from estimating the effective

blurring kernel in low scale, k̂LR. Then it is followed by

the Self-Convolutions Module (later we call it FFT-2 Mod-

ule) to up-sample the kernel, and finally, the finer estimation

of k is received as an output of Refinement Module. In this

section, we will explain each module in detail.

3.2.1 Gradient Estimation Module

In blind deblurring literature, working on the gradient do-

main instead of the spatial domain is a common practice

[37, 24], as taking gradient filters out the unrelated infor-

mation and keeps only the edges that are more informative

[22]. In this manner, our low scale blurring kernel estima-

tion part consists of two modules: The first of these is re-

sponsible for the sharp gradient estimation. Then, kernel

estimation is done by a close form solution in FFT-1 Mod-

ule. A possible Gradient Estimator Module is composed

of fully convolutional layers, and as input it takes a two-

channel input of gradients of observed image, (∂hy, ∂vy).

Then, it produces the corresponding two channel estimation

that includes estimated sharp gradients in h and v directions

(horizontal and vertical). As it gives slightly better perfor-

mance than its competitors (see Ablation Study Section of

the supplementary material) in blurring kernel estimation,

our sharp gradient estimation module is inspired by [38].

The module consists of six convolutional layers. The five

hidden layers have 128 neurons, and we use ReLu activa-

tion functions for these layers. For the output layer, Tanh is

used. The kernel sizes are, 9× 9, 1× 1, 3× 3, 5× 5, 1× 1
and 3 × 3, respectively. The first three layers are for sus-

taining the main structure, whereas the last layers are used

to enhance the sharp edges [38].

3.2.2 FFT-1 Module

We define the estimated sharp gradient as follows,

∇̂ILR =

[
∂̂ILR

∂h

∂̂ILR

∂v

]
=

[
∂hg

∂vg

]
, (9)

where ∂̂ILR

∂h
is the gradient in h dimension and ∂̂ILR

∂v
is the

gradient in v dimension. Having the sharp edge estimation

from gradient estimator module, in order to obtain the ef-

fective blurring kernel in the low scale, kLR, we can solve

the following optimization problem,

k̂LR = argmin
kLR

∥∥∥y − ∇̂ILR ⊗ kLR

∥∥∥
2

2

+λ ‖kLR‖2
2
, (10)

where λ is a positive tradeoff parameter. The function to be

minimized in (10) is quadratic and a closed form solution.

However, by diagonalizing the gradient operator in Fourier

domain [43], we can handle the optimization problem com-

putationally efficiently,

k̂LR =F−1

(
F (∂hg)⊙F (∂hy) + F (∂vg)⊙F (∂vy)

F (∂hg)
2
+ F (∂vg)

2
+ λ

)
,

(11)

where F (.), F−1 (.), F (.), ⊙ are Fourier transform, the

inverse of Fourier transform, the complex conjugate of

Fourier transform, and the element-wise multiplication, re-

spectively. This module does not include any trainable pa-

rameters. We used PyTorch methods torch.rfft and

torch.irfft for FFT and inverse FFT operations. Af-

ter obtaining k̂LR via Equation (11), its negative values are

thresholded out and then it is normalized to have sum one.

3.2.3 FFT-2 Module

Like the FFT-1 Module, the self convolutions can be han-

dled in the Fourier domain computationally effectively as it

can be done with sf times element-wise multiplication op-

erations. As it is done after FFT-1 Module, the negative el-

ements of the estimation k̂HR are zeroed out, and then it is



normalized to have sum one. The proposed FFT-2 Module

is summarized in Algorithm 1, where [k]
+
= max {k, 0}.

Algorithm 1: FFT-2 Module

Result: k̂HR

initialization: V = F
(
k̂LR

)
;

for i = 1; i ≤ sf, i = i+ 1 do

V = V ⊙V;

end

k̂HR = F−1 (V);

k̂HR =
[
k̂HR

]
+

;

k̂HR = k̂HR

‖k̂HR‖
1

;

3.2.4 Estimation Refinement Module

Our Estimation Refinement Module is also composed of

fully convolution layers, and it takes the coarse estimation

k̂HR as input. Then, it produces a finer and final estima-

tion, k̂. Our network module structure is as follows: It is a

compact network consisting of only three CNN layers. The

hidden layers use 64 neurons. The kernel sizes are 3 × 3,

3 × 3 and 1 × 1, respectively. We use sigmoid activation

functions after each layer. After the CNN layers, the esti-

mation’s negative elements are zeroed out; then, the estima-

tion is also normalized to have sum 1, as it is done in FFT-1

and FFT-2 Modules.

3.3. Kernel Pool Generation

The recent works [17, 44] have proposed to estimate the

realistic SR kernels from a specific camera dataset to create

an SR kernel pool. Then, they used these kernel pools to

degrade HR images to obtain a training set consisting of re-

alistic LR-HR image pairs. In that way, they increased their

CNN-based SR solutions’ generalization capabilities. The

study [44] used a model-based solution explained in Sec-

tion 2.1, and [17] used KernelGAN. Among them, Real-

world SR via kernel estimation and noise injection (Re-

alSR) [17] achieves state-of-the-art performance on blind

super-resolution and is the winner of ”CVPR NTIRE 2020

Challenge on Real-World Super-Resolution” [26].

As explained in Section 2.3, the existing SR kernel esti-

mation solutions have limited performances, which causes

the kernel mismatch problem. In this study, we used an

extended SR kernel pool that consists of the estimation of

different alternative SR kernel estimation algorithms.

Similarly, we used the idea of SR kernel pool generation

to train our KernelNet. From the Huawei P20 Dataset [16],

we estimated SR kernels for scale factor two from 752 and

347 different images using the model-based solution and

KernelGAN, respectively. The kernels are plotted in Figure

8. As can be observed from the plot, the estimated ker-

nel pools for two different algorithms show slightly differ-

ent features; model-based estimations are slightly narrower

than the estimations of KernelGAN (see Section 2.3 about

how it can affect the HR image estimations).

Namely, for scale factor two, we collected 748 (five very

bad estimations are filtered out from 752) from model-based

solution, 344 (three of them were filtered out from 347)

from KernelGAN. We also created isotropic and anisotropic

Gaussian kernels with standard deviations randomly drawn

over interval [1.2, 2]. Their numbers are 420 and 204 for

isotropic and anisotropic cases, respectively.

Figure 8. Realistic SR kernels are estimated from Huawei P20

Dataset [16] using two SR kernel estimation algorithms (sf = 2):

(a) SR kernel estimations from 752 different images from the

dataset using model based scheme. (b) Estimated SR kernels from

347 images using KernelGAN.

3.4. Kernel Pool for Scale 3 and Scale 4

Unfortunately, KernelGAN is not optimized for odd

scale factors. Therefore we used only the model-based so-

lution to estimate realistic SR kernels for sf = 3. However,

our self-convolutions module (with one self-convolution)

can also be applied to KernelGAN estimations obtained

for sf = 2 to extend the pool. Namely, the SR ker-

nel pool for sf = 3 consists of 883 kernels. Among,

305 kernels are estimated via model-based solution, 347

are self-convolved KernelGAN estimations (estimations for

sf = 2), 232 are anisotropic, and 90 are isotropic Gaussian

kernels with a standard deviation randomly drawn from the

interval
[√

2 ∗ 1.2,
√
2 ∗ 2

]
. The kernel pool for sf = 4

was obtained similarly. Therefore, we leave the details to

the supplementary material for the sake of brevity.

4. Training

4.1. Pretraining of Gradient Estimator Module

The gradient estimation module tries to produce the

sharp gradient images in h and v directions from the gra-

dients of the observed image, y. For more stable end-to-

end training of KernelNet, we first pre-trained this mod-

ule as follows: A total of 13811 grayscale image patches

of size 512 × 512 were cropped from the DIV2K Dataset.



Figure 9. Examples from Synthetic Test Data.

Table 1. The performance comparison of the state-of-the-art SR solutions on synthetic test data.

Scale Bicubic EDSR IKC
KernelGAN

+ ZSSR
ZSSR DAN ESRGAN-FS RealSR

KernelNet

+DUN

PSNR

/SSIM

2x 24.54/0.819 24.57/0.823 24.80/0.862 23.93/0.829 24.54/0.823 23.84/0.831 25.01/0.844 - 29.31/0.921

3x 23.86/0.793 24.06/0.804 24.37/0.826 – 24.02/0.803 24.18/0.821 - - 27.55/0.879

4x 21.86/0.748 20.70/0.730 20.55/0.728 18.67/0.674 19.21/0.701 20.82/0.732 18.91/0.674 22.44/0.774 26.11/0.841

We obtained LR ones using randomly chosen SR kernels in

the SR degradation model from these high-resolution im-

ages. To avoid aliasing during the ground truth LR sharp

gradient images, instead of decimation operation, bicubic

downsampling was applied to the original high-resolution

images, i.e., gGT = ∇ ((s) ↓bi,sf ). In order to compensate

for this additional bicubic blurring, just for this pre-training,

LR input images are also obtained via bicubic downsam-

pling following the kernel blurring with randomly selected

SR kernel from the pool, i.e., y = ∇ ((s⊗ k) ↓bi,sf ).
From 13811 image patches, 12943 were randomly se-

lected for training, and 868 were for validation. This net-

work module was trained for 60 epochs. The batch size was

48, and the learning rate was 1e − 4. We used ℓ1-norm as

the loss function.

4.2. EndtoEnd Training of KernelNet

Having the pre-trained gradient estimation network, we

end-to-end trained the whole kernel estimation network.

Kernel-Net takes the gradient of the LR image as input and

produces the estimation of SR kernel as output. LR images

were obtained from HR images by using the SR degrada-

tion process given in Equation (1). The same training and

validation datasets from DIV2K were used as HR image

datasets. For sf = 2, 1368 SR kernels from the kernel pool

were used for training. A more detailed explanation about

the SR kernel training pool is given in the supplementary

document. The learning rate was 1e− 4, batch size was 32,

Table 2. Kernel estimation performance of the competing algo-

rithms. The kernel estimation errors are reported in ℓ1-norm.

When the estimated kernels are used in blind SR algorithms, DUN,

and DPIR, SR performances are also reported (in PSNR).

Method Scale
Ker. Est.

Error

PSNR/ SSIM

(with DUN)

PSNR /SSIM

(with DPIR)

Ker. Est.

Time

(sec)

Fixed Kernel

(Gaussian)

2x 0.319 26.61/0.890 27.99/0.911

–3x 0.359 27.35/0.872 26.92/0.863

4x 0.311 21.79/0.790 24.09/0.805

Model

Based

2x 0.495 21.99/0.776 24.33/0.840

783.233x 0.368 22.18/0.786 23.73/0.816

4x 0.392 18.32/0.652 21.50/0.731

KernelGAN

2x 0.428 25.35/0.850 26.37/0.870

73.663x – – –

4x 0.570 16.96/0.620 20.41/0.707

KernelNet

2x 0.245 29.31/0.918 29.20/0.921

0.053x 0.242 28.07/0.890 27.55/0.879

4x 0.221 26.11/0.841 25.55/0.824

and the training of the end-to-end system reached conver-

gence at epoch 15. During the training, the ℓ1-norm was

used as the loss function.

4.3. Training Procedure for Scale 3 and Scale 4

We first trained the sharp gradient estimation network

for 30 epochs. The batch size was 48, and the learning rate

was 1e − 4. A total of 21255 grayscale images with res-

olution 510x510 were extracted from the DIV2K training

dataset. Then, among them, 16753 were randomly selected

for the training, and 4502 were selected for the validation.

This pre-trained gradient estimator model is inserted into



Figure 10. Visual Comparison on real images. On the right, copmarison with state-of-the-art GAN-based techniques for sf = 4 is given.

the end-to-end KernelNet system, and then the training of

the whole system was started. The learning rate was 1e−4,

batch size was 32. The training of the end-to-end system

reached convergence at epoch 15. For sf = 3, 749 kernels

are used for training, while for sf = 4, 638 SR kernels were

used (see the supplementary material for details).

5. Experimental Evaluation

5.1. Kernel Estimation on Synthetic Data

Synthetic data were generated as follows: We chose 100

images cropped with size 1024 × 1024 from the DIV2K

test dataset. Then these images are randomly selected and

degraded by SR degradation model in Equation (1). To de-

grade these images, we also created a test SR kernel pool.

The test SR kernels were selected as subsets of SR pools for

different scales. For instance, for sf = 2, 368 kernels from

the kernel pool were separated as the test set. The details

about test SR pools for each scale factor can be seen in the

supplementary document.

From the synthetically generated LR images, the SR ker-

nels were estimated using three different algorithms; Ker-

nelGAN, model-based approach, and KernelNet. As per-

formance metric, we used ℓ1-norm of SR kernel estimation

error, i.e.,

∥∥∥k̂− k

∥∥∥
1

. Moreover, one may question whether

to use a fixed kernel instead of estimating SR kernel. To dis-

cuss this possibility, we also used a fixed Gaussian kernel

with standard deviation 1.6 (for only sf = 4, it is updated

to 3). Therefore, also average

∥∥∥k̂G − k

∥∥∥
1

over test set was

also reported. Having estimation of SR kernel, we used

Deep Unfolding Network (DUN) [40] or Plug-and-play im-

age restoration with deep Denoiser PRior (DPIR) [41] to

estimate HR image. In Table 2, we can see the compari-

son of all competing SR kernel estimation techniques. We

also compared our proposed solution with the state-of-the-

art SR algorithms. Namely, we selected simple bicubic in-

terpolation, EDSR, ZSSR, IKC, DAN, and two GAN-based

state-of-the-art blind SR solutions, EDSR-FS and RealSR,

as competing algorithms. The comparison of the state-of-

the-art SR solutions on synthetic test data is given in Table

1. In Figure 9, a visual comparison of blind SR algorithms

on examples from the synthetic test data can be seen. Please

note that EDSR-FS and RealSR are only suitable for even

scale factors. These two algorithms were trained by using

the same training set that KernelNet used, while for other

algorithms, the original training procedures were used.

5.2. Visual Comparison on Real Images

For visual comparison on real images, the images from

the Huawei P20 dataset were up-scaled using all competing

SR methods. The noise level σ for the network DUN was

chosen as σ = 10, which was 0 for the synthetic dataset.

The visual comparison with state-of-the-art SR solutions

is given in Figure 10. More visual examples and ablation

study can be found in the supplemental material.

6. Conclusion

In this paper, we introduced KernelNet, a novel, modu-

lar, and interpretable neural network used to reconstruct the

SR kernel accurately at breakneck speeds. Combined with

a non-blind SR solution such as Deep Unfolding Network,

we were able to surpass most of the well-known state-of-

the-art blind SR techniques both in various quality metrics

as well as visually on real images. The proposed real SR

scheme demonstrates tremendous promise towards improv-

ing the SR capability of current mobile phones.
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