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Abstract

In the case of bad weather or low lighting conditions,

a single sensor may not be able to capture enough infor-

mation for object identification. Compared with the tradi-

tional optical image, synthetic aperture radar (SAR) imag-

ing has greater advantages, such as the ability to pene-

trate through fog and smoke. However, SAR images are

of low resolution and contaminated by high-level speckle

noise. As a result, it is of great difficulty to extract pow-

erful and robust features from the SAR images. In this

paper, we explored whether multiple imaging modalities

can improve the object detection performance. Here, we

propose a Cross Modality Knowledge Distillation (CMKD)

paradigm, and explore two different network structures

named CMKD-s and CMKD-m for the object classification

task. Specifically, CMKD-s transfers the information cap-

tured by the two sensors using the online knowledge distil-

lation, which can achieve cross-modal knowledge sharing

and enhance the robustness of the aerial view object classi-

fication model. Moreover, leveraging the semi-supervised

enhanced training, we proposed a novel method named

CMKD-m, which strengthens the model for mutual knowl-

edge transfer. Through quantitative comparison, we found

that CMKD-s and CMKD-m outperform the method without

knowledge transfer, on the NTIRE2021 SAR-EO challenge

dataset.

1. Introduction

Computer vision technology has developed rapidly in re-

cent years, and many related tasks have been well explored

[7, 16, 6]. Images acquired using Electro-optical(EO) sen-

sors have been used in many object detection tasks. How-

ever, the images obtained by other sensors, such as synthetic
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aperture radar (SAR), can also assist the EO image analy-

sis when enough information cannot be obtained from the

EO image. Currently, the most impressive ways to leverage

the knowledge between two types of data is to merge the

knowledge of the two domain by transfer learning [12], or

transfer learning from simulated data [10]. However, due to

the fact that the aerial view sensor has the characteristics of

small target resolution and relatively high-level noise, the

learning ability of a single model may be severely restricted

and not as comprehensive.

Fortunately, we can capture objects at the same time by

using EO and SAR sensors to obtain corresponding multi-

modal data. Thereby there will be opportunities to obtain

more discriminative features from multi-modal data. Here,

we propose a method of learning and classifying multi-

modal aerial view image data by transferring knowledge.

The output distribution is used to transfer knowledge be-

tween multi-modal data, so that the student model can ob-

tain more robust cross-modal prior knowledge.

Inspired by the knowledge distillation [5], which uses

the teacher model for knowledge transferring purpose, thus

enhancing the student model, we designed a dual model

for the multi-modal object classification task. The model

consists of an SAR image-based teacher model and an EO

image-based student model. Specifically, we utilize the

output of the teacher model which inputs the correspond-

ing different modal images as a student model, to mini-

mize the distance of teacher model output distribution and

student model output distribution. Hence, the EO stu-

dent model can transfer knowledge from the SAR teacher

model, which enhances the robustness of the student model.

Based on ResNet [4] backbone, the knowledge distillation

works well between these two different modal images. At

the same time, inspired by unsupervised neural machine

translation[8], we propose a semi-supervised iteration train-

ing method. By continuously exchanging the roles of teach-

ers and students in each iteration and between iterations,

1



teachers and students can learn from each other and improve

the performance of the model in the process of mutual en-

hancement. This method also enables two-way knowledge

exchange between SAR image and EO image, instead of

transferring SAR knowledge to EO knowledge in the previ-

ous method.

In summary, our contribution has the following two ma-

jor points: 1) We propose a knowledge transfer method

for multi-modal aerial view image data. One modal data

model learns another modal data, so that the student model

can learn more prior knowledge and has better robustness

and performance. 2) We propose a semi-supervised train-

ing method for multi-modal aerial view image classifica-

tion, which allows cross-modal knowledge communication

in the role rotation of teachers and students, and enhances

the performance of teacher and student models.

2. Related work

SAR and EO Classification. There are many works ad-

dressed on classification of SAR images. Tzeng et al. [13]

proposed a method to classify SAR images using fuzzy

logic and dynamic neural networks, this is an early at-

tempt to use neural networks to classify SAR images in the

early years. Zhao et al. [18] addressed on design a end-

to-end convolutional neural network to classify SAR im-

ages at patch level, and obtained a high accuracy. A single-

polarization/supervised SAR image classification system is

proposed by Geng et al. [3] to improve the problem of noise

and speckles in the data, which are not easy to be effectively

characterized. For the classification of EO images, tradi-

tional visual method[1] is used to extract texture features to

classify ships on the sea. Katherine [11] used a VGG-16

based convolutional neural network to detect and classify

EO image of ships on the sea. There are also works that use

both SAR and EO sensors. Mohammad et al. [12] proposed

an algorithm to transfer the knowledge of EO domain to

SAR domain through transfer learning, which reduces the

dependence of SAR images on accurate and large numbers

of labeled points.

Knowledge Distillation. The concept of knowledge dis-

tillation was first proposed by Hinton et al. [5], which is

intended to allow models with small parameters and weak

learning capabilities to have the accuracy of large models.

There have been many improvements on the basic methods

of knowledge distillation. Sergey et al. [15] passes the at-

tention of the teacher network to the student network, which

uses spatial-attention to decode the contribution of the in-

put image space to the output. Junho et al. [14] innovated

at the positional level of knowledge transfer. Knowledge

transfer is carried out through the feature flow relationship

between layers in the network, allowing students to learn

how to learn rather than how to get output.

3. Method

In this section, we individually outline the architec-

ture and training details of the two models: CMKD-s and

CMKD-m.

3.1. Architecture

3.1.1 CMKD-s

Here, we propose a method named CMKD-s, to solve SAR

and EO object classification using cross-modal knowledge

distillation. In this section, we elaborate the key compo-

nent: cross modality knowledge transfer.

Cross Modality Knowledge Transfer. We propose a

dual network, the model that recognizes SAR images is

used as the teacher model, and the model that recognizes

EO images is used as the student model, as shown in Figure

1. The teacher model is pre-trained on the EO image, and

then trained on the SAR image, and the teacher model is

obtained that is not too strong but has the ability to provide

favorable prior knowledge. In the student model for train-

ing EO images, we input matched SAR and EO images to

the teacher and student models at the same time, the teacher

model can be used for the inference, and the student model

is training. The output distribution of the teacher model is

transferred to the student model through KL divergence loss

as knowledge distillation loss. It can help the student model

learn some knowledge not included in the EO image, so as

to achieve the purpose of enhancing the student model. The

network architecture is the same, based on the same recog-

nition model, but processing data of different modalities.

In order to obtain better recognition performance, we use

ResNet34 as the teacher and student model, which is not

pre-trained on ImageNet. We use different data augmenta-

tion methods, including MixUp[17] and AutoAugment[2]

for data input augmentation, they can make the distribution

of input data more continuous and broader.

3.1.2 CMKD-m

CMKD-m is an improved training method based on

CMKD-s. Inspired by the unsupervised neural machine

translation, CMKD-m rotates the positions of students

and teachers model during the cycle training process, and

achieves mutual enhancement in the enhancement iterations

of both parties. In this section, we elaborate the two key

components: cross modality knowledge transfer and semi-

supervised enhanced training.

Cross Modality Knowledge Transfer. The knowledge

distillation method of CMKD-m is exactly the same as

that of CMKD-s, which achieves the purpose of knowledge

transfer by narrowing the distance between the output dis-

tribution of the teacher model and the student model.
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Figure 1. The architecture of the proposed CMKD-s.

Semi-Supervised Enhanced Training. We propose a

training method for SAR and EO image classification mod-

els. As shown in Figure 2, the entire training process is

divided into n iterations. In each round and between each

round, the two models are calling for the roles of teachers

and students to enhance each other. In the first iteration,

as a teacher model, the EO model first uses the pre-trained

model on the SAR image to routinely train on the EO im-

age. Then in the training process of the student SAR model,

the knowledge of the teacher model is transferred to the stu-

dent model. In the subsequent iterations, first the EO model

and the SAR model exchange the roles of teacher and stu-

dent, and EO serves as a student model to obtain knowledge

from the teacher SAR model that from the previous itera-

tion. The roles are exchanged again, and the SAR model

is used as a student model to gain knowledge from the EO

teacher model of this iteration. Repeat this training process-

ing until the iteration ends. Since EO images are easier to

obtain features by the model than SAR images, we assume

that the EO model has relatively more knowledge. There-

fore, when the EO model is used as a teacher model, the

knowledge distillation coefficient α will be relatively high,

and when the SAR model is used as a teacher model, α will

be relatively low, where α is the weight of the knowledge

distillation loss when calculate the sum of loss.

3.2. Loss function

We utilize two losses in the main part of training, they

are weighted cross entropy loss Lwce and weighted KL di-

vergence loss. LwKLdiv , as Eq. 1.

Ltotal = αLwKLdiv + (1− α)Lwce (1)

Weighted Cross Entropy Loss Likely to many single-

label classification tasks, we chose cross-entropy loss.

However, considering the extremely unbalanced distribu-

tion of the training dataset, we introduced weight to weight

the loss under each category, which alleviated the model

offset caused by the imbalance of the data.

Lwce = weight[class] · Lce(M(I), L) (2)

where weight stands for the weight of every class, calculate

by the number of samples. Class is the index of category.

Lce donates the original cross entropy loss, where M(I) is

the output of model M when input the input I .

Weighted KL Divergence Loss. Similarly, we also use

weights on the KL divergence loss to balance the impact of

the data set. The loss is calculated between the output of

the teacher model and the student model, which is used to

narrow the output distribution of students and teachers to
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Figure 2. The architecture of the proposed CMKD-m.

achieve the purpose of knowledge transfer.

LwKLdiv = weight[class] ·DKL(T (It), S(Is)) (3)

where weight[class] donates the weight of each class, T (It
is the output of teacher model T when input teacher input,

S(Is) is the output of student model S when input student

input, DKL stands for the original Kullback–Leibler diver-

gence loss. The input of student and teacher model can

vary. Specifically, when transferring EO knowledge to SAR

model, EO is the input of teacher model while SAR is the

input of student model. When we transfer SAR knowledge

to EO model, SAR will be the input of teacher model while

EO will be the input of student model.

4. Experiments

In this section, we first introduce the details of the dataset

and training method, and then quantitatively evaluate the

performance of our method on the dataset. Finally, an abla-

tion study is conducted to demonstrate the effectiveness of

each component of the network. In the track 2 of NRTIRE-

21 Multi-modal Aerial View Object Classification Chal-

lenge [9], our Top-1 Accuracy ranked 6th place on the final

leaderboard.

Figure 3. The distribution of NTIRE21 Aerial View Object

Dataset.

4.1. Dataset

NTIRE21 Aerial View Object Dataset. NTIRE21

Aerial View Object Dataset is a large data set corresponding

to EO and SAR images. All images are single object small

resolution images cropped from the pictures taken by EO

and SAR sensors. The train set includes 293772 images, it

can be seen from the Figure 3 that the distribution between

the categories of the dataset is very unbalanced, and the im-

ages of the first category ”sedan” are much more than other

categories. As shown in Figure 4, images are randomly se-

lected from each category. Except the image is set to be

completely black because the analog sensor cannot capture

it, it can be seen that the noise of the SAR image is rela-

tively high. Compared to SAR images, the robust feature

learning can be easier for the EO image.

4.2. Experimental Setting

Training Details. For the two methods we proposed,

we used the same method to divide the dataset, randomly

selecting 70% of each category as the training set and 30%

as the validation set. In the stage of data pre-processing,

we apply 30 × 30 as the resolution of EO images, 48 × 48
to SAR images. And use AutoAugment to automatically

enhance and augment the data, and use MixUp to make the

distribution of training data more continuous. Besides, we

adopt SGD optimizer with 0.9 momentum and 0.01 learning

rate, which reduces to half every 20 epochs. Our model was

implemented with PyTorch with 1 Tesla M40 GPU.

Measure Metric. Similar to the evaluation indicators

required by the NTIRE 2021 Multi-modal Aerial View Ob-

ject Classification Challenge, we also selected Top-1 accu-

racy as the metric for the model evaluation, which is usually

used for image classification tasks.

Post Processing. Although we have made efforts to

solve the problem of uneven distribution of the dataset, the

actual output of the final model is still offset. On the test set

of the NTIRE 2021 Multi-modal Aerial View Object Clas-

sification Challenge, the output distribution without post-
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Figure 4. Samples from the NTIRE21 Aerial View Object Dataset.

Methods Top-1 Accuracy

Baseline 0.22337662

CMKD-s 0.31168831

CMKD-m 0.23376623

CMKD-s(post processed) 0.36363636

Table 1. Results CMKD-s and CMKD-m

processing will be biased towards the first category. Since

the ground truth distribution of the test set is known to be

uniform, we performed prediction processing on the first

four classes with the most data distribution in post process-

ing. The method is to sort the activation values in the four

categories, and one-tenth of the number of test sets is used

as the output number n of each category. The top n images

with the activation value of these categories are output as

this category, and the remaining images are output to the

category with the second highest activation value of the im-

age.

4.3. Results

The results of both our methods and comparison with

our baseline on the testset of NTIRE21 Aerial View Object

Dataset shown in Table 1. It can be seen that the two meth-

ods we proposed, CMKD-s and CMKD-m, have improved

compared with the baseline that does not use cross-modal

knowledge distillation, especially CMKD-s that uses post

processing has the greatest improvement. For the small in-

crease of CMKD-m, we think it is caused by the poor pro-

cessing of SAR image noise, which makes the EO image

model receive noise disturbance in the process of learning

the SAR model. In the process of iteration training, both

the SAR model and the EO model were subjected to greater

bias.

4.4. Ablation Study

As mentioned earlier, we used MixUp and AutoAug-

ment, two powerful data augmentation tools, in the train-

ing strategy of the model. These two tools have improved

the performance of our model. However, in order to prove

that the cross modality knowledge distillation method we

proposed does positively improve the performance of the

model, we conducted ablation experiments on the three

components of our method: MixUp, AutoAugment, and

Cross Modality Knowledge Distillation. The ablation ex-

periments as following: 1) baseline: use only basic im-

age changes for preprocessing: random rotation, random

resized crop, random horizontal flip, random vertical flip,

and only use ResNet34 as the network backbone; 2) base-

line + MixUp: Alpha = 0.4 is used as the mix parameter of

MixUp; 3) baseline + AutoAugment;: the implementation

of AutoAugment is added to the base to achieve the purpose

of enhancing data; 4) baseline + MixUp + AutoAugment:

MixUp and AutoAugment are simultaneously implemented

on the base. On this basis, we compared the methods us-

ing CMKD-s components: 5) baseline + CMKD-s; 6) base-

line + MixUp + CMKD-s; 7) baseline + AutoAugment +

CMKD-s; 8) baseline + MixUp + AutoAugment + CMKD-

s. In detail, we trained these networks for 120 epochs on

the NTIRE EO trainset, and use Top-1 Accuracy as a per-

formance indicator on the NTIRE EO testset.

As shown in Table 2, every element in our network has

an important impact on the performance of the network.

MixUp and AutoAugment alone or together with the net-

work will have a positive improvement in the accuracy of

the network. When CMKD-s acts on the network, the

top-1 accuracy is significantly improved. Especially when

CMKD-s works with MixUp and AutoAugment, the per-

formance of the network is improved more significantly.

Hence, it can be proved that the CMKD-s we proposed

is efficient. We also compared the accuracy after post-

processing. It can be seen that post-processing is easier

to improve performance when the accuracy of the model

is already high. And it may cause performance degradation

when the accuracy of the original model is insufficient.

5. Conclusion

In this paper, we propose an aerial view object classi-

fication method based on knowledge distillation to obtain

cross-modal knowledge. We use the output of parallel data
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Methods CMKD-s Top-1 Accuracy Top-1 Accuracy (Post-processing)

Baseline - 0.13506494 0.18571429

Baseline + MixUp - 0.14558440 0.14415584

Baseline + AutoAugment - 0.19090909 0.25714286

Baseline + MixUp + AutoAugment - 0.22337662 0.20649351

Baseline
√

0.14025974 0.12467532

Baseline + MixUp
√

0.17142857 0.21298701

Baseline + AutoAugment
√

0.20259740 0.24935065

Baseline + MixUp + AutoAugment (Ours)
√

0.31168831 0.36363636

Table 2. Results of CMKD-s and CMKD-m.

in different modal models to allow student models to learn

robust prior knowledge. In addition, we introduced a semi-

supervised iteration training method, which enables cross-

modal models to enhance each other in iterating training.

Compared with the baseline that does not use knowledge

distillation, we have achieved a huge improvement, which

proves the effectiveness of the method.
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