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Abstract

In the case of bad weather or low lighting conditions,
a single sensor may not be able to capture enough infor-
mation for object identification. Compared with the tradi-
tional optical image, synthetic aperture radar (SAR) imag-
ing has greater advantages, such as the ability to pene-
trate through fog and smoke. However, SAR images are
of low resolution and contaminated by high-level speckle
noise. As a result, it is of great difficulty to extract pow-
erful and robust features from the SAR images. In this
paper, we explored whether multiple imaging modalities
can improve the object detection performance. Here, we
propose a Cross Modality Knowledge Distillation (CMKD)
paradigm, and explore two different network structures
named CMKD-s and CMKD-m for the object classification
task. Specifically, CMKD-s transfers the information cap-
tured by the two sensors using the online knowledge distil-
lation, which can achieve cross-modal knowledge sharing
and enhance the robustness of the aerial view object classi-
fication model. Moreover, leveraging the semi-supervised
enhanced training, we proposed a novel method named
CMKD-m, which strengthens the model for mutual knowl-
edge transfer. Through quantitative comparison, we found
that CMKD-s and CMKD-m outperform the method without
knowledge transfer, on the NTIRE2021 SAR-EO challenge
dataset.

1. Introduction

Computer vision technology has developed rapidly in re-
cent years, and many related tasks have been well explored
[7, 16, 6]. Images acquired using Electro-optical(EO) sen-
sors have been used in many object detection tasks. How-
ever, the images obtained by other sensors, such as synthetic
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aperture radar (SAR), can also assist the EO image analy-
sis when enough information cannot be obtained from the
EO image. Currently, the most impressive ways to leverage
the knowledge between two types of data is to merge the
knowledge of the two domain by transfer learning [12], or
transfer learning from simulated data [ 10]. However, due to
the fact that the aerial view sensor has the characteristics of
small target resolution and relatively high-level noise, the
learning ability of a single model may be severely restricted
and not as comprehensive.

Fortunately, we can capture objects at the same time by
using EO and SAR sensors to obtain corresponding multi-
modal data. Thereby there will be opportunities to obtain
more discriminative features from multi-modal data. Here,
we propose a method of learning and classifying multi-
modal aerial view image data by transferring knowledge.
The output distribution is used to transfer knowledge be-
tween multi-modal data, so that the student model can ob-
tain more robust cross-modal prior knowledge.

Inspired by the knowledge distillation [5], which uses
the teacher model for knowledge transferring purpose, thus
enhancing the student model, we designed a dual model
for the multi-modal object classification task. The model
consists of an SAR image-based teacher model and an EO
image-based student model. Specifically, we utilize the
output of the teacher model which inputs the correspond-
ing different modal images as a student model, to mini-
mize the distance of teacher model output distribution and
student model output distribution. Hence, the EO stu-
dent model can transfer knowledge from the SAR teacher
model, which enhances the robustness of the student model.
Based on ResNet [4] backbone, the knowledge distillation
works well between these two different modal images. At
the same time, inspired by unsupervised neural machine
translation[8], we propose a semi-supervised iteration train-
ing method. By continuously exchanging the roles of teach-
ers and students in each iteration and between iterations,



teachers and students can learn from each other and improve
the performance of the model in the process of mutual en-
hancement. This method also enables two-way knowledge
exchange between SAR image and EO image, instead of
transferring SAR knowledge to EO knowledge in the previ-
ous method.

In summary, our contribution has the following two ma-
jor points: 1) We propose a knowledge transfer method
for multi-modal aerial view image data. One modal data
model learns another modal data, so that the student model
can learn more prior knowledge and has better robustness
and performance. 2) We propose a semi-supervised train-
ing method for multi-modal aerial view image classifica-
tion, which allows cross-modal knowledge communication
in the role rotation of teachers and students, and enhances
the performance of teacher and student models.

2. Related work

SAR and EO Classification. There are many works ad-
dressed on classification of SAR images. Tzeng et al. [13]
proposed a method to classify SAR images using fuzzy
logic and dynamic neural networks, this is an early at-
tempt to use neural networks to classify SAR images in the
early years. Zhao et al. [18] addressed on design a end-
to-end convolutional neural network to classify SAR im-
ages at patch level, and obtained a high accuracy. A single-
polarization/supervised SAR image classification system is
proposed by Geng et al. [3] to improve the problem of noise
and speckles in the data, which are not easy to be effectively
characterized. For the classification of EO images, tradi-
tional visual method[1] is used to extract texture features to
classify ships on the sea. Katherine [!1] used a VGG-16
based convolutional neural network to detect and classify
EO image of ships on the sea. There are also works that use
both SAR and EO sensors. Mohammad e? al. [ 1 2] proposed
an algorithm to transfer the knowledge of EO domain to
SAR domain through transfer learning, which reduces the
dependence of SAR images on accurate and large numbers
of labeled points.

Knowledge Distillation. The concept of knowledge dis-
tillation was first proposed by Hinton et al. [5], which is
intended to allow models with small parameters and weak
learning capabilities to have the accuracy of large models.
There have been many improvements on the basic methods
of knowledge distillation. Sergey et al. [15] passes the at-
tention of the teacher network to the student network, which
uses spatial-attention to decode the contribution of the in-
put image space to the output. Junho et al. [14] innovated
at the positional level of knowledge transfer. Knowledge
transfer is carried out through the feature flow relationship
between layers in the network, allowing students to learn
how to learn rather than how to get output.

3. Method

In this section, we individually outline the architec-
ture and training details of the two models: CMKD-s and
CMKD-m.

3.1. Architecture
3.1.1 CMKD-s

Here, we propose a method named CMKD-s, to solve SAR
and EO object classification using cross-modal knowledge
distillation. In this section, we elaborate the key compo-
nent: cross modality knowledge transfer.

Cross Modality Knowledge Transfer. We propose a
dual network, the model that recognizes SAR images is
used as the teacher model, and the model that recognizes
EO images is used as the student model, as shown in Figure
1. The teacher model is pre-trained on the EO image, and
then trained on the SAR image, and the teacher model is
obtained that is not too strong but has the ability to provide
favorable prior knowledge. In the student model for train-
ing EO images, we input matched SAR and EO images to
the teacher and student models at the same time, the teacher
model can be used for the inference, and the student model
is training. The output distribution of the teacher model is
transferred to the student model through KL divergence loss
as knowledge distillation loss. It can help the student model
learn some knowledge not included in the EO image, so as
to achieve the purpose of enhancing the student model. The
network architecture is the same, based on the same recog-
nition model, but processing data of different modalities.
In order to obtain better recognition performance, we use
ResNet34 as the teacher and student model, which is not
pre-trained on ImageNet. We use different data augmenta-
tion methods, including MixUp[17] and AutoAugment[2]
for data input augmentation, they can make the distribution
of input data more continuous and broader.

3.1.2 CMKD-m

CMKD-m is an improved training method based on
CMKD-s. Inspired by the unsupervised neural machine
translation, CMKD-m rotates the positions of students
and teachers model during the cycle training process, and
achieves mutual enhancement in the enhancement iterations
of both parties. In this section, we elaborate the two key
components: cross modality knowledge transfer and semi-
supervised enhanced training.

Cross Modality Knowledge Transfer. The knowledge
distillation method of CMKD-m is exactly the same as
that of CMKD-s, which achieves the purpose of knowledge
transfer by narrowing the distance between the output dis-
tribution of the teacher model and the student model.
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Figure 1. The architecture of the proposed CMKD-s.

Semi-Supervised Enhanced Training. We propose a
training method for SAR and EO image classification mod-
els. As shown in Figure 2, the entire training process is
divided into n iterations. In each round and between each
round, the two models are calling for the roles of teachers
and students to enhance each other. In the first iteration,
as a teacher model, the EO model first uses the pre-trained
model on the SAR image to routinely train on the EO im-
age. Then in the training process of the student SAR model,
the knowledge of the teacher model is transferred to the stu-
dent model. In the subsequent iterations, first the EO model
and the SAR model exchange the roles of teacher and stu-
dent, and EO serves as a student model to obtain knowledge
from the teacher SAR model that from the previous itera-
tion. The roles are exchanged again, and the SAR model
is used as a student model to gain knowledge from the EO
teacher model of this iteration. Repeat this training process-
ing until the iteration ends. Since EO images are easier to
obtain features by the model than SAR images, we assume
that the EO model has relatively more knowledge. There-
fore, when the EO model is used as a teacher model, the
knowledge distillation coefficient a will be relatively high,
and when the SAR model is used as a teacher model, o will
be relatively low, where « is the weight of the knowledge
distillation loss when calculate the sum of loss.

3.2. Loss function

We utilize two losses in the main part of training, they
are weighted cross entropy loss L,,.. and weighted KL di-
vergence 10ss. L., i .div, as Eq. 1.

Liotat = Ly Ldiv + (1 — ) Lwee (D)

Weighted Cross Entropy Loss Likely to many single-
label classification tasks, we chose cross-entropy loss.
However, considering the extremely unbalanced distribu-
tion of the training dataset, we introduced weight to weight
the loss under each category, which alleviated the model
offset caused by the imbalance of the data.

Lyce = weightlclass] - Lee(M(I), L) @

where weight stands for the weight of every class, calculate
by the number of samples. Class is the index of category.
L. donates the original cross entropy loss, where M (I) is
the output of model M when input the input 1.

Weighted KL Divergence Loss. Similarly, we also use
weights on the KL divergence loss to balance the impact of
the data set. The loss is calculated between the output of
the teacher model and the student model, which is used to
narrow the output distribution of students and teachers to
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Figure 2. The architecture of the proposed CMKD-m.

achieve the purpose of knowledge transfer.
Ly naiv = weight|class] - D, (T(L;),S(Is))  (3)

where weight[class] donates the weight of each class, T'(1;
is the output of teacher model 7" when input teacher input,
S(I,) is the output of student model S when input student
input, D, stands for the original Kullback-Leibler diver-
gence loss. The input of student and teacher model can
vary. Specifically, when transferring EO knowledge to SAR
model, EO is the input of teacher model while SAR is the
input of student model. When we transfer SAR knowledge
to EO model, SAR will be the input of teacher model while
EO will be the input of student model.

4. Experiments

In this section, we first introduce the details of the dataset
and training method, and then quantitatively evaluate the
performance of our method on the dataset. Finally, an abla-
tion study is conducted to demonstrate the effectiveness of
each component of the network. In the track 2 of NRTIRE-
21 Multi-modal Aerial View Object Classification Chal-
lenge [9], our Top-1 Accuracy ranked 6th place on the final
leaderboard.
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Figure 3. The distribution of NTIRE21 Aerial View Object
Dataset.

4.1. Dataset

NTIRE21 Aerial View Object Dataset. NTIRE21
Aerial View Object Dataset is a large data set corresponding
to EO and SAR images. All images are single object small
resolution images cropped from the pictures taken by EO
and SAR sensors. The train set includes 293772 images, it
can be seen from the Figure 3 that the distribution between
the categories of the dataset is very unbalanced, and the im-
ages of the first category ’sedan” are much more than other
categories. As shown in Figure 4, images are randomly se-
lected from each category. Except the image is set to be
completely black because the analog sensor cannot capture
it, it can be seen that the noise of the SAR image is rela-
tively high. Compared to SAR images, the robust feature
learning can be easier for the EO image.

4.2. Experimental Setting

Training Details. For the two methods we proposed,
we used the same method to divide the dataset, randomly
selecting 70% of each category as the training set and 30%
as the validation set. In the stage of data pre-processing,
we apply 30 x 30 as the resolution of EO images, 48 x 48
to SAR images. And use AutoAugment to automatically
enhance and augment the data, and use MixUp to make the
distribution of training data more continuous. Besides, we
adopt SGD optimizer with 0.9 momentum and 0.01 learning
rate, which reduces to half every 20 epochs. Our model was
implemented with PyTorch with 1 Tesla M40 GPU.

Measure Metric. Similar to the evaluation indicators
required by the NTIRE 2021 Multi-modal Aerial View Ob-
ject Classification Challenge, we also selected Top-1 accu-
racy as the metric for the model evaluation, which is usually
used for image classification tasks.

Post Processing. Although we have made efforts to
solve the problem of uneven distribution of the dataset, the
actual output of the final model is still offset. On the test set
of the NTIRE 2021 Multi-modal Aerial View Object Clas-
sification Challenge, the output distribution without post-
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Figure 4. Samples from the NTIRE21 Aerial View Object Dataset.

’ Methods \ Top-1 Accuracy ‘
Baseline 0.22337662
CMKD-s 0.31168831
CMKD-m 0.23376623
CMKD-s(post processed) 0.36363636

Table 1. Results CMKD-s and CMKD-m

processing will be biased towards the first category. Since
the ground truth distribution of the test set is known to be
uniform, we performed prediction processing on the first
four classes with the most data distribution in post process-
ing. The method is to sort the activation values in the four
categories, and one-tenth of the number of test sets is used
as the output number n of each category. The top n images
with the activation value of these categories are output as
this category, and the remaining images are output to the
category with the second highest activation value of the im-
age.

4.3. Results

The results of both our methods and comparison with
our baseline on the testset of NTIRE21 Aerial View Object
Dataset shown in Table 1. It can be seen that the two meth-
ods we proposed, CMKD-s and CMKD-m, have improved
compared with the baseline that does not use cross-modal
knowledge distillation, especially CMKD-s that uses post
processing has the greatest improvement. For the small in-
crease of CMKD-m, we think it is caused by the poor pro-
cessing of SAR image noise, which makes the EO image
model receive noise disturbance in the process of learning
the SAR model. In the process of iteration training, both
the SAR model and the EO model were subjected to greater
bias.

4.4. Ablation Study

As mentioned earlier, we used MixUp and AutoAug-
ment, two powerful data augmentation tools, in the train-
ing strategy of the model. These two tools have improved
the performance of our model. However, in order to prove

that the cross modality knowledge distillation method we
proposed does positively improve the performance of the
model, we conducted ablation experiments on the three
components of our method: MixUp, AutoAugment, and
Cross Modality Knowledge Distillation. The ablation ex-
periments as following: 1) baseline: use only basic im-
age changes for preprocessing: random rotation, random
resized crop, random horizontal flip, random vertical flip,
and only use ResNet34 as the network backbone; 2) base-
line + MixUp: Alpha = 0.4 is used as the mix parameter of
MixUp; 3) baseline + AutoAugment;: the implementation
of AutoAugment is added to the base to achieve the purpose
of enhancing data; 4) baseline + MixUp + AutoAugment:
MixUp and AutoAugment are simultaneously implemented
on the base. On this basis, we compared the methods us-
ing CMKD-s components: 5) baseline + CMKD-s; 6) base-
line + MixUp + CMKD-s; 7) baseline + AutoAugment +
CMKD-s; 8) baseline + MixUp + AutoAugment + CMKD-
s. In detail, we trained these networks for 120 epochs on
the NTIRE EO trainset, and use Top-1 Accuracy as a per-
formance indicator on the NTIRE EO testset.

As shown in Table 2, every element in our network has
an important impact on the performance of the network.
MixUp and AutoAugment alone or together with the net-
work will have a positive improvement in the accuracy of
the network. When CMKD-s acts on the network, the
top-1 accuracy is significantly improved. Especially when
CMKD-s works with MixUp and AutoAugment, the per-
formance of the network is improved more significantly.
Hence, it can be proved that the CMKD-s we proposed
is efficient. We also compared the accuracy after post-
processing. It can be seen that post-processing is easier
to improve performance when the accuracy of the model
is already high. And it may cause performance degradation
when the accuracy of the original model is insufficient.

5. Conclusion

In this paper, we propose an aerial view object classi-
fication method based on knowledge distillation to obtain
cross-modal knowledge. We use the output of parallel data



Methods CMKD-s

Top-1 Accuracy | Top-1 Accuracy (Post-processing) \

Baseline - 0.13506494 0.18571429
Baseline + MixUp - 0.14558440 0.14415584
Baseline + AutoAugment - 0.19090909 0.25714286
Baseline + MixUp + AutoAugment - 0.22337662 0.20649351
Baseline vV 0.14025974 0.12467532
Baseline + MixUp vV 0.17142857 0.21298701
Baseline + AutoAugment Vv 0.20259740 0.24935065
Baseline + MixUp + AutoAugment (Ours) v 0.31168831 0.36363636

Table 2. Results of CMKD-s and CMKD-m.

in different modal models to allow student models to learn
robust prior knowledge. In addition, we introduced a semi-
supervised iteration training method, which enables cross-
modal models to enhance each other in iterating training.
Compared with the baseline that does not use knowledge
distillation, we have achieved a huge improvement, which
proves the effectiveness of the method.
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