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Abstract

Aerial View Object Classification (AVOC) has started to

adopt deep learning approaches with significant success in

recent years, but limited to optical data. On the other hand,

Synthetic Aperture Radar (SAR) has wild aerial view re-

lated applications in the remote sensing field. However,

SAR has received far less attention due to the special char-

acteristics of the SAR data, which is the long-tailed distri-

bution of the aerial view objects that increases the difficulty

of classification. In this paper, we present a two-branch

framework, including the cascading expert branch and par-

alleling expert branch, to tackle the long-tailed distribu-

tion of the dataset. Our proposed multi-expert architecture

achieves 24.675% and 26.029% in the development phase

and testing phase, respectively, in the NTIRE 2021 Multi-

modal Aerial View Object Classification Challenge Track

1. The proposed method is proved to possess the effective-

ness (top-tier performance among 157 participants) and ef-

ficiency (i.e., a lightweight architecture) for the AVOC task.

1. Introduction

In the past few years, deep learning has attracted tremen-

dous attention due to its impressive feature representation

capability in a large amount of computer vision and pat-

tern recognition applications. Using Electro-Optical (EO)

sensors for Aerial View Object Classification (AVOC) has

been the most prevalent approach since the captured images

are represented in RGB and gray-scale images. However,

another sensor, called Synthetic Aperture Radar (SAR), can

provide high-resolution radar frequency (RF) images. Com-

paring to EO sensors, SAR is able to capture significant in-

formation under various scenarios, (i.e. weather conditions,

no visible light, etc.). In this case, SAR can be used to com-

plement EO sensors by reproducing the RF images. There-

fore, the motivation for this work is to investigate how SAR

can be used to improve the classification performance for

AVOC.

Figure 1: Samples of EO and SAR images for each class

from the NTIRE2021 challenge training dataset. From

left to right, top row represents sedan, suv, pickup truck,

van and box truck while lower row represents motorcycle,

flatbed truck, bus, pickup truck with trailer and flatbed truck

with trailer.

The purpose of AVOC is to predict the class label of a

low-resolution aerial image. Due to the success of convo-

lutional neural networks (CNNs) for various pattern recog-

nition tasks, most researchers use CNNs as the feature ex-

tractor, then exploit the deep discriminative features of SAR

images for classification [27]. VGG [18] and VGG-S net [1]

are used as the backbone for SAR image feature extraction.

Moreover, a deep sparse tensor filtering network (DSTFN)

[36] is proposed to generate more discriminative features

by using the filters from a least squares support vector ma-

chine.

On the other hand, the automatic target recognition

(ATR) method [17], which uses principal component anal-

ysis (PCA) features, elliptical Fourier descriptors (EFDs),

and azimuthal sensitivity image (ASI) as the complemen-

tary features, is proposed to describe the SAR target for

classification.

According to the previous works, VGG based networks

are wildly used in SAR image classification and sparse

tensor filtering is applied to generate more robust fea-

tures. Therefore, there are two significant characteristics in

AVOC: (1) too complicated architectures are not suitable for
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SAR images since SAR images are low-resolution, where

complex architecture is easily to be over-fitting, (2) the per-

formance is easily affected by the sparse data, which are

due to the imbalanced data distribution [23]. Thus, to solve

these two issues, we aim to propose multiple shallow archi-

tecture models to deal with different data sizes of classes.

In this paper, we propose a novel multi-expert percep-

tion classifier including three types of experts: Routing Di-

verse Experts (RIDE) [33], ResNet-50 [15] based classifier

and ResNet-50 based tail classifier. Since RIDE is already

a multiple classifier framework, the intuition is to consider

a framework with more trained models for different num-

ber of classes to enhance the robustness of the multi-expert

framework.

Based on the Track 1 SAR imagery dataset of the NTIRE

2021 Challenge [21], we can achieve 24.675% and 26.029%

in validation phase test data and final test data, respectively.

The promising experimental results show that the proposed

method can possess the effectiveness (top-tier performance

among 157 participants) and efficiency (i.e., a lightweight

architecture) for AVOC.

Overall, the main contributions of this paper can be sum-

marized as follows,

• A novel multi-expert perception classifier is proposed

for the AVOC task.

• Using trained models for different number of classes

to improve the accuracy of AVOC task.

• A light-weighted architecture is used to ensure effi-

ciency.

• The accuracy archives the top-tier among all the teams.

The rest of this paper is organized as follows. Related

works are presented in Section 2, and the proposed method

is introduced in Section 3. In Section 4, we evaluate the

proposed method on the Track 1 SAR imagery dataset of the

NTIRE 2021 Challenge [21]. Finally, we draw a conclusion

in Section 5.

2. Related Works

Synthetic Aperture Radar Due to the success of deep

learning in the computer vision and pattern recognition

communities, the growing use of deep learning in Synthetic

Aperture Radar (SAR) attracts much attention [41] such as

terrain surface classification [26], object detection [6], pa-

rameter inversion [31], despeckling [32], specific applica-

tions in Interferometric SAR (InSAR) [2], and SAR-optical

data fusion [16]. In terms of SAR target detection, tradi-

tional approaches mainly focus on template matching based

on the handcrafted feature via traditional machine learn-

ing approaches, such as Support Vector Machines (SVMs)

[38, 3]. In contrast, deep learning algorithms use end-to-

end convolutional neural networks (CNNs) as the feature

extractor to generate discriminative features that can seam-

lessly work with the subsequent classifier automatically [6].

In this work, we aim to use SAR for the AVOC task to com-

pensate the EO sensors by the RF images. To the best of our

knowledge, there is no multi-expert deep learning frame-

work to solve the long-tailed distribution of SAR images in

AVOC.

Aerial View Object Classification Generally, the methods

for SAR image recognition adopt the conventional CNN

models [15] for natural images. However, since the SAR

images are low in resolution and noisier, the literatures

propose multiple methods for effective feature extraction

and training. Early works utilize pre-processed manually-

designed features [30, 11, 10], which are not optimal for

training the networks end-to-end. Cho et al. [7] use mul-

tiple extraction branches to generate smoother features. To

address the data limitation issue, Shang et al. [28] propose a

densely connected and depth-wise separable CNN (DSNet)

structure, which can reuse the hierarchical feature maps

and avoid extracting redundant features; Min et al. [24] use

model distillation to reduce model parameters. Nowadays,

the data imbalance problem becomes the new bottleneck for

SAR recognition. Previous research [29] finds naive over-

sampling or under-sampling methods are not sufficient to

solve the problem alone. Further exploration is required in

both network architecture and re-balancing techniques.

Long-Tailed Recognition The methods for long-tailed

recognition (LTR) can be divided into three categories:

data re-balancing and augmentation, two-stage training, and

multi-expert architectures. Data re-balancing mainly con-

sists of (1) re-sampling, including down-sampling of the

majority classes [12, 22] or over-sampling of the minor-

ity classes [5, 14, 25]; (2) re-weighting, which assigns

higher weights on tails [9] or hard samples [4] in the loss

function. Besides, data augmentations by mix-up [37, 8]

or sample synthesis [37, 20] can also compensate for the

insufficiency of training data and improve the generaliz-

ability of the model. However, such methods usually in-

crease the performance of the tails by sacrificing that of

the heads, indicating the under-representation of the ma-

jority classes. Therefore, later literatures widely adopt a

two-stage training scheme [19] that trains the model with

instance-balanced sampling (imbalanced) as a pre-training

stage, followed by re-adjusting the classifier with a balanced

sampled set. Though the overall performance is improved

by a large margin, the use of re-balancing still hurts the ac-

curacy of heads, and the re-weighting techniques are sen-

sitive to hyper-parameters selection. More recently, multi-

expert architectures show a strong capacity to address the

LTR by aggregations of models. BBN [39] is a bilateral-

branch network containing a uniform-sampled branch and a

reversed-sampled branch. With a cumulative learning strat-

egy, BBN is an end-to-end framework combining the afore-
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Figure 2: The overall framework of our proposed method. For each model in the cascaded expert branch, we first train the

feature extractor and the experts in the first stage (marked as blue blocks and dashed arrows), followed by training the expert

assignment modules in the second stage (marked as purple blocks and solid arrows). For each model in the parallel expert

branch, we used a re-balancing method to train each individual expert. Finally, a weighted decision-based fusion is applied

to get the final predictions.

mentioned two-stage scheme. LFME [35] assigns different

data splits to the experts and trains each expert with knowl-

edge distillation, thus has accuracy gain over all splits. The

most recent state-of-the-art approach, RIDE [34], is a boost-

ing method that uses KL-divergence loss to encourage the

experts to be good at different parts of the dataset and learns

to decide the number of experts used automatically by a de-

signed label for routing.nsde

3. Method

3.1. Overall Framework

The long-tailed distribution of this NTIRE 2021 Multi-

modal Aerial View Object Challenge Dataset is not typical

as one of its head-classes even significantly out-numbered

the other head-classes, which will be described later in Sec-

tion 4.1. To tackle this atypical dataset, special attention is

paid on designing the proposed deep learning strategy.

The overall framework of our proposed method can be

separated into two components, the cascaded expert branch

and parallel expert branch. For the cascaded expert branch,

the experts are sequentially routed and each of the expert

is trained using the entire dataset, resulting in making bet-

ter predictions on the head-classes. Therefore, we introduce

the parallel expert branch into the architecture as it uses re-

balancing method in the training process to alleviate the in-

fluence of the imbalanced sample distributions. Finally, a

decision-based voting fusion is performed using the outputs

from the two branches.

3.2. Cascaded Expert Branch

For our cascaded expert branch, we adopt the current

state-of-the-art method, the two-stage framework RountIng

Diverse Experts (RIDE) [33], to to gain performance on tail

classes without sacrificing head-classes accuracies in the

LTR tasks.

In the first stage, we train the shared feature extractor and

n experts, which are denoted as E = {E1, E2, · · · , En}, at

the same time. Different from other multi-expert models,

the diversify loss is introduced to encourage the experts to

learn to be as diverse as possible in order to gain the ability

of learning to focus on different features with the same input

samples. The diversity loss LDiversity is defined as:

LDiversity = −
1

n− 1

n
∑

i=1

n
∑

j 6=i

DKL

(

Ei(x), Ej(x)
)

, (1)

where we compute the pairwise KL-Divergence of softmax

over output logits of the sample x defined as:

DKL (Ei(x), Ej(x)) =
∑

x∈X

Ei(x)log
Ei(x)

Ej(x)
, (2)

where X is the probability space of Ei(x) and Ej(x).
Finally, the overall loss for this current stage:

L
stage 1
cascaded = LCls + λLDiversity, (3)

where in our case LCls using LDAM loss [4] and λ is a

re-weighting factor.

3



To improve the overall efficiency of the network, an Ex-

pert Assignment Module [33] is introduced to decide the

number of experts used for each sample during training or

inferencing. This module provide an unique solution to ad-

dress the problem without too much computational over-

head. The Expert Assignment Module is trained by the

routing loss which dynamically assigns and routes the ex-

perts based on the input features and predicted logits in the

second stage, under the setting that all the weights of the

backbone and experts are frozen. The loss function can be

formulated as:

L
stage 2
cascaded

= −ωpy·log
( 1

1 + e−y

)

−ωn(1−y)·log
(

1−
1

1 + e−y

)

,

(4)

where the ground truth y is set to 1 if and only if the prior

experts fail to predict correct results and one of the later

experts is able to compensate the error by giving the correct

results (treated as positive samples). We then set the ground

truth y of all of the other cases (treated as negative samples)

to be 0. And ωp and ωn are weights for the positive samples

and negative samples respectively. The number of Expert

Assignment Module will be n − 1 eventually if we have n

experts in our model.

At inference and test stage, the final outputs are the arith-

metic mean on logits of all assigned experts, followed by a

softmax layer to produce final confidence possibilities.

3.3. Parallel Expert Branch

For our parallel expert branch, we train different experts

based on a different training setting with focused target clas-

sification groups. As these models are trained individually

and are only used for ensemble at the final decision-based

voting procedure, as it makes our final predictions more ro-

bust.

We adopt the re-balancing method [13] in the training

process for all of the models in this branch to handle the

long-tailed distribution observed from the dataset. During

each epoch in the training stage, we follow a very simple

over-sampling logic by introducing a class-level repeat fac-

tor rc. The repeat factor rc, which controls the number of

appearance of a given image I belonging to class c, is de-

fined as:

rc = max
(

1,
t

fc

)

, (5)

where fc is the overall fraction of class c over the entire

training samples and t is a hyper-parameter known as over-

sampling threshold. Based on the definition of repeat factor,

if fc >= t stands, the repeat factor will be 1 and thus no

more over-sampling the images that belong to class c. For

the cases that fc < t, the images will be over-sampled every

epoch. The loss function of parallel expert branch is the

naive cross-entropy loss:

Lparallel = −y ·log
( 1

1 + e−y

)

−(1−y)·log
(

1−
1

1 + e−y

)

.

(6)

4. Experiments

4.1. Dataset

The NTIRE 2021 Multi-modal Aerial View Object Chal-

lenge Dataset [21] consists of two types of training images

captured by Electro-Optical (EO) and Synthetic Aperture

Radar (SAR) sensors over the same field of view. The EO

image size is of 31 × 31 pixels while the SAR image size

vary from 50 × 50 to 60 × 60 pixels. The dataset con-

sists of a total of 10 commercial vehicle classes, includ-

ing sedan, SUV, pickup truck, van, box truck, motorcycle,

flatbed truck, bus, pickup truck with trailer and flatbed truck

with trailer. As shown in Table 1, the number of samples

of each class in the training data is extremely imbalanced

with a long-tailed distribution. Based on the sample sizes

of classes, the first four sample-rich classes, namely sedan,

SUV, pickup truck and van are defined as the head classes.

The other classes are defined as tail classes.

Table 1: Distribution of the NTIRE 2021 training data.

Index Type # of Samples % of Samples

0 sedan 234,429 79.72%

1 SUV 28,089 9.56%

2 pickup truck 15,301 5.21%

3 van 10,655 3.63%

4 box truck 1,741 0.59%

5 motorcycle 852 0.29%

6 flatbed truck 828 0.28%

7 bus 624 0.21%

8 pickup truck w/ trailer 840 0.29%

9 flatbed truck w/ trailer 633 0.22%

In this challenge, the development-phase testing data

(validation set), whose ground-truth labels are not pub-

licly available, only the final performance scores are visi-

ble to the participants. Different from the training data, the

development-phase testing data consists of 770 samples and

is uniformly distributed across each class.

The testing phase testing dataset (testing set), which con-

sists of 826 samples, is used as the final evaluation for rank-

ing the entries. The data distribution of this split is claimed

to be similar as the validation set.

4.2. Implementation

We use ResNet-50 [15] as the feature extractor and each

expert is identical across the models being a fully connected

layer with the dimension R
2048×10. Since the SAR image
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Table 2: Development phase test results for the NTIRE2021 Multi-modal Aerial View Object Classification Challenge Track

1 with different setting and model frameworks. The ground-truth labels of the development phase test data are not yet made

available to the participants, the top-1 accuracies in this table are retrieved by submitting the prediction to the validation

server.

Type Method Pretrained Re-Balancing Augmentation Top-1 Accuracy

Single Model

Baseline (ResNet-50)

- - - 15.974%

X - - 13.896%

- X - 18,182%

- - X 16.753%

BBN [39] - X X 16.623%

RIDE [33] - - X 18.182%

Cascaded Expert (Best) - - X 21.039%

Parallel Expert (Best) - X X 22.337%

Multiple Models Ours - X X 24.675%

sizes are not consistent in this particular dataset, we resize

all samples to 124× 124.

For the cascaded expert branch, we train 100 epochs for

the first stage with an initial learning rate of 0.2 and a weight

decay of 0.005. The warm-up epoch is set to 5. The batch

size is set to 512. Then we train another 10 epochs for

the second stage with a fixed learning rate of 0.01 with a

weight decay of 0.005. Note that we do not perform the self-

distillation mentioned in the original work. We have two

models trained with different number of experts, namely 2

experts and 3 experts in the final submission.

For the parallel expert branch, we train for a variation

of 40 to 60 epochs depending on the model with an initial

learning rate of 0.01 and a weight decay of 0.001. The batch

size is set to 64. Since the sedan training samples signifi-

cantly out-number tail-classes and even other head-classes

by a very large margin. We have 4 models trained with only

the tail-classes and 3 models trained with all-classes in the

final submission.

Table 3: Development phase test results for tuning the

hyper-parameters for final decision-based voting fusion.

Hyper-parameters
Top-1 Accuracy

(αcas, α
tail
par , α

all
par)

(1, 0, 0) 21.948%

(0, 1, 1) 23.636%

(1, 1, 1) 21.429%

(2, 0.5, 1) 24.675%

Due to the fact that some of the models in the parallel ex-

pert branch were trained only with the tail-classes, it is nat-

ural for us to assign distinct weights during the final voting.

We tuned αtail
par , αall

par and αcas base on the validation per-

formance from the server. As the submission quotas were

limited during the time of competition, we only try different

combinations of the hyper-parameters from [0, 0.5, 1.0, 2.0]

listed in Table 3 which also includes the results of using

only cascaded expert branch or only parallel expert branch.

The final fusion weights are tuned as αcas = 2, αtail
par = 0.5,

and αall
par = 1.

Our experimental environment is Python 3.7, Pytorch 1.4

and mmclassification 0.8.0 with one Nvidia Quadro GV100.

4.3. Experiment Results

Table 2 shows the experimental results on development

phase testing dataset (validation set), which includes ex-

periments from pretrained weights, augmentation and re-

balancing strategy on the baseline model ResNet-50. We

also conduct additional experiments using the original set-

tings of BBN [39] and RIDE [33]. Since more than one

model are trained in both cascaded expert branch and par-

allel expert branch, the best single model from each of the

branch is recorded.

Table 4: Latest update of the test results for the NTIRE2021

Multi-modal Aerial View Object Classification Challenge

Track 1 (SAR).

Team
Top-1 Accuracy

(# of Correct Prediction)

Team A 34.615% (286)

Team B 26.634% (220)

Team C 26.392% (218)

Team D 25.061% (207)

Ours 26.029% (215)

The top 5 teams from the latest update of the test results

for the NTIRE2021 Multi-modal Aerial View Object Clas-

sification Challenge Track 1 (SAR) are listed in terms of the

top-1 accuracy in the testing phase in Table 4. With only

826 testing samples, the top ranking teams actually have

very similar performance with only a couple samples dif-

ference which shows that our multi-expert architecture have

the potential to address this problem.
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4.4. Ablation Study

Augmentation is a common technique widely used in the

deep learning task to diversify the distribution of the origi-

nal dataset to prevent over-fitting. However, this is not the

case when we use SAR image as input to the CNN mod-

els as the SAR image coordinates range and azimuth can-

not be arbitrarily coordinated like other aerial view imagery.

This observation is also mentioned in the [40], suggesting

that we may come up with an augmented sample, that can

never be generated by the SAR, by randomly rotating or

cropping the original samples. To understand the effect of

this, we present some experiments on whether including the

data augmentation in our training process, as shown in Ta-

ble 5 where we record the best top-1 accuracy that can be

achieved after trying different parameters for the augmenta-

tion.

Table 5: Ablation studies on the development phase test re-

sults for the NTIRE2021 Multi-modal Aerial View Object

Classification Challenge Track1.

Augmentation Method Top-1 Accuracy

Baseline (ResNet-50) 15.974%

Random Cropping 12.987%

Center Cropping 12.338%

Rotation 15.584%

Flipping 16.494%

Rotation + Flipping 16.753%

From our ablation experimental results about the effect

of augmentation on SAR image, it can be concluded that

most of the conventional augmentation methods fail to en-

hance the performance of the SAR classification when using

the CNN structure. However, due to the limited size or dis-

tribution of the dataset, we still adopt rotation and flipping

in all of our training pipeline as it gives a small margin of

improvement.

5. Conclusion

In this paper, we present a two-branch multi-expert

framework, consisting of a cascaded expert branch and

a parallel expert branch, which aims to tackle the atyp-

ical long-tailed distribution observed in the NTIRE 2021

Multi-modal Aerial View Object Challenge Dataset. Our

proposed model, named Cascading and Parallel Experts,

achieves 26.029% on the testing set in Track 1 using only

low-resolution SAR images as input. The experimental re-

sults show the promise of our proposed method, which can

possess the effectiveness as it achieves top-tier performance

among 157 participants for Aerial View Object Classifica-

tion using only Synthetic Aperture Radar imagery.
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