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Abstract

Image relighting aims to recalibrate the illumination set-

ting in an image. In this paper, we propose a deep learning-

based method called multi-modal bifurcated network (MB-

Net) for depth guided image relighting. That is, given an

image and the corresponding depth maps, a new image with

the given illuminant angle and color temperature is gener-

ated by our network. This model extracts the image and

the depth features by the bifurcated network in the encoder.

To use the two features effectively, we adopt the dynamic

dilated pyramid modules in the decoder. Moreover, to in-

crease the variety of training data, we propose a novel data

process pipeline to increase the number of the training data.

Experiments conducted on the VIDIT dataset show that the

proposed solution obtains the 1
st place in terms of SSIM

and PMS in the NTIRE 2021 Depth Guide One-to-one Re-

lighting Challenge.

1. Introduction

Given an image, image relighting aims to relight this im-

age into another image with different ambient conditions. In

the NTIRE 2021 Depth Guide One-to-one Relighting Chal-

lenge, the depth maps are provided. We plot examples in-

cluding the original image, the corresponding depth map,

the relighted image by the proposed method, and the ground

truth in Fig. 1. As shown in Fig. 1, there are two inherent

challenges for image relighting. First, to generate the image

with different ambient conditions, it is necessary to gener-

ate shadows into the relighted image. Second, similarly,

the shadow from the original image needs to be removed.

For example, in Fig. 1 (c), although the region shadows are

removed, the texture of the grass cannot be recovered ap-

*Equally-contributed first authors.

(a) (b)
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Figure 1: Example of depth guided image relighting. (a):

Original input image. (b): Corresponding depth map. (c):

Relighted image by our method. (d): Ground truth.

propriately.

Previously, many methods [1, 2, 3] based on develop-

ing visual priors or capture properties of relighted images

have achieved impressive performance. Recently, some

deep learning-based methods [4, 5, 6, 7] are proposed with-

out explicit inverse rendering steps for estimating scene

properties. However, these methods do not consider com-

plex scenes and various ambient conditions. Moreover,

in NTIRE 2021 Depth Guide One-to-one Relighting Chal-
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lenge, there are extra difficulties needed to be addressed.

First, the number of training data given in the VIDIT [8]

dataset is 300, which is not enough to train the network. To

address these issues, our network is based on the backbone

pre-trained from ImageNet. Furthermore, we leverage extra

data from Track II: Any-to-Any relighting [7] and develop

a strategy that can generate new image pairs to increase the

number of the training data and the robustness of the net-

work.

Second, depth and image features should be effectively

extracted and fused. Depth maps and images contain the

different attributes of features. Depth maps present spatial

information while the images provide texture, light cues,

and dark cues. Thus, we refer to the methods proposed in

the RGB-D salient object detection [9, 10, 11] and propose a

multi-modal bifurcated network to deal with this issue. This

network contains encoder and decoder parts. Our encoder

applies two branches without sharing weight to extract fea-

tures, respectively. Additionally, we apply the dynamic di-

lated pyramid module to effectively integrate two features.

In the decoder parts, we gradually magnify the feature maps

and recover the image. Motivated by the U-Net [12, 13],

we apply skip connection to connect the feature maps with

identical size from the encoder and decoder parts to obtain

better relighted images.

We make the following contributions in this paper:

1. The multi-modal bifurcated network is proposed for

depth guided image relighting. This structure can ex-

tract image and depth features by two branches. Then,

these two features are fused by dynamic dilated pyra-

mid modules effectively.

2. We propose a new strategy to leverage additional im-

ages from Track II and construct more input-output

pairs as the training data.

3. Several experiments performed on the VIDIT [8]

dataset demonstrate that our solution achieves the 1st

place in terms of MPS and SSIM in the NTIRE 2021

Depth Guided One-to-one Relighting Challenge.

2. Related Works

Two tasks are very similar to depth guided image relight-

ing: RGB-D saliency object detection and image relighting.

In this section, we briefly describe several works related to

these tasks.

2.1. RGB­D Salient Object Detection

Salient Object Detection (SOD) aims to imitate the hu-

man visual system and detect certain regions or objects that

attract human attention. RGB-D SOD is known as combin-

ing the extra depth maps to fulfill salient detection. Some

models [10, 11] extract features from images and depth

maps independently, and conducts feature maps fusion of

the two modalities in the decoder. In [11], Asymmetric

Two-Stream Architecture (ATST) is proposed which con-

siders the inherent differences between the RGB and the

depth data for the salient detection. In [10], Guided Resid-

ual (GR) blocks are proposed to feed the RGB image and

the depth image alternately to reduce the mutual degrada-

tion. They also address progressive guidance in the stacked

GR blocks within each side-output to remedy the false de-

tection and the missing parts. On the other hand, in [14],

the single stream network is designed that concatenates the

RGB image and depth image across the channel dimension

and directly applies the depth map to guide both the early

fusion and the middle fusion between the RGB information

and the depth information, which saves the feature encoder

of the depth stream. Additionally, in [15], authors propose

the RD3D that 3D convolutional neural networks are intro-

duced to address the RGB-D SOD. This network adopts the

progressive fusion involving both the encoder and the de-

coder stages. Since the multi-modal fusion methods from

RGB-D SOD can be leveraged for the depth-guided image

relighting, in this paper, the proposed MBNet is based on

the HDFNet [9].

2.2. Image Relighting

The algorithms for image relighting can be categorized

as the physical-based method and the deep learning-based

method. Traditional methods [1, 2, 3] depend on the phys-

ical observation to further estimate the ambient conditions,

reflectance, and lighting of the scene in the image and then

re-render this scene by another illumination setting. In [2],

an algorithm treating the complex scene as a linear system

that transforms the original light into the reflected light is

proposed. This algorithm progressively refines the approxi-

mation of the reflectance field until the required precision

is reached. In [3], authors prove that the light transport

of diffuse scenes under the spatially varying illumination

can be decomposed into the direct, near-range and far-range

transports. They separate these three components in the fre-

quency space. On the other hand, many deep learning-based

methods for image relighting [4, 5, 7] are proposed. Im-

age relighting can be seen as an image-to-image translation

problem. Several low-level image processing problems like

haze/smoke removal [16, 17, 18], underwater enhancement

[19], reflection removal [20], image deraining [21] and im-

age desnowing [22] are very similar to image relighting.

Generally speaking, the encoder-decoder structure like U-

Net [12, 13] can deal with these tasks. Some methods that

deal with the ambient conditions especially for the image re-

lighting are developed. Gray loss described in [5] can drive

the network to learn the illumination gradient in target do-

main images. Xu et.al propose a CNN-based method [4] to

relight a scene under a new illumination based on five im-
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Figure 2: The architecture of the proposed multi-modal bifurcated network. The network consists of two streams as encoder

parts: depth stream and RGB-image stream. We use the dense architecture ,DDPM and skip connection for better feature

extraction as decoder parts.

ages captured under a pre-defined illumination setting. This

method tries to estimate a non-linear function that general-

izes the estimation from the optimal sparse samples.

3. Proposed methods

3.1. Overall Neural Network

As shown in Fig. 2, to leverage the depth information

for depth guided image relighting task effectively, we refer

the dual-stream bifurcated architecture in [9] as the back-

bone. Our network consists of two streams to extract the

depth and the image features. We apply the two ResNet

50 [23] pre-trained from the ImageNet as the backbones. In

the network design, the depth and image features from three

intermediate layers are fused to achieve the representative

features. We fuse the features from the conv3, the conv4

and the conv5 layers to balance the effectiveness and the ef-

ficiency of the network. Specifically, for the features in the

shallower layers, they are generally noisier and the high-

resolution of these features may increase the computational

burden. However, the features in the conv3 to the conv5

may still preserve the valid information [9] and with lower

resolution. To fuse these two features with multiple recep-

tive fields, we leverage the densely connected architecture

to generate the combined features with the fruitful texture

and the structural information. Then, these features are

fed to the Dynamic Dilated Pyramid Module (DDPM) [9]

that can generate a more discriminative result. We will

describe this module in the following section. The out-

put of the DDPM is combined with the output of the de-

coder by convolving with the multi-scale convolution ker-

nels [24, 22, 25]. In the decoder part, similar to the U-net

[13, 12], we gradually magnify the feature maps and imple-

ment the skip connection to concatenate the identical size

feature maps. Furthermore, we make our network learn the

residual [23] instead of the whole images. That is, the final

output is the difference between the original image and the

relighted image.

3.2. Dynamic Dilated Pyramid Module

In this part, we illustrate the detail of the DDPM. As

shown in Fig. 3, the input of DDPM is the fused feature

fE and the feature (fRGB)D from encoders, respectively.

First, the (fRGB)D passes through the convolution kernel

to reduce the dimension of the feature which is termed as
∗(fRGB)D. Second, the kernel generation units (KGUs) [9]

are adopted on the fused feature fE to generate different

weight tensors (i.e, f1

KGU
, f2

KGU
, f3

KGU
) which can cover
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Figure 3: The architecture of the dynamic dilated pyramid module (DDPM). There are two modules in the network, that is,

the kernel generation units (KGUs) and the kernel transformation units (KTUs).

three square neighborhoods (i.e., 3×3, 7×7, and 11×11) .

It is noted that KGUs are with four densely connected layers

[26] which can improve the feature propagation and feature

reuse effectively. Then, we leverage the kernel transforma-

tion units (KTUs) to yield regular convolution kernels with

various dilation rate (i.e., 1, 3, 5) by reorganizing kernel ten-

sors and inserting various numbers of zeros. Then, the three

parallel output features combine with the ∗(fRGB)D by the

convolution kernels, respectively. We term these combined

features as f1

K
, f2

K
, f3

K
. Finally, we combine f1

K
, f2

K
, f3

K

and ∗(fRGB)D to generate the output of the DDPM fC .

3.3. Extra Data Usage

In this section, we propose two strategies to increase the

training data so that our model can learn the mapping func-

tion of the depth guided image relighting robustly. In this

challenge, the input image (6500-N) is with 6500K color

temperature and the north illumination angle while the out-

put image (4500-E) is with 4500K color temperature and

with the east illumination angle. In order to improve the ro-

bustness of our network, we leverage the images in Depth

Guided Image Relighting: Track II Any-to-Any relighting

[7]. This track provides the images with various illumina-

tion temperature and different illumination angles. Specif-

ically, we apply the images with the different illumination

angle (6500-NE) but the identical color temperature as the

input and the ground truths are the same ones (4500-E). As

shown in Fig. 4, the additional image (6500-NE) is very

similar to the original one (6500-N). With this additional

data, the model can understand the direction information

comprehensively.

Moreover, We adopt additional images which contain the

same scene but with the different illuminating angle (4500-

W). We can flip horizontally the image with the west illu-

mination angle to achieve the new image with the east illu-

mination angle. Thus, we develop a new strategy to further

increase training data and illustrate it in Fig. 5. As shown

in Fig. 5 (d) and Fig. 5 (e), we flip the original RGB (6500-

N) images and the corresponding depth map horizontally.

The horizontally flipped image of (4500-W) is the output of

the flipped input (6500-N). With this operation, the training

data can be increased.

3.4. Loss Functions

In this paper, we leverage three loss functions to mea-

sure the differences between the relighted images and the

ground truth. The three loss functions are the Charbonnier

loss [27], the SSIM loss [28], and the perceptual loss [29].

The Charbonnier loss can be expressed as:

LCha(x, x̂) =
1

T

T
∑

i

√

(xi − x̂i)2 + ǫ2 (1)

where x and x̂ are the ground truth and relighted images,

respectively. e is a tiny constant for the stable and the robust

convergence.

The second loss function is the SSIM loss function.

SSIM loss is expressed as:

LSSIM (x, x̂) = −SSIM(x, x̂) (2)

SSIM loss is beneficial to reconstruct local structures and

details.

Finally, the perceptual loss is written as:

LPer(x, x̂) = |(V GG(x)− V GG(x̂)| (3)

where V GG means the VGG19 network [30]. In our work,

we use the features from conv3-3 layer. The overall loss
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(a) (b) (c) (d)

Figure 4: Additional images are used in the training phase. (a) Original image (6500-N). (b) Different illuminating angle

image (6500-NE). (c) Guided depth map. (d) Output image.

(a) (b) (c) (d) (e) (f)

Figure 5: Using (4500-W) images to increase the diversity of the training data. (a): Original input image. (b): Original depth

map. (c): Output image. (d): Flipped image of (a). (e): Flipped depth map of (b). (f): Flipped image of (4500-W).

function containing three terms is expressed as:

LTotal = λ1Lcha + λ2LSSIM + λ3LPer (4)

where λ1, λ2 and λ3 are weights to control the final objec-

tive functions. These three weights are empirically adjusted

as hyper-parameters.

4. Experiments

4.1. Experimental Setting

In the NTIRE 2021 Depth Guide One-to-one Relighting

Challenge, the novel Virtual Image Dataset for Illumination

Transfer (VIDIT) [8] is provided as the training and the val-

idation data. This dataset consists of 390 various scenes

that are captured at 40 different illumination conditions in-

cluding 8 different azimuthal angles and five color temper-

atures such as 2500K, 4500K, etc. Furthermore, the corre-

sponding depth maps are provided. In track I - depth guided

one-to-one relighting, the input images are depth map and a

pre-defined illumination condition θ = North, temperature =

6500K (e.g., (6500-N)) and the output image is set at a dif-

ferent illumination setting θ = East, temperature = 4500K.

Though in track I, only two conditions of images are used

as the input and the output pairs, it is allowed to utilize the

extra data to improve the accuracy of the model. During the

training and the evaluation phases, the image size is 1024 ×
1024, and we do not use any data augmentation like random

flip and random crop. The Adam optimizer [31] is utilized

with a batch size of 3 to train the network. We train the

network for 200 epochs with the momentum β1 = 0.5, β2 =

0.999. The learning rate is initialed as 10−4 and divided by

ten after 50 epochs. The λ1, λ2 and λ3 in (4) are set as 1,

1.1 and 0.1, respectively. We perform our experiments on a

single Nvidia V100 graphic card and the PyTorch platform.

We spend about 11 hours finishing the model training. In

the testing phase, we take 2.8867 seconds to predict a sin-

gle image. The source code will be available in our project

page.

Table 1: The ablation experiment of applying the different

data and the residual learning.

Description PSNR SSIM

Baseline 18.0215 0.6834

+ Extra data 18.9677 0.7103

+ Extra data + Residual learning 19.3558 0.7175
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Figure 6: Visual comparison for the relighted results recovered by the MBNet and other solutions.

4.2. Ablation Experiments

We conduct the ablation experiment to verify that each

module applied in this paper can benefit the proposed re-

lighting network. In all experiments, the image size is set as

1024× 1024. We test each module and report the results un-

der the validation set. We select the peak signal-to-noise ra-

tio (PSNR) and the structural similarity (SSIM) as objective

metrics for the quantitative evaluation. Overall, the ablation

studies consist of three different experimental scenarios: 1)

We apply the original training data to train the MBNet as

the baseline. 2) We apply the method described in Section
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Table 2: Relighted results by some state-of-the-art RGB-D

salient object methods.

Methods PSNR SSIM

ATST [11] 18.2678 0.665

DANET [14] 18.3341 0.6805

RD3D [15] 17.7763 0.6668

PGAR [10] 17.6436 0.6748

Ours 19.3558 0.7175

3 to increase the training data to train our MBNet. 3) We

increase the training data and also apply the residual learn-

ing [23] strategy. We summary the ablation experiments in

Table 1. One can see that both PSNR and SSIM scores of

setting 2 are increased compared with setting 1. It can show

that increasing training data is beneficial for better perfor-

mance and robustness. Additionally, compared with setting

2, the performance of setting 3 is improved effectively. It

demonstrates that the residual learning can further improve

the accuracy of the relighting.

4.3. Comparison with State­of­the­art Methods

First, we compare the MBNet with four state-of-the-art

RGB-D SOD methods including ATST [11], DANET [14],

RD3D [15] and PGAR [10] as described in the Section 2.

Note that, we use the same training set to train these meth-

ods. We replace the final convolutional layers of RGB-D

SOD networks, so their output is three-channel tensors as

relighted images. As shown in Table 3, the MBNet out-

performs other methods with a large margin. Our method

achieves the best performance on both PSNR and SSIM,

which surpasses the second place 1.02 dB and 0.037 in

SSIM.

Furthermore, we report the performances of some sub-

missions in the NTIRE 2021 Depth Guide One-to-one Re-

lighting Challenge [32]. The performance is evaluated on

the validation and the test dataset and the results are shown

in Table 3. Additionally, The Mean Perceptual Score (MPS)

is used for final evaulation. The MPS is defined as the av-

erage of the normalized SSIM and LPIPS [33] scores. The

MBNet produces moderate quality outputs and the 1st place

performance in both MPS and SSIM metrics. We also plot

some relighted images generated by our method and other

participants in Fig. 6. Compared to other methods, our im-

ages can remove more shadows and present clear outlines

of objects, though some results are not satisfactory.

5. Conclusion

In this paper, to address depth guided image relighting,

we develop the multi-modal bifurcated network. This net-

work extracts both depth and image features by a dual bi-

furcated backbone. To fuse multi-modal features, the dy-

namic dilated pyramid module is introduced. This module

contains densely connected layers and multi-scale kernels

to fuse and refine features from a dual bifurcated backbone.

Furthermore, to improve the robustness and performance,

we propose a new strategy to increase the training image

pairs by leveraging extra images. Several experiments im-

plemented on the novel VIDIT [8] dataset proves that our

solution achieves the 1st place in terms of MPS and SSIM

in the NTIRE 2021 Depth Guided One-to-one Relighting

Challenge.
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