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Abstract

Depth guided any-to-any image relighting aims to gener-

ate a relit image from the original image and corresponding

depth maps to match the illumination setting of the given

guided image and its depth map. To the best of our knowl-

edge, this task is a new challenge that has not been ad-

dressed in the previous literature. To address this issue,

we propose a deep learning-based neural Single Stream

Structure network called S3Net for depth guided image re-

lighting. This network is an encoder-decoder model. We

concatenate all images and corresponding depth maps as

the input and feed them into the model. The decoder part

contains the attention module and the enhanced module to

focus on the relighting-related regions in the guided images.

Experiments performed on challenging benchmark show

that the proposed model achieves the 3rd highest SSIM in

the NTIRE 2021 Depth Guided Any-to-any Relighting Chal-

lenge.

1. Introduction

The objective of this paper is to address the depth guided

any-to-any relighting task. That is, an input image with a

certain color temperature and light source position setting

is relit to match the illumination setting of another guided

image. The example is plotted in Fig. 1. Fig. 1 (a) is the

original source image, and Fig. 1 (c) is the guided image.

Moreover, the depth maps of two images are provided as

shown in Fig. 1 (b) and Fig. 1 (d), respectively. The tar-

get of relighting is to generate a novel result as shown in

Fig. 1 (f) based on the content of the source image and the

light condition of the guided image. Fig. 1 (e) is a result

estimated by our proposed approach. To the best of our

knowledge, this task is a new challenge that has not been

*Equally-contributed first authors.

addressed in the previous literature. Image relighting is an

emerging and crucial technology owing to its applications

in visualization, image editing and augmented reality (AR).

For example, any-to-any relighting can be used to render

images with various ambient lighting conditions for the first

and the third person gaming.

The input of any-to-any image relighting is an original

image and a guided image, which can be seen as the ap-

plication of the style transferring [1]. That is, two images

containing different ambient conditions can be seen as dif-

ferent style images. However, there are two inherent dif-

ferences between the style transferring and the image re-

lighting. First, to generate the image with different ambi-

ent conditions, it is necessary to generate shadows into the

relit image. Second, similarly, the shadow from the orig-

inal image needs to be removed. On the other hand, the

style transferring focuses on the texture rendering. To ad-

dress this issue, recently, many deep learning-based image

relighting algorithms [2, 3, 4, 5, 6] are proposed because the

deep convolutional neural networks (CNNs) have achieved

a lot of successful improvements in many computer vision

tasks. They develop the neural networks and follow the end-

to-end manner to directly generate relit images without as-

suming any physical priors. Inspired by those approaches,

in this paper, we also propose the deep learning network to

tackle the depth guided any-to-any relighting.

Different from the conventional image relighting tasks

[7], NTIRE 2021 Depth Guided Any-to-any Relighting

Challenge provides additional depth maps, which are ben-

eficial for the model to learn spatial representations. To

effectively extract the RGB-image and the depth features,

the most popular methods are using a dual stream backbone

[8, 9]. However, it is difficult to design the dual backbones

to extract the image and depth features because the input in-

formation may cause a huge computational burden. Specifi-

cally, in NTIRE 2021 Depth Guided Any-to-any Relighting

Challenge [10], the sizes of both images and depth maps are

1024 × 1024. Furthermore, the input contains two images
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Figure 1. An example of any-to-any relighting. (a) Original image. (b) Original depth map. (c) Guided image. (d) Guided depth map. (e)

Relit image by our method. (f) Ground truth.

and two depth maps. Therefore, in this paper, we design

a single stream structure network (S3Net) to fulfill depth

guided any-to-any relighting. This network is an encoder-

decoder model. All images and corresponding depth maps

are concatenated as the input and passed our network to ren-

der the relit image.

To design an efficient network for image relighting, sev-

eral modules can be utilized. For example, multi-scale fea-

ture extractors [11, 12] can be used to increase the recep-

tive field and integrate the coarse-to-fine representation. It

is necessary to adopt this module because relit images con-

tain objects in various scales. Additionally, the attention

mechanisms are widely used in various tasks like image en-

hancement [13, 14] and machine translation [15]. The atten-

tion mechanism assigns feature map weights so that features

of the sequence of regions or locations are magnified. Be-

cause the relit image contains the information of direction

(e.g., Fig. 1 (a)), the attention mechanism is beneficial for

the model to learn the directional representations. There-

fore, two modules are selected and integrated into decoder

parts to focus on the relighting-related regions in the guided

images. Besides model structure, object functions also im-

pact the overall performance. We combine discrete wavelet

transform (DWT) to design a multi-scale loss function to

optimize our model so that our model can relight the global

ambient conditions and detailed structure.

We summarized the contributions in this paper as follow.

1. We propose a Single Stream Structure network

(S3Net) for the depth guided any-to-any relighting.

We apply the single stream network to extract the im-

age and depth features, and deal with various ambient

lighting conditions such as the direction of the illumi-

nation and the color temperature.

2. During the training phase, we adopt the loss func-

tion combining Discrete wavelet transform to train our

model. This loss function effectively improves accu-

racy.

3. We test our proposed method on the VIDIT dataset

[16] and multiple experiments demonstrate that the

proposed S3Net achieves the 3rd highest SSIM and

MPS in the NTIRE 2021 Depth Guided Any-to-any

Relighting Challenge.

2. Related Works

2.1. RGB-D Fusion

Different from the conventional RGB tasks, extra depth

information can improve accuracy in many computer vision

tasks like semantic segmentation [17] and object detection

[4]. Depth maps have demonstrated to be a useful cue to

provide geometric and spatial information when combining

with the RGB representation. In [4], they propose Faster-

RCNN structure to tackle pedestrian detection. They prove

that depth maps can be utilized to refine the convolutional

features extracted from RGB images. Additionally, more

accurate region proposals are achieved by exploring the per-

spective projection with the help of the depth information.

In [17], a unified and efficient cross-modality guided en-

coder for semantic segmentation is proposed. This struc-

ture jointly filters and recalibrates both representations be-

fore cross-modality aggregation. Meanwhile, a bi-direction

multi-step propagation strategy is introduced to effectively

fuse information between the two modalities. Chen et.al

[18] propose the approach to RGB-D salience object de-

tection. The depth and image features are extracted by a

dual backbone. Authors also integrate both features through

densely connected structures and apply their mixed features

to generate dynamic filters with receptive fields of different

sizes. These works tend to use a dual backbone to extract

features of different modalities. In practice, the size of relit

images in VIDIT [16] and the corresponding depth map is

very large (e.g., 1024×1024). The relit images contain il-

luminant direction information, which is not proper to crop

large images to small patches during training. To address

this issue, we design a single stream structure to jointly ex-

tract both depth and the image features.

2.2. Deep Learning Based Image Relighting

Following the rule in the 2021 NTIRE Depth Guided

Image Relighting Challenge, there are two kinds of set-
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tings. First, the illuminant direction and the temperature are

pre-defined [2, 6], which is known as one-to-one relight-

ing. Second, the ambient condition is based on a guided

image [3], which is known as any-to-any relighting. Both

of them are very similar to other low-level vision tasks like

image dehazing [14] image deraining [13], image smoke re-

moval [19], image desnowing [20], reflection removal [21],

and underwater image enhancement [12]. All of them be-

long to the image-to-image translation problems. To tackle

those problems, the encoder-decoder network can be ap-

plied. Furthermore, when it comes to encoder-decoder

structure, U-net [22, 23] is the most popular network for

image-to-image translation tasks. This structure consists

not only the encoder-decoder structure but also the skip con-

nection, which concatenates the features with identical size

from the encoder to the decoder. For example, Puthussery

et.al [2] proposes a wavelet decomposed relit network for

image relighting. This structure is a novel encoder-decoder

network employing wavelet-based decomposition followed

by convolution layers under a multi-resolution framework.

Additionally, this network contains skip connection opera-

tions. Different from those low-level vision tasks, the relit

image contains the information of illuminant direction and

color temperature, which may cause the shadow of the ob-

jects to be located in different locations. In [3], a lighting-

to-feature network is proposed to recover the corresponding

implicit scene representation from the illumination settings,

which is known as the inverse process of the lighting esti-

mation network.

2.3. Wavelet Transform for Deep Learning

DWT [24] with orthogonal property is widely adopted

in many computer vision tasks [23, 2]. DWT decomposes

an image into various small patches in different frequency

intervals, which can replace the existing down-sampling

operations like max pooling or average-pooling. There-

fore, many tasks apply DWT to diminish feature maps and

achieve multi-scale features. Moreover, in [25], DWT is

leveraged to design the objective function to measure the

similarity between the ground truth and predict images.

Motivated by these works, we also combine DWT in the

loss function to make our network learn the multi-scale rep-

resentations.

2.4. Attention Mechanism

Attention mechanisms are important roles in both hu-

man perception systems and deep learning tasks [13, 26].

Attention mechanisms provide feature maps or certain se-

quence weights so that features of regions or locations can

be magnified. Specifically, for computer vision tasks, at-

tention mechanisms are categorized as the spatial attention

[3] and the channel attention [13]. The former spatially uti-

lizes weights to refine the feature maps, and the latter com-

putes the global average-pooled features to implement the

channel-wise attention. In this paper, both attention mech-

anisms are leveraged in our model to further increase the

performance of the network.

3. Proposed Methods

3.1. Overall Neural Network

The architecture of the proposed S3Net is presented in

Fig. 2. This network is based on [27] and contains the en-

coder and decoder parts. In the encoder part, we apply the

Res2Net101 [28] as our backbone. The Res2Net can rep-

resent multi-scale features at a granular level and increases

the range of receptive fields for each network layer. After

the input is passed through the backbone, multi-scale fea-

ture extraction is achieved. Note that, the Res2Net utilized

in this work discards the full connection layer and the size

of final output feature maps from our encoder is 1

16
. The ini-

tial weight of the encoder is pre-trained parameters trained

from the ImageNet. We connect bottom features to the de-

coder. The decoder consists of the stacks of convolution to

refine the feature maps. Both the pixel shuffle [29] and the

transposed convolution [30] are adopted to magnify feature

maps. Furthermore, we leverage attention modules to refine

intermediate features. Attention modules consist of residual

layer [31], the spatial [26], and the channel attention [32] as

shown in Fig. 2 (orange rectangle).

Furthermore, inspired by [11], we add the enhanced

module in our S3Net. The enhanced module leverages av-

erage pooling in different strides to change the size of fea-

ture maps and receptive fields, which is effective to extract

multi-scale features. Finally, the up-sampling is applied to

restore diminished feature maps and all feature maps are

concatenated. The enhanced module is illustrated in the

light orange rectangle in Fig. 2. Moreover, it is known that

U-Net-like structure is beneficial in many tasks such as im-

age dehazing [33, 14] and semantic segmentation [22]. Its

skip connection encourages feature re-using. Therefore, in

our S3Net, we also adopt skip connection to merge the last

three feature maps from the backbone to their correspond-

ing feature maps.

In practice, we directly combine the original image, orig-

inal depth map, guided image and guided depth map as in-

put. This input is seen as the 8-channel tensor and the output

is the 3-channel relit image. In addition, we change the first

convolution in the Res2Net backbone so that the S3Net can

accommodate 8-channel tensors as input.

3.2. Loss Functions

To train our S3Net, we apply three loss functions. The

first function is Charbonnier loss [34] that can be regarded

as the robust L1 loss function. The Charbonnier loss is ex-
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Figure 2. The proposed network for depth guided any-to-any relighting. This model applies the Res2Net as the encoder to extract both the

image and depth map features. All images and depth maps are concentrated as input. In the decoder parts, we use attention mechanism

including channel and spatial attention mechanism and the enhanced module to refine features and relight the image.

pressed as:

LCha(I, Î) =
1

T

T
∑

i

√

(Ii − Îi)2 + ǫ2 (1)

where I and Î represent the ground truth and relit images

from the proposed network, respectively, and e is seen as a

tiny constant (e.g., 10−6) for stable and robust convergence.

LCha can restore global structure [34] and can be more ro-

bust to handle outliers.

Secondly, we apply the SSIM loss [35]. The SSIM loss

is able to reconstruct local textures and details. It can be

expressed as:

LSSIM (I, Î) = − (2µIµÎ
+ C1)(2σIÎ

+ C2)

(µ2
I
+ µ2

Î
+ C1)(σ2

I
+ σ2

Î
+ C2)

(2)

where σ and µ represent the standard deviation, the covari-

ance and the mean of images. In the image relighting task,

to remove shadows from the original image, we extend the

SSIM loss function so that our network can restore more

detailed parts. We follow the method in [25] and combine

DWT into the SSIM loss because lots of tasks [13, 23] have

demonstrated that the DWT captures the high-frequency

features, which is beneficial for reconstructing the clear de-

tails on relit images. Initially, the DWT decomposes the

predicted image into four different and small sub-band im-

ages. The operation can be expressed as:

ÎLL, ÎLH , ÎHL, ÎHH = DWT(Î) (3)

where superscripts mean the output from respective filters

(e.g., fLL, fHL, fLH and fHH ).

fHL ,fLH and fHH are high-pass filters for the horizon-

tal edge, the vertical edge and the corner detection, respec-

tively. fLL is seen as the down-sampling operation. More-

over, the DWT can keep decomposing the ÎLL to gener-

ate images with different scales and frequency information.

This step is written as:

ÎLL

i+1, Î
LH

i+1 , Î
HL

i+1 , Î
HH

i+1 = DWT(ÎLL

i ) (4)

where the subscript i means the output from the ith DWT

iteration, and ÎLL
0 is the original predicted relit image. The

SSIM loss terms described above are calculated from the

original image pair and various sub-band image pairs. The
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fusion of the SSIM loss and the DWT is integrated as:

LW−SSIM (I, Î) =

i
∑

0

γiLSSIM(Iwi , Îwi ),

w ∈ {LL,HL,LH,HH}
(5)

where γi is based on [25] to control the importance of dif-

ferent patches.

The third loss is the perceptual loss [36]. Different from

the aforementioned two loss functions, the perceptual loss

leverages multi-scale features achieved from a pre-trained

deep neural network (e.g., VGG19 [37]) to measure the vi-

sual feature difference between the ground truth and the

estimated image. Formally, in this task, the VGG19 pre-

trained on ImageNet is utilized as the loss function network.

The perceptual loss is defined as

LPer(I, Î) = |(V GG(I)− V GG(Î)| (6)

where | · | is the absolute value. The overall loss function is

expressed as:

LTotal = λ1Lcha + λ2LW−SSIM + λ3LPer (7)

where λ1, λ2 and λ3 are scaling coefficients and used to

adjust the relative weights on the three components.

4. Experiments

4.1. Dataset

The dataset used in the 2021 NTIRE image challenge of

depth guided image relighting is the Virtual Image Dataset

for Illumination Transfer (VIDIT) [16]. This dataset con-

sists of 390 different scenes which are with 40 different il-

lumination settings (five different color temperatures from

2500 to 6500K and 8 azimuthal angles). There are 15600

images totally. Additionally, the corresponding 390 depth

maps are provided. The size of all training images and

depth maps are 1024 × 1024 × 3 and 1024 × 1024 × 1, re-

spectively. 300 virtual scenes with different illumination

settings are applied for training while the other 90 virtual

scenes are used for validation and testing.

4.2. Experimental Setting

In the training phase, we first choose an arbitrary im-

age and the corresponding depth map. Then, we choose an

image as a guided image that contains random color tem-

perature and azimuthal angles. With this information, the

output image can be determined. Our network utilizes the

original image, the original depth map, the guided image

and the guided depth map as input to reconstruct the final

decided image. We do not apply any data augmentation like

random flip and random cropping during the training phase.

we apply the AdamW [38] as the new optimizer, and the

batch size is set as 3 and the network is trained for 100

epochs with the momentum β1 = 0.5 and β2 = 0.999. The

learning rate is set as 10−4 and it is divided by ten after 20

epochs. The weights of these three loss terms (i.e., λ1, λ2

and λ3) are set as 1, 1.1 and 0.1, respectively. All experi-

ments are performed on the PyTorch platform and a single

Nvidia V100 graphic card. We spend about 80 hours finish-

ing the model training.1

4.3. Ablation Experiments

To find the best effectiveness of the proposed S3Net,

some ablation experiments are conducted in this section.

The peak signal-to-noise ratio (PSNR) and the structural

similarity (SSIM) are adopted as objective metrics for quan-

titative evaluation.

The ablation experiments consist of three experimental

settings: 1) The input is only with the source image and

guided image but without depth maps, that is, the input is a

six-channel tensor (Image); 2) The input is with the source

image, guided image, and their corresponding depth maps

(Both); For these two settings, LCha, LSSIM and LPer are

adopted as objective functions. 3) The same setting in 2) but

the LSSIM [25] is replaced by LW−SSIM . The results are

reported in Table 1. One can see that the PSNR and SSIM

scores of setting 2 can be improved compared with setting 1.

It can prove that using depth maps can improve the perfor-

mance of relighting because they can provide more spatial

information for the network. Moreover, compared with set-

ting 2, the performance of setting 3 is improved effectively.

It indicates that the LW−SSIM in the network can be more

beneficial compared with the LSSIM .

Table 1. The comparison of using different input data and applying

the different loss functions on VIDIT dataset.
Index Input LW−SSIM PSNR SSIM

1 Image 18.7611 0.6821

2 Both 18.8451 0.6913

3 Both
√

19.1281 0.6969

We also present some visual comparisons from VIDIT

validation set for depth guided any-to-any relighting prob-

lem to prove the effectiveness of using the wavelet SSIM

loss in the proposed S3Net. As shown in Fig. 3, images re-

lit from the model trained with wavelet SSIM loss are closer

to the ground truth. This model can properly remove shad-

ows and transfer the ambient conditions from guide images

to source images.

4.4. Results of Challenge

We list the results of the proposed S3Net compared with

other competing entries in depth guided any-to-any relight-

1The source code will be released in our project page.
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Figure 3. The visual comparison of the proposed method and other existing methods. We plot relit results using the proposed S3Net trained

with and without the wavelet SSIM loss.

Table 2. The average SSIM, PSNR, MPS and LPIPS of top five methods over NTIRE 2021 depth guided image relighting validation and

testing dataset.

User name Validation Testing

SSIM PSNR MPS SSIM LPIPS PSNR

DeepBlueAI 0.7196 20.0637 0.7675 0.7087 0.1737 20.7915

lifu 0.7107 19.7730 0.7671 0.6874 0.1532 19.8901

elientumba 0.6802 18.5570 0.7423 0.6508 0.1661 18.6039

auy200 0.6864 19.3552 0.7341 0.6711 0.2028 20.1478

HaoqiangYang 0.7022 19.2462 0.6452 0.6784 0.1566 19.2212

ing challenge of NTIRE 2021 workshop [10] in Table 2. Be-

sides PSNR and SSIM, the Mean Perceptual Score (MPS)

defined as the average of the normalized SSIM and LPIPS

[39] scores, themselves averaged across the entire test set
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Figure 4. The visualization of the failure cases recovered by the proposed S3Net. One see that, though the color temperature can be

transfered successfully, the detailed and structural information under the regions of shadows cannot be recovered adequately.

of each submission is adopted to evaluate performance of

all submissions. As shown in Table 2, our results obtained

the 3rd place, the 4th place, the 2nd place and the 3rd place

in terms of SSIM, PSNR, LPIPS and MPS. It is noted that

our model takes 2.042 seconds on average to generate a relit

result with 1024 × 1024 image size in the test phase.

4.5. Limitations and Discussion

The proposed method learns the mapping functions of

depth guided image relighting. Although our method

achieves competitive performance in this competition, it

may fail under the certain conditions. As shown in Fig. 4,

the relit images are very different from the ground truth. Be-

cause when original images contain a large region of shad-

ows, our model cannot identify the foreground and the back-

ward of them. Even the depth maps are given, this informa-

tion just provides the front side instead of the omnidirec-

tional spatial information. Therefore, the color temperature

from the guided images is transferred to the relit image (e.g.,

Fig. 4 (e)), but the model reconstructs the poor structures.

5. Conclusion

In this paper, we propose a single stream structure net-

work (S3Net) for depth guided any-to-any image relighting.

We concatenate source image and guided image with their

corresponding depth maps as input to design our model.

This network is based on the Res2Net [28] in the encoder

part. The attention modules and the enhanced module [11]

are applied in the decoder part to refine the feature maps.

We leverage the wavelet SSIM loss [25] to supervise the

network training. Moreover, in the NTIRE 2021 Depth

Guided Any-to-any Image Relighting Challenge, the pro-

posed S3Net achieves the 3rd place in terms of PMS and

SSIM. Since depth guided image relighting is a new chal-

lenge that has not been addressed in the previous literature,

in future works, we will design the novel backbone to ex-

tract and fuse the image and depth features effectively.

References

[1] X. Gong, H. Huang, L. Ma, F. Shen, W. Liu, and T. Zhang,

“Neural stereoscopic image style transfer,” in Proceedings

of the European Conference on Computer Vision (ECCV),

2018. 1

[2] D. Puthussery, M. Kuriakose, J. C V et al., “WDRN: A

wavelet decomposed relightnet for image relighting,” arXiv

preprint arXiv:2009.06678, 2020. 1, 3

[3] Z. Hu, X. Huang, Y. Li, and Q. Wang, “SA-AE for any-to-

any relighting,” in European Conference on Computer Vi-

sion, 2020. 1, 3

[4] Z. Guo, W. Liao, Y. Xiao, P. Veelaert, and W. Philips, “Deep

learning fusion of rgb and depth images for pedestrian detec-

tion,” in British Machine Vision Conference, 2019. 1, 2

[5] Z. Xu, K. Sunkavalli, S. Hadap, and R. Ramamoorthi, “Deep

image-based relighting from optimal sparse samples,” ACM

Transactions on Graphics (ToG), 2018. 1

[6] H.-H. Yang, W.-T. Chen, H.-L. Luo, and S.-Y. Kuo, “Multi-

modal bifurcated network for depth guided image relight-

ing,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), 2021.

1, 3
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