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Abstract
Image relighting has emerged as a problem of signif-

icant research interest inspired by augmented reality ap-

plications. Physics-based traditional methods, as well as

black box deep learning models, have been developed. The

existing deep networks have exploited training to achieve

a new state of the art; however, they may perform poorly

when training is limited or does not represent problem phe-

nomenology, such as the addition or removal of dense shad-

ows. We propose a model which enriches neural networks

with physical insight. More precisely, our method gener-

ates the relighted image with new illumination settings via

two different strategies and subsequently fuses them using

a weight map (w). In the first strategy, our model predicts

the material reflectance parameters (albedo) and illumina-

tion/geometry parameters of the scene (shading) for the re-

lit image (we refer to this strategy as intrinsic image de-

composition (IID)). The second strategy is solely based

on the black box approach, where the model optimizes its

weights based on the ground-truth images and the loss

terms in the training stage and generates the relit output

directly (we refer to this strategy as direct). While our pro-

posed method applies to both one-to-one and any-to-any

relighting problems, for each case we introduce problem-

specific components that enrich the model performance: 1)

For one-to-one relighting we incorporate normal vectors of

the surfaces in the scene to adjust gloss and shadows ac-

cordingly in the image. 2) For any-to-any relighting, we

propose an additional multiscale block to the architecture

to enhance feature extraction. Experimental results on the

VIDIT 2020 and the VIDIT 2021 dataset (used in the NTIRE

2021 relighting challenge) reveals that our proposal can

outperform many state-of-the-art methods in terms of well-

known fidelity metrics and perceptual loss.

1. Introduction

Image enhancement problems have experienced signif-

icant recent research activity inspired by the proliferation

of mobile devices and the availability of training data de-

signed for particular enhancement goals. Image relighting,

which is changing the illumination settings of an image, is

one of these applications that has attracted significant at-

tention. Another important reason for this growth is the

development of augmented reality (AR), virtual reality

(VR) based services such as online shopping, online teach-

ing, and games, where the gloss and shadows of the scene

should be adjusted based on the change in direction of light

and its color temperature. On the other hand, controlling

the light source in the level of the photography skills of an

amateur user is not trivial, which in turn necessitates the de-

velopment of techniques for relighting.

From a physical viewpoint, the illumination of an image

depends on many factors including the material reflectance

property, geometry of the objects in the image, and the num-

ber of light sources. For a given light source (Lωi
) and

with Lambertian reflectance assumption, the image forma-

tion follows the rendering rule [22, 35]:

Lωo
=

∫

ωi∈Ωo

f(ωi, ωo)Lωi
< n, ωi > dωi (1)

Here ωi and ωo denote the input and output light direction

relative to the surface normal n. Lωi
and Lωo

are the inci-

dent and reflected lights, and f(., .) is the bidirectional re-

flectance distribution function (BRDF) and < n, ωi > is the

attenuation factor. This equation is usually simplified by as-

suming: A = f(ωi, ωo) (constant) and S =
∫

ωi∈Ωo

Lωi
<

n, ωi > dωi. Where A denotes albedo and preserves the

reflectance properties of the objects and S denotes shading,

which holds the illumination properties of the image. The

simplified equation is often used as the rendering rule as the

original equation is computationally complex.

Deep learning methods have achieved state-of-the-art re-

sults for a vast variety of imaging inverse problems. High

dynamic range (HDR) imaging algorithms [32, 23] focus

on increasing the local contrast of a low dynamic range im-

age. Dehazing algorithms [30, 48] seek for removing the

haze artifacts caused by floating particles in the atmosphere.

Shadow removal [26] and light enhancement [15] methods

focus on enhancing the lighting and removing the artifacts

in the image with the existing light source. While all the

aforementioned methods deal with adjusting the parameters

affected by the lighting of the image, they don’t manipulate

actual illumination parameters and can not deal with com-

plexities of relighting. Therefore, we are still in the early

stages of relighting research. Existing algorithms focus on



particular objects such as portraits or faces [35, 42, 3], hence

lacking the versatility to generalize to other classes of ob-

jects (e.g buildings). Deep learning methods [13, 21, 9]

for relighting are versatile; however, they show poor per-

formance in extreme cases of shadow removal/addition as

they often ignore the physics of the problem.

Our central contribution is to generate relighted images

with new illumination settings via two different strategies

and subsequently fuse them using a weight map (w)

• In the first strategy, the model predicts the mate-

rial reflectance parameters (albedo) and illumina-

tion/geometry parameters of the scene (shading) for

the relit image and constructs the relit image based on

the simplified rendering rule Eq. 1. (we refer to this

strategy as intrinsic image decomposition (IID).)

• The second strategy follows a black box approach,

where the model optimizes its weights based on the

ground-truth images and the loss terms in the training

stage and generates the relit output directly (we refer

to this strategy as direct).

Our proposed method exploits insights from two different

sides of the literature. Moreover, since both approaches

have a shared encoder, owing to the virtue of joint opti-

mization, they can benefit the shared features the other one

induces the encoder to extract as well. In this work, we are

addressing the problem of relighting under two categories:

1) One-to-one: The objective is to change the color tem-

perature and angle of the light source (referred to as illumi-

nation parameters) from one specific setting to another one.

2) Any-to-any: The illumination parameters should change

from an arbitrary setting according to the illumination of

a given guide image. While our proposed method applies

to both one-to-one and any-to-any relighting problems, for

each case, we propose specific innovations that enrich the

model performance:

• For one-to-one relighting we incorporate normal vec-

tors of the surfaces in the scene to adjust gloss and

shadows accordingly in the image. This in particu-

lar helps boost the performance of the neural network

model in the cases where the complicated geometry of

the scene requires removing dense shadows or adding

shadows to highly glossed regions. We refer to our net-

work for one-to-one relighting as One-to-one Intrin-

sic Decomposition-Direct RelightNet (OIDDR-Net).

• For any-to-any relighting, we propose an additional

multiscale block to the architecture to enhance feature

extraction. This block benefits from analyzing the in-

put RGB image (and depth map) in three different di-

mension levels. Using dense residual blocks and resid-

ual global blocks in each level, it provides multiscale

features for the subsequent layers. We refer to our net-

work for any-to-any relighting as Any-to-any Multi-

scale Intrinsic-Direct RelightNet (AMIDR-Net).

Our experimental results on VIDIT 2020/2021 dataset

prove that our proposed method can outperform state-of-

the-art in terms of fidelity metrics and perceptual loss. Our

OIDDR-Net ranked second and AMIDR-Net ranked

among top five teams in NTIRE 2021 depth guided im-

age relighting challenge [12].

2. Related Works

The existing works in the area of image relighting can

generally be divided into two groups of deep learning-based

methods and conventional image processing methods. In

the line of conventional methods and starting with models

proposed for inverse rendering [3, 25] and shape estima-

tion [46], there have been relighting works based on de-

composing the image into its reflectance, illumination, and

geometry components. Duchêne et al. [10] utilize a set

of outdoor multiview scenes along with the sunlight direc-

tion to achieve albedo and shading decomposition for re-

lighting. Wen et al. [52] develop a technique in which the

estimated radiance environment maps, along with spherical

harmonics, are used for face relighting. Other algorithms

[29, 37, 40] treat relighting as approximating the light trans-

port function of the scene to generate the new illumination

settings using the input lighting parameters. While these

methods construct physically realistic models for relighting,

they rely on explicit illumination parameters of the scene

or multiview datasets. This is considered a bottleneck for

them.

While conventional methods mostly focus on physical as-

pects of the problem, deep learning-based algorithms rely

on the capability of neural networks, along with typically

large training data set, in developing a mapping function

between two image domains. Methods proposed in [13, 21]

view the relighting as an image-to-image translation prob-

lem and make use of Generative Adversarial Networks

(GANs) for image relighting. Xu et al. [47] use five im-

ages to manipulate the illumination under predefined light

direction. Inspired by inverse rendering, numerous works

incorporate neural networks to estimate image illumination

and geometry parameters. Yu et al. [49, 34] view relighting

as a fruit of regressing the albedo, shading, and light coef-

ficients of the input RGB image using fully convolutional

networks. Face relighting methods [42, 35, 53] combine

the capabilities of neural networks and the physics of re-

lighting, which is customized for face images. Although in-

troducing neural networks has shown promising results for

the relighting problem, the appropriate dataset yet seems to

be a challenging aspect. In the past years, IIW [2] and MIP

SINTEL [4] have been introduced for intrinsic decomposi-

tion and optical flow analysis, respectively. More recently,

Helou et al. proposed a virtual image dataset for illumina-

tion transfer [11], which formulates relighting into one-to-

one and any-to-any problems. Along the line of scene re-
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Figure 1: Our proposed OIDDR-Net architecture.
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Figure 2: The visualization of the normal vectors in an ex-

ample image. Each of RGB channels corresponds to x-y,

y-z, and x-z planes, respectively.

lighting and illumination estimation challenge in AIM 2020

[16], Puthessery et al. [38] propose a U-net [41] model

for one-to-one relighting where Discrete Wavelet Transform

(DWT) and Inverse Discrete Wavelet Transform (IDWT)

are attached to downsampling and upsampling layers, re-

spectively. SA-AE [18] also develops a U-Net-based archi-

tecture for any-to-any relighting, where two auxiliary net-

works are incorporated for estimating the lighting of the

guide image and providing lighting features to the decoder.

3. Proposed Method

3.1. Fusion Strategy

As mentioned earlier, our model is based on two ap-

proaches to the relighting problem:

1) Intrinsic Image Decomposition (IID): From the phys-

ical standpoint, every light image can be decomposed into

two main parameters [1, 25]: albedo and shading. Albedo,

which is the light independent parameter of the image, pre-

serves the reflectance property of the material in the scene,

while shading holds properties corresponding to illumina-

tion and the geometry of the image. Based on this, the relit

image can be expressed as: Iintinsic-relit = Â⊙Ŝ. Here, Â and

Ŝ denote estimated albedo and shading, respectively. ⊙ is

the element wise product operation. This method has been

shown as an effective way to relight the image scene using

the input RGB image (and depth map) [27, 5, 43, 49, 34].

Following this approach, the model is guided toward a sys-

tematic way of learning to relight by which it can distin-

guish between features associated with material reflectance

property and features for the illumination and geometry of

the scene.

2) Direct Relighting (DR): In addition to the intrinsic de-

composition of the images, we also follow the end-to-end

learning method as in state of the art [19, 7, 38] for learn-

ing a mapping function between the two lighting settings:

f(I) = Idirect-relit. Where f denotes the mapping func-

tion learned by neural network model. This way the model,

in addition to the physically inspired insight, constructs an

auxiliary insight that complements the other one in terms of

the extracted discriminative features.

Next, we generate a spatially varying weight map (w) to

fuse the estimates:

Îrelit = wIdirect-relit + (1− w)Iintrinsic-relit (2)

This fusion strategy helps the model benefit from both as-

pects of the problem simultaneously. Furthermore, owing to

the usage of a couple of shared structures and the virtue of

joint optimization, each approach aids the other one through

the insight it lends to the model.

3.2. Network Architecture
OIDDR-Net (Fig. 1) and AMIDR-Net (Fig. 3) are sim-

ilar in terms of the general architecture which is inspired

by U-Net [41, 31]. An encoder is shared by three bottle-

necks followed by four decoders. Two decoders designed

for the IID strategy share a bottleneck, while the other two
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Figure 3: Our proposed AMIDR-Net architecture.

Table 1: Encoder Structure for AMIDR-Net. (∗OIDDR-Net doesn’t have the multiscale block and guide inputs.)
Multi-Scale block Base Dense-Trans.1 Dense-Trans.2 Dense-Trans.3

Input [Input image,Guide image∗, Input depth map, Guide depth map∗] Multi-scale Output Base Dense-Trans.1 Dense-Trans.2

structure See Fig. 4





7× 7 conv.

3× 3 max-pool





[

1× 1 conv.

3× 3 conv.

]

× 6

[

1× 1 conv.

3× 3 conv.

]

× 12

[

1× 1 conv.

3× 3 conv.

]

× 24
[

1× 1 conv.

2× 2 avg-pool

] [

1× 1 conv.

2× 2 avg-pool

] [

1× 1 conv.

2× 2 avg-pool

]

Output 384× 384× 8 96× 96× 64 48× 48× 128 24× 24× 256 24× 24× 512

PixelUnShuffle/2

PixelUnShuffle/4

PixelUnShuffle/8
PixelShuffle x 2

PixelShuffle x 2

PixelShuffle x 2
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Residual

Global

Block
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Figure 4: The multiscale block.
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Figure 5: The lighting estimation network used for illumi-

nation regularization and extraction of illumination features

from the guide image.

decoders designated for direct strategy and generating the

weight map (w) are fed by a bottleneck, each. The details

of these components are as follows:

1) Encoder: The encoder construction (Table 1) follows

DenseNet-121 [20] feature extraction part, which is origi-

nally proposed for classification tasks. It consists of a fea-

ture extraction part followed by classification layers. We

borrow the input convolutional layer, the first three dense

layers, and their following transitional blocks in the fea-

ture extraction part. The main advantage of using these

pretrained layers for our model is that since they’re trained

over ImageNet dataset [8], they provide our model an initial

representation capability. This in turn helps for the faster

convergence in the training. It is worth mentioning that the

first convolutional layer in DenseNet accepts three channels

RGB images and inputs to OIDDR-Net and AMIDR-Net

are of 4 and 8 channels, respectively. To address this, for

OIDDR-Net, we modify the convolutional block by keep-

ing the first three channels and initializing the fourth one as

a grayscale transformation of the other three. For AMIDR-

Net, we substitute it by an eight channel convolutional block

initialized randomly.

2) Bottlenecks: There are three bottlenecks consisting of a

dense transitional block and two residual blocks (see Table

1,2 for details of these blocks). The main function of bottle-

necks is to connect the encoder and decoders by compiling

the extracted features of the encoder based on the character-

istics of the decoders. So, Decoder-A and Decoder-S share

a bottleneck as they both contribute on Iintrinsic-relit.

3) Decoders: Our network features four decoders for pre-

dicting the components: albedo (Â), shading (Ŝ), weight

map (w), and directly relit image (Idirect-relit). Table 2 de-

tails the structure of decoders. Each decoder includes four

levels of cascaded attention module (Squeeze and excita-

tion [17] or dilation inception modules [30]), a dense tran-

sitional block, and two residual blocks. It means that there



Table 2: Decoder Structure. (for OIDDR-Net the input to the decoder doesn’t include lighting estimation outputs.) C depends

on the functionality of the decoder.
Dense-Trans.5 Res.5 Dense-Trans.6 Res.6 Dense-Trans.7

Input [bottleneck output, Dense.Trans.2,Lighting Estimation] Dense-Trans.5 [Trans.1, Res.5] Dense-Trans.6 Res.6

structure





SE/Dilation (R=16)

batch norm

3× 3 conv.



× 7




3× 3 conv.

3× 3 conv.



× 2

[

SE/Dilation (R=16)

batch norm

]

× 7




3× 3 conv.

3× 3 conv.



× 2

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

1× 1 conv.

upsample 2

] [

1× 1 conv.

upsample 2

]

output 48× 48× 128 48× 48× 128 96× 96× 64 96× 96× 64 192× 192× 32

Res.7 Dense-Trans.8 Res.8 Refine.9 Refine.10

Input Dense-Trans.7 Res.7 Dense-Trans.8 [Input, Res.8] Refine.9

structure





3× 3 conv.

3× 3 conv.



× 2

[

batch norm

3× 3 conv.

]

× 7




3× 3 conv.

3× 3 conv.



× 2





SE/Dilation (R=3)

batch norm

3× 3 conv.









32× 32 avg-pool

1× 1 conv.

upsample



[

1× 1 conv.

upsample 2

]

output 192× 192× 32 384× 384× 16 384× 384× 16 384× 384× 20 384× 384× 1

Refine.11 Refine.12 Refine.13 Output.14

Input Refine.9 Refine.9 Refine.9 [Refine9.10.11.12.13]

structure





16× 16 avg-pool

1× 1 conv.

upsample









8× 8 avg-pool

1× 1 conv.

upsample









4× 4 avg-pool

1× 1 conv.

upsample



 3× 3 conv.

Output 384× 384× 1 384× 384× 1 384× 384× 1 384× 384× C

is an analogy between decoders’ structure and the encoder

except that the channel attention modules are incorporated

midway. This in particular helps each decoder give weight

to feature maps based on its functionality, while benefiting

the shared encoder. Meanwhile, skip connections from the

encoder assist the decoders in reconstructing the scene as in

U-net.

4) Lighting Estimation Network: As our main objective

in this work is to change the illumination of the images,

we need custom blocks for extracting illumination features.

Moreover, it is worth mentioning that neural networks usu-

ally need either ground-truth or custom loss terms in order

to extract our expected features. To this end, we train a

lighting estimation network to predict the light angle and

color temperature of the images using the training set for

the any-to-any problem. We make use of the pretrained fea-

ture extraction part of this network (Fig. 5) to compute a

perceptual loss for comparing the illumination features of

the relit output. Furthermore, in AMIDR-Net (Fig. 3), this

network is incorporated for feeding the decoders with the

illumination features of the guide image.

3.3. Exploiting Normals for OnetoOne Relighting

While the model is guided toward learning a physics-

based solution for relighting, it may not necessarily be suc-

cessful in changing the lighting parameters of a given scene.

This could be due to the complicated geometry of the scene,

which causes the presence of dense shadows needed to be

removed or the presence of highly glossed objects needed

to be shadowed. This is a challenging aspect of relight-

ing for a neural network model, as neural networks usually

fail in regressing outputs that lie on one side of the extreme

since their share in training data is typically small. There-

fore, the model in order to keep its generalization over the

whole data distribution would typically show artifacts on

these extreme cases. To address this issue specifically, for

the case of one-to-one relighting, we propose to incorpo-

rate the information associated with the normal vectors of

the surfaces present in the scene. It is shown that the shad-

ing of an image can be derived as a nonlinear function of

9-dimensional spherical harmonics coefficients and the nor-

mal vectors [35, 43, 1, 39]. The normal vectors of a scene

indicate the orientation of pixels associated with each sur-

face in the image. Fig. 2 shows an example in which the col-

ors red, green, and blue indicate surfaces parallel to x-y, y-z,

and x-z plane, respectively. Since our model learns to pre-

dict the shading directly from the information provided dur-

ing the training stage in the form of ground-truth, instead of

carrying out the non-linear calculations, we incorporate nor-

mal vectors into the problem as weight adjustments. More

precisely, in the case of one-to-one relighting in which we

know the target lighting direction, the normal vectors are

used as adjustment weights for the surfaces facing toward

or against the light direction: Ŝ = H(nlight-dir, Ŝ0). Where

H , nlight-dir, and Ŝ0 are the linear adjustment function, the

normal vector component corresponding to the light direc-

tion of the target, and the shading output by the model, re-

spectively.

3.4. AnytoAny Relighting and Multiscale Features

In any-to-any relighting there is no meaningful pixel-

wise correspondence between the guide and input RGB

image/depth map. Therefore unlike one-to-one relighting,

training the network on image patches is not feasible. On

the other hand, training the network on whole images limits

the representation power of the model as the model may not

necessarily extract features from lower fields of view. To

prevent that, we equip AMIDR-Net with a multiscale fea-

ture extraction block [51]. Fig. 4 shows the details of this

block. Using PixelUnShuffle operations, it downsamples

the input to three different levels. In each level dense resid-

ual and global residual blocks extract the features. Subse-

quently, the extracted feature maps are customly upsam-

pled and fed to the next level using PixelShuffle operation.



Finally, in the highest level the multiscale feature maps are

processed and fed to the main pipeline. The main advantage

of using this multiscale block over the ones, which make use

of traditional upsampling modules, is how it guides the net-

work to learn the upsampling while optimizing the feature

maps. Simply put, the model learns how to extract patches

from the input while keeping the correspondence between

the feature maps from the guide and input.

3.5. Customized Loss Function

To train our model so that every part of it functions based
on our expectation, we need to define custom loss terms for
each part. Our overall loss function is as follows:

L = Ltotal + λ1LIID + λ2Ldirect + λ3LSSIM + λ4Llighting (3)

Ltotal = ||Îrelit − Yrelit||
2

2 (4)

LIID = ||Â⊙ Ŝ − Yrelit||
2

2 + ||Â−A||22 + ||Ŝ − S||22 (5)

Ldirect = ||Idirect-relit − Yrelit||
2

2 (6)

LSSIM = 1− SSIM(Îrelit, Yrelit) (7)

Llighting = ||g(Îrelit)− g(Yrelit)||
2

2

−

8∑

i=1

Y
i

dir-guidelog(Ŷ
i

dir)−

5∑

j=1

Y
j

color-guidelog(Ŷ
j

color) (8)

Where Ltotal, LIID, and Ldirect are terms to ensure the

decoder outputs Iintrinsic-relit, Idirect-relit, and Îrelit match the

ground-truth Yrelit. Of note, Îrelit is the fused output (eq. 2).

To help the model predict physically feasible estimates for

albedo and shading, we use a pretrained intrinsic decompo-

sition network [34], which is trained on SINTEL dataset [4],

to generate pseudo ground-truths A and S. LSSIM is used

to maximize the structural similarity index (SSIM) of the re-

lit output and ground-truth. We also define Llighting to mini-

mize the difference between the relit output and the ground-

truth in terms of illumination parameters. In eq. 8, in the

first term, the intermediate features generated by lighting

estimation network (denoted by g) are compared for the

relit output and ground-truth. The second and third terms

(blue) are specifically incorporated for AMIDR-Net, where

we minimize the negative log-likelihood of the light direc-

tion and color temperature in the relit output (Ŷdir and Ŷcolor)

based on guide image parameters (Ydir-guide and Ycolor-guide).

λ1, λ2, λ3, and λ4 are hyperparameters adjusting the con-

tribution of each term in the overall loss term.

4. Implementation Details1

4.1. Dataset

We use VIDIT dataset [11] generated by the Unreal gam-

ing engine [14] and consisting of two subsets for one-to-one

and any-to-any relighting.

1Please find implementation details and results at: github/Relighting

One-to-One Relighting: VIDIT’21 training set for one-

to-one relighting, provides 300 1024 × 1024 images with

one particular light direction and color temperature and

their corresponding ground-truth with the target particu-

lar illumination settings. Additionally, in VIDIT’21, un-

like VIDIT’20, depth maps are provided for each image.

The validation set includes 45 samples. We augment the

training set to a set with about 37000 samples by 1) crop-

ping 256×256 patches. 2) Resizing the whole images to

256 × 256. 3) Rotating the patches and resized images

slightly with small angles (0-12 degrees). We don’t incor-

porate flipping or rotation with large angles as the light di-

rection in this problem should be fixed across the training

samples.

Any-to-Any Relighting: The diversity across the training

set is higher in the case of any-to-any relighting. For train-

ing VIDIT provides 12000 samples consisting of 300 scenes

with a combination of 8 different light angles and 5 differ-

ent color temperatures (40 for each scene) and 1 depth map

for each scene. The validation set includes 90 images. As

mentioned earlier, we cannot crop patches in this case; how-

ever, training on whole 1024× 1024 images is not possible

due to memory limits. Therefore, we resize the images to

384 × 384. We create the training set following two steps:

1) For each sample in the set, we randomly choose three

different guide samples. The guide samples, obviously, are

not from the same scene as the original sample. 2) For each

of the chosen guide images, we find the version of origi-

nal scene having the same illumination setting as the guide

image. This leads to a training set with 36000 samples.

4.2. Training

We use Adam optimizer [24] with an initial learning rate

of 10−4, which decreases by a rate of 0.7 every 10 epochs.

Owing to pretrained weights of DenseNet and incorporation

of pseudo ground-truths, both OIDDR-Net and AMIDR-

Net show fast convergence (optimally 20 epochs), but we

train the models for 25 epochs (with batch sizes of 8 and 2,

respectively) to ensure the complete stability of them. λ1,

λ2, λ3, and λ4 are set to 0.4, 0.4, 0.8, and 0.03, respectively

using cross validation [33].

4.3. Testing

One-to-One Relighting: We observe that our model

shows better performance by the following ensemble

method: i) 1024 × 1024 RGB image and depth map are

fed to the model. ii) 384× 384 RGB image and depth map

are input to the model. The output is fed to a bicubic inter-

polation module (implemented in pytorch [36]) and scaled

to the original size. The final output is the average of the

two estimates.

Any-to-Any Relighting: In order to get the best perfor-

mance of AMIDR-Net during the test phase, we resize the

https://github.com/yazdaniamir38/Depth-guided-Image-Relighting


Table 3: One-to-one-VIDIT’21 validation’s ablation study.

Model PSNR SSIM LPIPS MPS

OIDDR-Net 18.39 0.6980 0.2591 0.7194

w/o Normals 17.49 0.6805 0.2647 0.7079

w/o Llighting 17.59 0.6669 0.2741 0.6964

input to 384 × 384 so the model has the same observation

as in training. The outputs then will be upsampled using

bicubic interpolation.

5. Experimental Results

In this section we present experimental results of

our proposed OIDDR-Net and AMIDR-Net. We provide

ablation studies to show the effect of loss terms and

novel network components. We also compare our mod-

els with state of the art. Our evaluation metrics are Peak

Signal-to-Noise Ratio (PSNR), Structural Similarity Index

(SSIM) [54], Learned Perceptual Image Patch Similarity

(LPIPS) [50], and Mean Perceptual Score (MPS) which is:

MPS = 0.5(SSIM + 1− LPIPS).

5.1. Ablation Study

Effect of Exploiting Normal Vectors and Llighting on

OIDDR-Net: To observe how incorporating normal vec-

tors for adjusting the shading estimation of the network

would affect its performance, we conduct an experiment

on VIDIT’21 dataset through which we train OIDDR-Net

with initial shading estimation. Additionally, to study the

effect of comparing the illumination in network relit output

to illumination in ground-truth (through Llighting), we train

OIDDR-Net without applying Llighting in training loss. Ta-

ble 3 shows the performance results of the three models.

While both factors play an important role in minimizing the

fidelity and perceptual loss, we can see how Llighting con-

tributes to structural similarity.

Effect of Multiscale Feature Extraction and Llighting on

AMIDR-Net: To see the importance of the multiscale block

as well as Llighting, we train three models: 1) AMIDR-

Net with full architecture and Llighting being activated dur-

ing training, 2) AMIDR-Net with the multiscale block re-

moved from the architecture, and 3) AMIDR-Net trained

with Llighting dropped from the training loss. Table 4 shows

the results of our experiments on validation data, whereby

one can infer the effect of different components on the net-

work performance. The noticeable drop in SSIM, after re-

moving the multiscale block, proves its impact in helping

the network extract more discriminative features for con-

structing the structural similarity between the output and the

ground-truth.

5.2. Comparison with Stateoftheart Methods

All the existing works for image-based relighting (appli-

cable to VIDIT) have been proposed for the dataset without

depth information. Therefore, to have a fair comparison, we

Table 4: Any-to-any-VIDIT’21 validation’s ablation study.

Model PSNR SSIM LPIPS MPS

AMIDR-Net 19.83 0.6940 0.3381 0.6779

w/o the multiscale block 19.09 0.6685 0.3421 .6632

w/o Llighting 19.22 0.6721 0.3403 0.6659

Table 5: Comparison with state of the arts for one-to-one

relighting on VIDIT’20 validation set.

Model PSNR SSIM LPIPS MPS Runtime(s)

OIDDR-Net (ours) 17.62 0.6645 0.2733 0.6956 0.53

WDRN [38] 17.45 0.6642 0.2771 0.6935 0.05

DRN [45] 17.59 0.596 0.440 0.578 0.5

DMSHN [6] 17.20 0.5696 0.3712 0.5992 0.0058

SRN [44] 16.94 0.5660 0.4319 0.5670 0.87

Dense-GridNet [28] 16.67 0.2811 0.3691 0.9120 0.9326

Dong et al. [9] 17.14 0.6132 0.2764 0.6684 —

trained and evaluated our OIDDR-Net and AMIDR-Net on

VIDIT’20 training and validation set.

One-to-one Relighting: We modify our OIDDR-Net for

accepting only the RGB image (so normals are not ex-

ploited) and train it over the training set. We compare

our modified OIDDR-Net with existing methods in Table

5. While [44] and [28] are proposed for deblurring and de-

hazing, all other methods have been proposed for the same

exact problem and dataset. Table 5 shows that our OIDDR-

Net outperforms state of the art w.r.t. all metrics as a result

of fusing the power of neural networks and the physics of

the problem. We can also qualitatively confirm this in Fig.

6, where OIDDR-Net’s output successfully mimics the illu-

mination settings of the ground-truth without artifacts.

Any-to-any Relighting: We modify our AMIDR-Net by

changing the number of input channels and removing the

skip connections corresponding to the depth maps and

train it on VIDIT 2020 dataset. We compare our modified

AMIDR-Net with state of the art in Table 6, where SA-

AE [19] is the winner of AIM 2020 any-to-any relighting

track and [9] is an encoder-decoder network proposed by

another participant of the same challenge. We also compare

our method with an adapted version of [53], which is orig-

inally proposed for portrait relighting. According to Table

6, AMIDR-Net outperforms others w.r.t. all evaluation met-

rics. Fig. 7 visualizes three outputs from different methods

where we see how our AMIDR-Net changes the illumina-

tion of the input according to guide image without artifacts.

Comparison with NTIRE 2021 Relighting Methods: Ad-

ditionally, we compare our models with two methods from

the top 5 methods of the NTIRE 2021 relighting chal-

lenge. As Table 7 confirms, OIDDR-Net and AMIDR-

Net are among the top-performing methods. OIDDR-Net

ranked second in one-to-one relighting in terms of MPS and

AMIDR-Net ranked second in terms of PSNR.

6. Conclusion

We develop a physically inspired dense fusion network for

image relighting. Our method benefits from the capabil-



Figure 6: Qualitative comparison between different methods on one-to-one relighting. From left to right: SRN [44], Dense-
GridNet [28], DRN [45], DMSHN [6], WDRN [38], OIDDR-Net (ours) and ground-truth.

Figure 7: Qualitative comparison between different methods. From left to right: input image, guide image, ground-truth,
SA-AE [19], DPR [53], and AMIDR-Net (ours).

Table 6: Comparison with state of the arts for any-to-any
relighting on VIDIT'20 validation set.2

Model PSNR SSIM Runtime(s)
AMIDR-Net (ours) 19.16 0.6621 0.51

SA-AE [19] 18.06 0.6480 0.15
DPR[53] 16.40 0.5238 0.095

Dongetal. [9] 18.07 0.5994 —

Table 7: Comparison with other methods in NTIRE2021
relighting challenge on VIDIT'21 test set.

Track Model PSNR SSIM LPIPS MPS Runtime(s)

One-to-one
OIDDR-Net(ours) 18.83 0.6874 0.1634 0.7620 0.53

Method1 19.14 0.6931 0.1605 0.7663 2.88
Method2 18.27 0.6772 0.1670 0.7551 2.12

Any-to-any
AMIDR-Net (ours) 20.14 0.6711 0.2028 0.7341 0.51

Method1 19.22 0.6784 0.1566 0.7609 2.04
Method2 18.60 0.6508 0.1661 0.7423 0.6740

ity of dense networks in extracting representative features,
while simultaneously estimating albedo and shading – key
components of the relighting physical model. The simul-
taneous intrinsic image decomposition and direct relight-
ing help the model re�ne its feature extraction by joint op-
timization. This leads to physically more feasible results
in terms of illumination parameters and therefore less ar-
tifacts in the obtained relighted images. Ablation studies
explain the role of each component in models proposed
both for one-to-one and any-to-any relighting. Comparisons
with existing literature on benchmark datasets and compet-
ing methods in the NTIRE'21 relighting challenge show our
proposal achieves state-of-the-art results.

2LPIPS and MPS are not made available by other works. The runtime
for [9] is not reported.






