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Abstract

Recently, there has been rapid and significant progress

on image dehazing. Many deep learning based methods

have shown their superb performance in handling homo-

geneous dehazing problems. However, we observe that

even if a carefully designed convolutional neural network

(CNN) can perform well on large-scaled dehazing bench-

marks, the network usually fails on the non-homogeneous

dehazing datasets introduced by NTIRE challenges. The

reasons are mainly in two folds. Firstly, due to its non-

homogeneous nature, the non-uniformly distributed haze is

harder to be removed than the homogeneous haze. Sec-

ondly, the research challenge only provides limited data

(there are only 25 training pairs in NH-Haze 2021 dataset).

Thus, learning the mapping from the domain of hazy im-

ages to that of clear ones based on very limited data is ex-

tremely hard. To this end, we propose a simple but effec-

tive approach for non-homogeneous dehazing via ensem-

ble learning. To be specific, we introduce a two-branch

neural network to separately deal with the aforementioned

problems and then map their distinct features by a learn-

able fusion tail. We show extensive experimental results to

illustrate the effectiveness of our proposed method. The

source code is available at https://github.com/

liuh127/Two-branch-dehazing.

1. Introduction

Single image dehazing as a low-level vision task has

gained widespread attention in recent years. In the natu-

ral atmosphere, there are smoke, dust, haze, and other at-
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Figure 1: Qualitative results of our proposed method on

NH-Haze 2021 validation set. Our method is able to pro-

duce haze-free image with high perceptual quality.

mospheric phenomena that affect visibility. Pictures taken

in these environments are often affected by blurring, color

distortion, and low contrast problems. Using these kinds

of pictures for classification, image segmentation, and other

high-level vision tasks significantly reduces prediction ac-

curacy. Single image dehazing aims to restore a clean

output image from a hazy input. Many dehazing meth-

ods [14, 23, 28, 30, 36, 38, 43, 44, 47] have been proposed.

The physical scattering model, i.e. atmospheric scatter-

ing model (ASM) [32], provides the mapping formula be-



tween the hazy images and clean counterparts.The ASM can

be formally written as:

I(x) = J(x)t(x) +A(1− t(x)) (1)

I , J respectively denote the hazy and haze-free image. A is

the global atmosphere light. t(x) = e−βd(x) represents the

transmission map, where β and d(x) are respectively the

atmosphere scattering parameter and the scene depth.

Many dehazing methods [12,19,23,31] can achieve good

performance based on ASM. However, to generate a haze-

free image with ASM, dehazing models need to precisely

estimate t and A. As a result, when dealing with images

in complex environments, the inaccurate prediction of t and

A usually leads to unsatisfactory dehazing results. More-

over, since t depends on the distance of the scene, the atmo-

spheric scattering model has a strong assumption, i.e. the

thickness of haze is strongly correlated to the depth of the

background scene. This property forbids the ASM based

methods to handle non-homogeneous hazy images. Some

what surprisingly, recent years have witnessed the tremen-

dous success of deep learning [26] approach in addressing

single image dehazing problem [14, 28, 36, 38, 44, 47]. Us-

ing deep learning, the weakness of ASM can be avoided to

a certain extent and the problem of exploring appropriate

hand-crafted features is reduced to that of building a suit-

able convolutional neural network (CNN). With the avail-

ability of powerful CNNs, one can readily train them on

large-scale datasets to learn a correct mapping from input

hazy images to clear outputs. However, it is costly (and in

some cases impossible) to acquire vast quantities of hazy

images with their corresponding clean ground truths in the

real world.

Recently, NTIRE organized several dehazing challenges

and introduced several small-scale real-world datasets. The

challenge datasets have two intrinsic difficulties. 1) Lim-

ited training data. Using limited data, CNN based methods

usually cannot gather enough statistical information of haze

pattern, which results in a bad performance on dehazing. In

other words, training on limited data is more likely to suffer

from the over-fitting [11] problem. This problem is consid-

ered undesirable since it severely jeopardizes the general-

ization of models. 2) Complicated haze pattern. Most of the

previous methods simply assume that haze is homogeneous.

Since the non-uniformly distributed haze is more challeng-

ing to be removed than the homogeneous haze ( haze pattern

cannot be simply formulated using ASM ), existing meth-

ods usually fail to produce satisfactory results when they

work on non-homogeneous dehazing.

To cope with the complex distributions of non-

homogeneous images and over-fitting problem in small-

scale datasets, we here introduce our proposed method.

To be specific, we design a simple two-branch neural net-

work to deal with the aforementioned two issues separately.

The first branch, namely transfer learning sub-net, is built

upon a ImageNet [16] pre-trained Res2Net [20]. ImageNet

pre-training helps significantly alleviate over-fitting prob-

lems, especially before the large-scaled datasets are avail-

able to researchers [22]. Besides, a pre-trained network is

able to provide robust features for transfer learning [25].

Therefore, the ImageNet pre-trained network is of great

significance in solving the limited training data problem.

However, we find that only using the ImageNet pre-trained

model is not enough to tackle these issues. The pre-training

on classification task usually fails to perfectly fit the target

task, while a better solution is to find for data specific rep-

resentations [22]. To this end, we propose to add the other

branch for fitting on current data, i.e. current data fitting

sub-net. This branch is trained from scratch and optimized

only using the current training data. In favor of the strong

mapping capability of residual channel attention network

(RCAN) [45], we build the current data fitting sub-net using

RCAN. Unlike the original network setting [45] that down-

samples the input images at the front of the entire network,

our second branch always maintains the original resolution

of the inputs and avoids using any down-sampling opera-

tions. This adjustment avoids losing of fine-detailed fea-

tures. Finally, in order to aggregate the two varied outputs

from our two branches, we design a fusion tail for learning

a suitable ensemble strategy.

In summary, the main contributions of our work are as

follows: 1) We demonstrate the effectiveness of using Ima-

geNet pre-training in the non-homogeneous dehazing chal-

lenge [9]. 2) Towards learning data specific representation,

we propose to build current data fitting sub-net as a com-

plement to the transfer learning sub-net. It can extract more

distinctive features on current data distribution. 3) we adopt

the idea from ensemble learning to design a learnable fusion

tail. The fusion tail is simple and effective in fusing the out-

puts from two branches. 4) We show extensive experimental

results to show the effectiveness of our two-branch network

on both small-scale and large-scale datasets.

2. Related Works

Single Image Dehazing. Single image dehazing meth-

ods can be roughly divided into two classes: prior-based

methods and learning-based methods. Prior-based methods

estimate the transmission map and the global atmosphere

light in ASM [32]. Many prior-based methods [12, 23, 49]

showed a good performance in single image dehazing.

However, due to the prior is prone to violate in practice, the

prior-based methods are not always robust when encounter-

ing complicated scenarios. With the success of deep convo-

lutional neural networks, deep learning based methods re-

ceived extensive attention in recent years. DehazeNet [14]

is the first deep learning based dehazing model. It adopts

CNN to estimates the transmission map and then generate



dehazed images using the physical scattering formulation.

Unlike DehazeNet, AOD-Net [28] is built to estimate both

transmission and atmospheric light in one shot. In addition,

many recent methods can recover haze-free images without

using the physical scattering model. GFN [38] is a gated

fusion network, which restores the hazy images with sev-

eral transformations on the input, such as white balancing

and gamma correction. GCANet [15] employs smoothed

dilated convolution layers to eliminate the gridding arti-

facts. Qin et al. [36] proposed FFA-Net with novel fea-

ture attention modules, including pixel attention and chan-

nel attention. This work achieved high performance on the

RESIDE [29] dataset. Shao et al. [39] proposed a novel

domain adaptation framework for dehazing tasks. This

method bridges the gap between the real-world and syn-

thetic hazy images. However, most of the previous methods

perform bad when using real-world datasets introduced by

NTIRE challenges, owing to the small-scale training set and

the complex distribution of the haze. To solve the problems

in real-world datasets, some approaches are proposed. Liu

et al. [30] introduced a Trident Dehazing Network(TDN)

in the NTIRE2020 non-homogeneous dehazing challenge

[8]. TDN consists of three branches using ImageNet pre-

training, deformable convolution and many off-the-shelf

techniques. Despite the remarkable achievements of TDN,

the complicated network structure impedes us from care-

fully analyzing the significance of each technique. More-

over, HardGAN [17] shows a good performance in both RE-

SIDE [29] and NH-Haze 2020 [3, 7] datasets. This method

proposed a novel haze-aware feature distillation (HARD)

module.

Ensemble Learning. Single output models are prone to

suffer from the statistical problem, the computational prob-

lem, and the representation problem. Ensemble learning

can partially solve these three problems [18]. It is based on

the understanding that every model has limitations. Thus,

ensemble learning aims to manage the strengths and weak-

nesses of single models. This management can make the

best possible decision [13]. The ensemble architecture in

our method can be classified as Mixtures of Experts [24].

The principle underlying the architecture is that both sub-

nets in our model can focus on particular parts of the in-

put space [13]. To generate a haze-free output, our fusion

layer acts as a gating network that is responsible for learning

the proper combination of the outputs from two branches.

Moreover, in our ablation studies, we demonstrate that this

ensemble architecture fits well in our method.

Transfer Learning. Transfer learning is an effective

way to solve problems with limited data. It aims to en-

able the system based on knowledge and skills learned in

previous tasks to run on novel tasks [33]. The way we use

transfer learning is based on the assumption that the net-

work backbone is generalized and can extract versatile fea-

tures [42]. In our experiments, the network with pre-trained

parameters surpasses the randomly initialized network by a

large margin in terms of quantitative evaluation.

3. Proposed Method

This section introduces the details of our two-branch

neural network for non-homogeneous dehazing. Firstly, we

specify the details of the transfer learning sub-net and cur-

rent data fitting sub-net. Then, we provide the loss functions

that are employed in the training stage.

3.1. Network Structure

As shown in Figure. 2, our method consists of two sub-

nets: the transfer learning sub-net, and the current data fit-

ting sub-net. Each sub-net is used for a specific purpose:

transfer learning sub-net extracts robust global representa-

tions from input images with pre-trained weights, current

data fitting sub-net aims to work on the current data and

perform well on the specific training image domain. The

fusion layer takes the concatenated feature maps of these

two sub-nets and outputs haze-free images.

Transfer Learning Sub-net. Transfer learning sub-net

is an encoder-decoder network. Inspired by [43], we use

Res2Net as the encoder due to its excellent performance

on the classification tasks. To be specific, we only adopt

the front part of Res2Net with 16 times down-sampling

and discard using the fully connected layer. Moreover, we

adopt feature attention [36] as the attention module, and

PixelShuffle [40] as the up-sampling module in this sub-

net. Before the features enter fusion tail, they will pass an

enhancing module proposed by [37]. At the training stage,

the encoder module loads the ImageNet pre-trained param-

eters. Models with these pre-trained parameters can better

extract robust features than those with randomly initialized

parameters. However, as is pointed in [22], despite the ef-

fectiveness of using ImageNet pre-training in small-scale

datasets, a better solution is to train the neural network on

a large-scale dataset directly. Because accessing an identi-

cally distributed large-scale dataset is impossible during the

NTIRE challenge, we alternatively consider taking benefits

from specific data representation in small-scale challenge

data to the utmost extent. Therefore, we build the current

data fitting sub-net to achieve this object. In addition, due

to the nature of Res2Net, we can not apply a full-resolution

skip connection from encoder to decoder. It may cause the

network to lose some of the information that is important

for restoring the image details. Consequently, we are fur-

ther motivated to construct the second branch.

Current Data Fitting Sub-net. Our current data fitting

branch is based on residual channel attention block [45].

The block contains convolutional layers and channel at-

tention modules. Owing to residual designing and long

skip connections, the network is less likely to suffer from
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Figure 2: Illustration of our model architecture.

gradient vanishing problems [34]. Besides, channel atten-

tion highlights salient features to enhance the model’s fit-

ting ability on current data. Moreover, in order to preserve

fine-detailed features, this sub-net avoids employing down-

sampling and up-sampling operations. The fine-detailed

features can be regarded as complements to that from trans-

fer learning sub-net. Since current data fitting sub-network

is trained from scratch and built with full-resolution pur-

pose, it would fit on the current data and extract more spec-

ified features. Nevertheless, the powerful fitting ability also

makes it easier to encounter over-fitting problems ( see in

Section. 4.3 ). Thus, the role of transfer learning branch

cannot be neglected.

Fusion Tail. Our fusion tail as the ensemble method pro-

duces the final outputs. Specifically, the fusion tail takes the

concatenation of features from two branches and then learns

to map the features to clear images. The fusion tail is built

with a convolutional layer followed by a hyperbolic tan-

gent activation function. The reason we only adopt a single

convolution operation is that the two branches have already

provided sufficient and distinct features for restoring clear

images. In contrast, we find that a heavy fusion tail can po-

tentially jeopardize the overall generalization ability of our

method and results in performance degradation. To further

illustrate the effectiveness of our fusion tail, we empirically

Fusion Tails PSNR SSIM

three stacked residual blocks 20.61 0.8159

three convolution layers 20.72 0.8148

Ours 21.01 0.8195

Table 1: The performance of our proposed method using

fusion tails with different sizes. The evaluation is con-

ducted on NTIRE2021 validation set. Scores are provided

by NTIRE2021 online server.

study the effect of adopting fusion tails with different sizes

in Table. 1. It can be observed that with the increasing of

fusion tail depth, the performance of our method degrades

accordingly.

3.2. Loss Functions

Our loss function consists of four different components.

Each one is used for a specific purpose.

Smooth L1 Loss. We apply the smooth L1 loss to ensure

the predicted images are close to clean images. It is a robust

L1 loss [21] that is proved to be better than L2 loss in many

image restoration tasks [46].

Ll1 =
1

N

N
∑

i

smoothL1(yi − fθ(xi)) (2)



smoothL1(z) =

{

0.5z2 if |z| < 1

|z| − 0.5 otherwise
(3)

yi and xi denotes ground truth and hazy image at pixel i.

fθ(·) denotes our network parametered by θ. N is the total

number of pixels.

MS-SSIM Loss. In order to let the network learn to pro-

duce visually pleasing results, we adopt Multi-scale Struc-

ture similarity (MS-SSIM) as our second loss function. Let

O and G denote two windows of common size centered at

pixel i in the dehazed image and the clear image, respec-

tively. We apply a Gaussian filter to O and G, and compute

the resulting means µO, µG, standard deviations σO, σG,

and covariance σOG. The SSIM for pixel i is defined as

SSIM(i) =
2µOµG + C1

µ2
O + µ2

G + C1
· 2σOG + C2

σ2
O + σ2

G + C2
= l(i) · cs(i)

(4)

where C1, C2 are two variables to stabilize the division with

weak denominator. l(·) denotes the luminance , and cs(·)
refer to contrast and structure measures.

The MS-SSIM loss is shown in Eq. 5 where α and βj are

default parameters. M denotes the total number of scales.

LMS-SSIM(i) = 1− lαM (i) ·
M
∏

j=1

[csj(i)]
βj (5)

Perceptual Loss. Unlike the MS-SSIM loss that fo-

cus mainly on the structural similarity, we adopt perceptual

loss [48] to provide additional supervision in high-level fea-

ture space. It has been acknowledged that training with per-

ceptual loss allows the model to better reconstruct fine de-

tails. The loss network φ is VGG-16 [41] that is pre-trained

on ImageNet. The loss function is described as

Lperc =
1

N

∑

j

1

CjHjWj

||φj(fθ(x))− φj(y)||22 (6)

where x and y are hazy inputs and ground truth images, re-

spectively. fθ(x) is the dehazed images. φj(·) denotes the

feature map with size Cj × Hj × Wj . The feature recon-

struction loss is the L2 loss. N is the number of features

that used in perceptual loss function.

Adversarial Loss. Adversarial loss is proved to be ef-

fective in helping restore photo-realistic images [27]. Es-

pecially for the small-scaled dataset, the pixel-wised loss

function usually fails to provide sufficient supervision sig-

nals to train a network for recovering photo-realistic details.

Therefore, we finally implement the adversarial loss with

the discriminator in [48]. The loss function is described as

Ladv =
N
∑

n=1

−logD(fθ(x)) (7)

D(·) denotes discriminator. The probability that the de-

hazed image fθ(x) is a ground truth image is shown as

D(fθ(x)).
The total loss function is defined as:

L = γ1Ll1 + γ2LMS-SSIM + γ3Lperc + γ4Ladv (8)

where γ1, γ2, γ3, and γ4 are the hyperparameters to balance

between different losses.

4. Experiments

In this section, we start with the description of datasets,

training details, and evaluation metrics. Then we con-

duct ablation studies to clarify the effects of different mod-

ules in our method. Finally, we compare our method

with other state-of-the-art dehazing algorithms quantita-

tively and qualitatively.

4.1. Datasets

We choose both real-world datasets and synthetic

datasets to evaluate our network. For real-world datasets,

we adopt the O-Haze [4] from NTIRE2018 Dehazing Chal-

lenge [1], Dense-Haze [2,5] in NTIRE2019 Dehazing Chal-

lenge [6], NH-Haze [3, 7] used in NTIRE2020 Dehazing

Challenge [10], and NH-Haze 2021 in NTIRE2021 Dehaz-

ing challenge [9]. For synthetic datasets, we choose the In-

door Training set of RESIDE [29].

O-Haze contains 35 pairs of outdoor hazy images and

ground truth images for training. Dense-Haze, NH-Haze

2020 and NH-Haze 2021 respectively contain 45 dense

hazy images, 45 non-homogeneous hazy images, 25 non-

homogeneous hazy images and their paired ground truths

for training. Each of these datasets has 5 image pairs for

validation and 5 pairs for testing. In our experiments, we

conduct our evaluation based on the official train, val and

test split for O-Haze, Dense-Haze and NH-Haze 2020. For

NH-Haze 2021, since the ground truth images for the val-

idation set and testing set have not yet been released, we

choose the first 20 official training pairs as our training data,

and the rest 5 image pairs are used for evaluation. It should

be noted that we conduct experiments on these datasets sep-

arately and do not use extra data to boost performance.

RESIDE is a benchmark for single image dehazing,

which contains large-scale training and testing images in in-

door and outdoor scenarios. The Indoor Training Set (ITS)

and the indoor Synthetic Objective Testing Set (SOTS) are

used in our experiments.

4.2. Training Details

We augment the training set with 90, 180, 270 degrees

of random rotation, horizontal flip, and vertical flip. The

input images are randomly cropped to a size of 256 ×
256. We adopt Adam optimizer with default β1 = 0.9
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Figure 3: The ablation study visual results of NTIRE2021 NH-Haze.

and β2 = 0.999. The initial learning rate is 0.0001. The

hyper-parameters of loss functions, γ1, γ2, γ3, γ4, are 1.0,

0.5, 0.01, 0.0005, respectively. Our method is implemented

using the Pytorch library [35]. All experiments are con-

ducted on Nvidia V100 GPUs. For quantitative evaluation,

We adopt the Peak Signal to Noise Ratio (PSNR) metric and

the Structural Similarity Index (SSIM) metric.

4.3. Ablation Analysis

To intentionally analyze and evaluate the effectiveness of

each architecture component, we conduct ablation studies

by considering the combination of three factors: ImageNet

pre-trained weights, transfer learning sub-net, and current

data fitting sub-net. The ablation experiments are shown

as following: 1) TL without pre-trained weights: only use

the transfer learning sub-net with randomly initialized pa-

rameters. 2) TL with pre-trained weights: only use trans-

fer learning sub-net with ImageNet pre-trained weights. 3)

CDF: only use current data fitting sub-net. 4) TL + CDF:

use both current data fitting sub-net and transfer learning

sub-net without ImageNet pre-trained weights. 5) Ours: use

both transfer learning sub-net with ImageNet pre-trained

weights and current data fitting sub-net.

In detail, we use NH-Haze 2021 as the training set and

testing set that respectively formed by first 20 images and

the rest 5 images. The quantitative results for ablation stud-

ies are shown in Table. 2. From the table, we can observe

that the ImageNet pre-trained weights can significantly im-

prove the PSNR and SSIM of the transfer learning net. Al-

though CDF is trained from scratch, it still out performs

the TL without pre-training and approach to TL with pre-

training in terms of PSNR.

On the other hand, since the current data fitting sub-net

is built with full-resolution purpose, it would fit the current

data and perform well on the specific training image do-

main. Thus, for the SSIM metric, the result of current data

fitting sub-net is 0.062 higher than that of transfer learning

sub-net with pre-trained weights.

All the two-branch models (TL+CDF and ours) perform

better than those only with one branch. This indicates the

effectiveness of our two-branch design. It is no surprise that

our method with all the components performs best. The

PSNR and SSIM of our full model achieve 21.66 db and

0.843. The scores indicate that every factor we consider

plays an essential role in the network performance, espe-

cially the ImageNet pre-training.

4.4. Comparisons with the State­of­the­art

In this section, we show the comparisons between our

method and the state-of-the-art. The comparison is con-

ducted on the datasets introduced in Section. 4.1. In our

experiments, we select five state-of-the-art methods, includ-
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Figure 4: Qualitative evaluation on RESIDE(ITS), Dense-Haze, NH-Haze 2020 and NH-Haze 2021.

Methods
ImageNet

PSNR SSIM
Pre-training

TL - 17.92 0.555

TL
√

20.78 0.753

CDF - 19.83 0.815

TL + CDF - 20.07 0.831

Ours
√

21.66 0.843

Table 2: Ablation study results. “TL” denotes transfer

learning sub-net. “CDF” denotes current data fitting sub-

net. "
√

" denotes that the network is loaded with pre-trained

weights, while "-" means no weights loaded.

ing DCP [23], AOD-Net [28], GCANet [15], FFA [36], and

TDN [30]. We also train a TDN without pre-training to ver-

ify the effect of ImageNet pre-training on this method. To

be specific, we train all models on real-world datasets ( O-

Haze, Dense-haze, NH-Haze 2020, 2021 ). On RESIDE

dataset, we train AOD, TDN without ImageNet pre-trained

model and ours from scratch. For the other methods, we use

the results from their paper and released code.

Results on Synthetic and Real-world Datasets. The

comparison results are shown in Table. 3. Our method out-

performs other methods by a significant margin in terms

of PSNR and SSIM, especially on RESIDE(ITS), O-Haze,

NH-Haze 2020 and NH-Haze 2021. For visual quality, we

can observe from Figure. 4 that most of the methods can

generate visually pleasing images on synthetic datasets ex-

cept for DCP and AOD. In real-world datasets, DCP pro-

duces images with serious color distortion. AOD tends to

generate dark images and can not remove the haze com-

pletely. The performance of GCANet on dense-haze is un-

satisfactory. Its outputs still contain hazy areas and suf-

fer from serious color distortion. Although FFA and TDN

are able to generate better results than above methods, we

can still find obvious visual problems, such as low bright-

ness and blurry borders. For the comparison between TDN

and TDN without pre-trained weights, we can conclude that

the ImageNet pre-training significantly improves the per-

formance when using small-scale NH-Haze 2020 and NH-

Haze 2021 datasets. This further proves that the importance

of using ImageNet pre-training as initialization when work-

ing on small-scale datasets. Additionally, in the last row of

Figure. 4 (d), all methods restore the blue gate to a green

gate. However, the last image of Figure. 5 shows that our

algorithm can successfully restore the blue gate. One pos-

sible reason is that the images shown in Figure. 4 (d) are

generated by the networks training on only 20 images. Lim-

ited training data can result in insufficient learning of color

details. It is also worth mentioning that images produced

by our method are more visually pleasing. Our results are

closest to ground truth images in terms of color and object

details.

Complexity Analysis. We run this experiment on the

same NVIDIA V100 GPU. Table. 4 shows the total number

of parameters and runtime per image (size 1600 × 1200)

of above methods. Although the transfer learning(TL) sub-

net contains a large number of parameters, its processing



Methods
RESIDE(ITS) NTIRE18(O-Haze) NTIRE19 NTIRE20 NTIRE21

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP 16.62 0.817 12.92 0.505 10.85 0.404 12.29 0.411 11.30 0.605

AOD 19.06 0.850 17.69 0.616 13.30 0.469 13.44 0.413 13.22 0.613

GCANet 30.23 0.975 19.50 0.660 12.42 0.478 17.58 0.594 18.76 0.768

FFA 36.39 0.988 22.12 0.768 16.26 0.545 18.51 0.637 20.40 0.806

TDN 34.59 0.975 23.53 0.754 15.29 0.511 20.51 0.671 20.31 0.763

TDN(No pre-trained) 30.52 0.960 21.67 0.721 15.10 0.495 17.29 0.616 17.73 0.696

Our 37.61 0.991 25.54 0.783 16.36 0.582 21.44 0.704 21.66 0.843

Table 3: Quantitative comparisons over SOTS-indoor, O-HAZE, Dense-Haze, NH-Haze 2020 and NH-Haze 2021 for differ-

ent methods. The Best results are in bold, and the second best are with underline.

Figure 5: Test results of NTIRE2021 challenge. The fist row shows the original hazy images and second row illustrates

dehazing results using our proposed method.

Methods Parameters Runtime

AOD 1.7K 0.003s

GCA 0.7M 0.255s

FFA 4M 0.561s

TDN 46M 0.112s

TL 49M 0.038s

CDF 1M 0.033s

Ours(TL + CDF) 50M 0.089s

Table 4: Parameters and runtime of each method.

speed is quite fast. The reason is that the down-sampling

operations shrink the size of features in the middle layer,

which speeds up the computation. In conclusion, except

for AOD-Net, the runtime of our method is faster than that

of other state-of-the-art methods even though we have the

most number of parameters.

Results on NTIRE2021 Testing Set. During the

NTIRE2021 dehazing challenge [9], we use NH-Haze 2020

as extra data. To eliminate the distribution shift between

NTIRE2020 and NTIRE2021, we further employ gamma

correction on NTIRE2020 with a hyperparameter of 0.65.

Our results in NTIRE2021 test dataset are shown in Fig-

ure. 5. The haze distribution in the original hazy images

is non-homogeneous. Some areas have been turned purely

white by the haze, while other parts can display the color

of the grass field. In our dehazed images, we can see that

in the first, second and last images, the haze is removed

clearly. Although there is a small haze area remaining in

the third and fourth images, the color and the outline of

the leaves are clearly displayed. In the challenge report of

NTIRE2021 [9], our dehazed results achieve 21.0183 and

0.8370 in PSNR and SSIM, respectively.

5. Conclusion

In this paper, we propose a two-branch neural network

for non-homogeneous dehazing via ensemble learning and

prove its strong power in various dehazing tasks. To gener-

ate images with fine detail and color fidelity, we stack the

features from transfer learning sub-net and current data fit-

ting sub-net and then map them to haze-free images by fu-

sion tail. Our method has a significant advantage in small-

scale datasets. It surpasses many state-of-the-art methods in

both real-world and synthetic datasets. Besides, we demon-

strate the effectiveness of the ImageNet pre-trained model.
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