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Abstract

The single image dehazing task has made significant

progress recently, aiming to recover the contrast and color

of the scattered image. Many patch prior based dehazing

methods have been explored, and this paper proposes an-

other single image dehazing method by analyzing the prior

information of local dehazed patches. With our observa-

tion, when the estimated transmission value varies from the

ground-truth transmission value to 1, the output value of a

metric function decrease correspondingly, which is defined

based on the difference maps among three RGB channels of

local dehazed patches normalized using global atmospheric

light. Under additional bounding, the local transmission

value can be estimated accurately. To reduce computation

time, the whole image is divided into many small patches,

and within each patch, we estimate a transmission value ac-

curately. We further use weighted interpolation and guided

filtering to refine the edges and details of the rough trans-

mission map. Finally, we evaluate the proposed method

using Fattal’s synthetic haze images, SOTS dataset, and a

wide variety of real-world haze images. Experiments show

that our method outperforms other state-of-the-art dehaz-

ing algorithms by a large margin, especially on synthetic

noisy haze images.

1. Introduction

1.1. Dehazing Task

Haze is a natural phenomenon caused by tiny particles

in 3 the air, affecting the image’s contrast and color greatly.

The scattering level depends on the attenuation coefficient

of the atmosphere and the distance between the camera and

the object. Dehazing, aiming to recover the clean scene ra-

diance, is an ill-posed problem due to the unknown trans-

mission map and global atmospheric light. Early dehaz-

ing methods often need extra information, such as polar-

ized filters and multiple images [22, 16], weather condition

[15, 9], and depth information [14]. The applications of
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Figure 1. A dehazing example of the proposed local prior. We

estimate the transmission map by dividing the input image into

many small blocks (11 × 11). We use weighted interpolation and

guided filtering to refine the structure of the rough transmission

map. From the dehazing result, the proposed local prior yields

excellent dehazing performance.

these methods are limited for requiring additional informa-

tion. Recently, single image based dehazing methods have

made significant progress, aiming to recover the clean im-

age from the degraded input without additional information.

Those methods can be roughly divided into two classes, re-

spectively, prior based methods and data-driven methods.

1.2. Prior Based Single Image Dehazing Methods

Many patch prior based dehazing methods have been ex-

plored. Fattal et al. [5] estimate transmission maps based

on the assumption that transmission and surface shading are

locally uncorrelated. He et al. [8] propose a classical dark

channel prior (DCP) based on the observation of clean im-

age that, as for most of natural clean image local patch, at

least one color channel has very low intensity at some pix-

els. Some subsequent methods are proposed to solve the

problems of DCP: Guided filtering [7] is proposed to re-

place time-consuming soft-matting [10];Meng et al. [13]

employ boundary constraint and contextual regularization

(BCCR) to refine the structure of rough transmission map;

Chen et al [4] propose a robust dehazing method (GRM)

which uses total generalized variation (TGV) to suppress

artifacts. Besides, numerous dehazing methods based on

the natural image prior have been proposed. Bayesian sta-



tistical method [17] model dehazing problem as a statistical

model. Zhu et al. [18] find that in a hazy image, hazy de-

gree of different image patch is relevant to color attenuation

in a local patch, proposing color attenuation prior (CAP).

Fattal et al. [6] propose a prior based dehazing method us-

ing color-lines (CL) and recover full transmission map by

an augmented Markov Random Field model.

Different from patch based local prior, Berman et al. [2]

find that local image patches with similar colors form a line

from scene radiance to global atmospheric light and propose

a non-local dehazing (NLD) method.

1.3. Data-Driven Single Image Dehazing Methods

Recently, data-driven methods have been explored in

various image processing and computer vision tasks, in-

cluding image dehazing. Tang et al. [24] model the dehaz-

ing into a learning framework to investigate haze-relevant

features. Cai et al. [3] propose an end-to-end dehazing

network (DehazeNet) using the synthetic hazy patches for

transmission learning. Ren et al. [19, 21] propose a multi-

scale CNN (MSCNN) that utilizes the image information of

different spatial scales and coarse-to-fine scales. Li et al.

[11] cast all dehazing processes into one network instead of

estimating the transmission map (AOD-Net). Ren et al. [20]

fuse three different pre-processing maps containing haze-

relevant information with a progressive upsampling manner

(GFN).

1.4. Motivations and Contributions

Similar to DCP, we assume that the local transmission

values are constants. Given a hazy patch and the global at-

mospheric light, the ground-truth transmission value is be-

tween 0 and 1. When the estimated transmission value in-

creases from the ground-truth value to 1, the color informa-

tion of the dehazed patch degrades gradually. When the

estimated transmission value decreases from the ground-

truth value to 0, the pixel value range of the over-dehazed

patch is out of the normal range. Using a proper bound-

ing function, the local transmission value can be estimated

accurately by analyzing the prior information of the differ-

ence maps among three RGB channels of dehazed patches

normalized using global atmospheric light. To sum up, the

main contributions of this paper are followings:

(1) We propose a novel local prior based single image

dehazing method, which outperforms other state-of-the-art

single image dehazing algorithms.

(2) We propose a fast implementation for the proposed

method by dividing the whole image into many small

patches.

(3) Experiments on Fattal’s synthetic haze images show

our method is robust to noise, different haze levels, and

large objects.

2. Backgrounds

2.1. The Dehazing Task

The commonly used haze degradation model is de-

scribed as [23]:

I (x) = J (x) t (x) +A (1− t (x)) (1)

where I denotes input haze image, J denotes scene radi-

ance, A represents global atmospheric light, x is the spatial

image index, and t denotes transmission map related to the

distance from the object to the camera. According to the

Lambert Beer law when the atmosphere is homogeneous,

the transmission map can be expressed as [23]:

t (x) = exp (−βd (x)) (2)

where β is the attenuation coefficient of the atmosphere,

d (x) represents the depth from object to camera, and x is

the image index. By simply transforming the Eq. (1) , we

can get:

J (x) = min

{

max

{

I (x)−A

t (x)
+A, 0

}

, 1

}

(3)

In order to get scene radiance, we should estimate t and A

at first.

2.2. Dark Channel Prior

He et al. [8] propose a robust natural image prior based

on the observation that as for clean natural images, the min-

imum of the local RGB patch is very close to zero:

Jdark (x) = min
c∈{r,g,b}

(

min
y∈Ω(x)

Jc (y)

)

≈ 0 (4)

where Ω denotes the local image patch, r, g, b is the RGB

channel of the input image. Based on Eq. (4), the transmis-

sion map is estimated by applying dark channel operation

on both sides of Eq. (1):

t̃ (x) = 1− ω min
c∈{r,g,b}

(

min
y∈Ω(x)

Ic (y)

Ac

)

(5)

where c is the color channel of RGB color space and ω is the

parameter controlling the dehazing degree can be adjusted

according to the haze level.

3. Proposed Method

3.1. The Observation

In the following parts, we assume that the global atmo-

spheric light is known. Local prior based dehazing methods,

such as DCP, usually establish the relations between the lo-

cal transmission value and the local statics variables. We
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Figure 2. Illustration of the proposed local prior. (a) Dehazing

examples of different transmission values of a randomly selected

local haze patch (Eq. (3)). (b) The output values of the proposed

metric function (Eq. (6)), taking the dehazed patches as the inputs.

The proposed metric function is defined based on the channel dif-

ference maps among three normalized RGB channels of dehazed

patches.

propose a novel local dehazing prior by analyzing the rela-

tion between the ground-truth transmission value and the

dehazed patches under different transmission values. As

shown in Fig. 2 (a), we show the dehazed patches of a

randomly selected hazy patch. Furthermore, the dehazed

patches are fed into the proposed metric function to com-

pute the output values (M0). From Fig. 2 (a), when t varies

from 0.1 to 0.4, the dehazed patches are over-dehazed and

many pixel values are close to 0; when t varies from 0.8 to

1.0, the dehazing performance is limited and the dehazed

patches are still hazy. From Fig. 2 (b), the output value

M0 achieves the maximum when t = 0.5; from Fig. 2 (a),

the dehazed patch also has good contrast and color when

t = 0.5. To sum up, we aim to estimate the local transmis-

sion value using local prior information, which is formu-

lated as a bounded metric function.

Given the global atmospheric light Ac, c ∈ {r, g, b}, the

proposed metric function is defined as the sum of absolute

values of difference maps among three normalized RGB

channels of the dehazed patches:

M0 =

∥
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(6)

where M0 denotes the output value of metric function,

Jc, c ∈ {r, g, b} is the RGB channels of the dehazed patch.

Combining Eq. (3) and Eq. (6), we will get the following

formulation:

M0 =

∥

∥

∥

∥
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(7)

From Eq. (7), the value of M0 increases when t de-

creases. However, from Fig. 2 (a), the over-dehazed patches

are close to zero, leading to low M0. Therefore, taking the

dehazed patches as the input data, the maximum of output

values of Eq. (6) is correlated with the best transmission

value. To demonstrate the analysis of Eq. (7), we test the

values of M0 using synthetic haze patches with different

global atmospheric light and transmission values, as shown

in Fig. 3. From Fig. 3 (c), the output value of Eq. (7)

decreases when the transmission value decreases, proving

the analysis of color information when t varies from the

ground-truth value to 1 (taking I as the input data).

3.2. Dehazing Using Additional Bounding

Based on Eq. (3), when t is close to 0, the values of

dehazed patch J are close to 0 or 1. Therefore, the Eq. (6)

is not robust for extreme colorful cases, such as Jr (x) =
1, Jg (x) = 1, Jb (x) = 0. In such cases, the hazy patches

are usually over-dehazed. To solve the problem of extreme

colorful cases, additional bounding is needed, which can be

regarded as a regularization term:

M = M0 +R (J) (8)
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Figure 3. (a) A haze-free image from NH-HAZE dataset [1]. (b)

Synthetic hazy patches with random global atmospheric light and

transmission values based-on the Eq. (1). (c) The output values of

Eq.(7). Compared with hazy patches (t < 1), the haze-free patch

has higher M0, meaning more color information.

As for the dehazed patches, we reject the existence of the

value 0:

R (J) = F

(

Jc1
Jc2

)

, c1,2 ∈ {r, g, b}, c1 6= c2 (9)

where F denotes the checking function: if there exists 0

in the dehazed patches, the output value of Eq. (8) will

become to ±∞, which is not included for the estimation

of the transmission value. It is also easy to avoid interfere

from the input haze image:

Î = max (I, ǫ) (10)

where ǫ denotes a small positive threshold. With equation

(??), the local transmission value can be estimated by max-

imizing the bounded metric function:

t̃ = max
t

M0 +R (J) , t ∈ (ǫ, 1) (11)

where t̃ denotes the estimated transmission value.

A dehazing example of several synthetic haze patches is

shown in Fig. 4. Four haze-free patches are selected from

the clean image shown in Fig. 3 (a). To test the dehazing

performance of the proposed method, we choose two differ-

ent haze levels (dense haze:t = 0.3, light haze:t = 0.8). We

use the grid search method to solve the problem (11). When

t is set as 0.3, the estimated transmission values of four hazy

patches are all very close to the 0.3; When t is set as 0.8,

Haze-Patches Dehazing Results Ground-Truth
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Figure 4. Dehazing examples of several synthetic patches (40 ×
40). The ground-truth patches are randomly selected from Fig. 3

(a). From the fifth column, the transmission values are estimated

using Eq. (11). The global atmospheric light for three RGB chan-

nels is set as {0.5, 0.6, 1.0}.

Input Image Dehazing Result tL

t~ t̂ Guided Filtering

Figure 5. Rough transmission map refinement. From the second

row, the edge of t̂ is much better than t̃ after weighted interpolation

using Eq. (14).

the dehazed patches are also very close to the ground-truth

patches. Generally, the proposed dehazing prior is robust to

different haze levels.

A haze image may contain haze-free regions. Taking the

clean patches as the inputs, the mean output value of Eq.

(8) will be a small positive value. In this condition, the es-

timated local transmission is unstable. Therefore, the trans-

mission value is set as 1 if the mean output value of Eq. (8)

is smaller than a low threshold (0.1).

3.3. Fast Implementation

Given a high-resolution haze image, it is time-

consuming to estimate the transmission value pixel-by-

pixel. To save running time, we design a block-wise method

for fast transmission map estimation. The whole image is

divided into small blocks with fixed size (such as 21× 21),

and each block is used to estimate a local transmission

value. As shown in Fig. 1, within each block the transmis-

sion is regarded as a constant. Then, the rough transmission

map can be refined using the guided filtering process the
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Figure 6. Block/center-patch size selection examples. For natu-

ral haze image (a), the local transmission value can be estimated

well with small a center patch size. However, for challenging syn-

thetic haze image (b) from SOTS [12], we use the whole block to

estimate the local transmission value.

Table 1. Running time table of different block (Bi) sizes, center

patch (Pi) sizes, and resolutions.

Resolution
Bi:21× 21 Pixel-Wise

Pi:7× 7 Pi:21× 21 Pi:7× 7
300× 300 2.82 3.61 112.35

500× 500 7.18 8.94 324.20

700× 700 15.92 19.74 595.14

900× 900 26.24 31.07 969.08

same as DCP does. However, to reduce the artifacts caused

by block-wise division, we design a weighted interpolation

method to refine the rough transmission map at first.

At first, given the global atmospheric light, we calculate

the low boundary value of the transmission map. The scene

radiance should be larger than 0:

J (x) =
I (x)−A

t (x)
+A ≥ 0 (12)

From Eq. (12), we can get the following formulation:

t (x) ≥ 1− min
c∈{r,g,b}

Ic (x)

Ac

= tL (13)

For each pixel of the rough transmission map, we search the

N closest blocks Bi (i ∈ {1, ..., N}, N denotes the number

of the blocks ). Then, the final transmission map is com-

puted using the weighted average value:

t̂ (x0) =

∑N

i=1 exp{
‖tL(x0)−tL(xi)‖1

σI

}min
{

t̃ (xi) , t̃ (x0)
}

∑N

i=1 exp{
‖tL(x0)−tL(xi)‖1

σI

}
(14)

where x0 denotes the current pixel location, xi denotes the

spatial pixel location of the block center, σI is set as con-

stant. With Eq. (14), the boundary of the estimated rough

transmission map is refined using tL. Then, the refined

transmission map is fed into the guided filtering process for

further refinement. An example of Eq. (14) is shown in Fig.

Table 2. Block/Patch Size Selection
Dataset Block Size Center Patch Size

Fattal 21 7

SOTS 21 21

Real-Images 11 3

Flower2 DCP CL

NLD Our Ground-Truth

Figure 7. Dehazing results of the haze image Flower2.

5. From Fig. 5, rough transmission map t̃ may cause block

artifacts close to the edge. Compared with t̃, t̂ has better

edge information.

3.4. Block/Center-Patch Size Selection

To save computation time, the whole image is divided

into many small blocks. With our observation, however, in

some conditions, the transmission value can also be esti-

mated well when we use 7 × 7 center patch Pi of 21 × 21
block Bi. For natural haze images, the small center patch

can be used to further decrease running time and reduce ar-

tifacts close to the edges; for images containing sky region,

white objects, or large homogeneous regions, it is suggested

that the whole block Bi should be used.

Fig. 6 shows two examples of block/center-patch size

selection. For haze image (a) in Fig. 6, the dehazing re-

sult has the best dehazing performance when block size and

center patch size is set as 11×11 and 3×3 respectively. For

haze image (b) in Fig. 6, the dehazing result has the highest

PSNR when the whole block is used for the estimation of

the local transmission value.

Running times of different blocks and center patch sizes

are shown in table 1. For high resolution 900 × 900 haze

image, our implementation achieves 30× speeding up.

4. Experiments

To prove the performance, we evaluate the proposed de-

hazing method using Fattal’s synthetic dataset [6] and 500

SOTS [12] haze images. We also show qualitative results

of a wide variety of real-world haze images. Similar to

section 3.1, we assume that global atmospheric light is

known. σI in Eq. (14) is set as −100. The patch size

setting for transmission map estimation can be found in ta-

ble 2. Three state-of-the-art prior based dehazing methods

are selected for quantitative and qualitative comparison, in-

cluding DCP(dark channel prior) [8], NLD(non-local de-



Table 3. L1 error table of synthetic haze images with different sce-

narios. The pixel value is normalized into [0, 1].

Image DCP CL NLD Our

Road1 0.0432 0.0278 0.0325 0.0339

Road2 0.0469 0.0313 0.0459 0.0330

Flower1 0.0981 0.0187 0.0437 0.0354

Flower2 0.0945 0.0151 0.0387 0.0309

Lawn1 0.0506 0.0306 0.0444 0.0298

Lawn2 0.0560 0.0280 0.0417 0.0290

Mansion 0.0416 0.0218 0.0400 0.0296

Couch 0.0410 0.0533 0.0507 0.0308

Moebius 0.1465 0.0757 0.0669 0.0580

Reindeer 0.0682 0.0336 0.0589 0.0244

Average 0.0687 0.0336 0.0463 0.0335

Lawn1 DCP CL

NLD Our Ground-Truth

Figure 8. Dehazing results of the haze image Lawn1.

hazing) [2], and CL(color lines) [6]. Three state-of-the-art

learning-based methods are used for quantitative compar-

ison on SOTS dataset, including MSCNN [19], AOD-Net

[11], and GFN [20]. To keep fair, for synthetic haze im-

ages, we do not include gamma correction and pixel value

clipping for the dehazing results of NLD and our method.

The parameters of NLD and our method are set as constants

for quantitative comparison. For qualitative comparison, the

global atmospheric light and gamma correction parameters

are the same for all methods (for haze image Train, we ad-

just the global atmospheric light slightly). The dehazing

results of DCP and CL can be obtained on Fattal’s online

project webpage.

4.1. Quantitative Results

4.1.1 Different Scenarios

Firstly, we evaluate the proposed dehazing method using

ten synthetic haze images with different scenarios. Because

the proposed dehazing prior is a local patch based prior, de-

hazing performance on large objects is meaningful.

Quantitative Results of ten synthetic haze images are

shown in Table. 4, and we compute the L1 errors on non-sky

pixels of dehazed images. Obviously, our dehazing method

is robust for a wide variety of scenarios and outperforms

DCP and NLD on most haze images by a large margin.

Moreover, our method achieves the lowest average L1 error,

Moebius DCP CL

NLD Our Ground-Truth

Figure 9. Dehazing results of the haze image Moebius.

Raindeer DCP CL

NLD Our Ground-Truth

Figure 10. Dehazing results of the haze image Raindeer.

which is competitive to the state-of-the-art dehazing method

based on color lines (CL[6]).

Dehazing results of the haze image Flower2 is shown in

Fig. 7. Due to inaccurate low values of the estimated trans-

mission map, the dehazing result of DCP has a yellow hue.

Compared with NLD, our local prior based method achieves

higher performance. The ground in haze image Flower2

can be regarded as a large object, demonstrating the per-

formance of the proposed local prior for large objects. The

gamma correction based method [6] can be used to remedy

inaccurate low values of the estimated transmission map.

Dehazing results of the haze image Lawn1 are shown in

Fig. 8. As for the dehazing results of DCP and NLD, the

region in the red box is over-dehazed and hazy respectively.

Due to similar colors, the clustering results are not reliable,

causing poor dehazing performance.

From Fig. 9, the dehazing result of DCP is over-saturated

seriously. The region in the red ellipse of the dehazing result

of CL is also over-saturated. Compared with NLD, our re-

sult achieves better performance, despite the over-dehazed

region in the red circle.

Dehazing results of the haze image Raindeer are shown

in Fig. 10. The region in the red circle of the dehazing result

of DCP is over-saturated. Compared with CL and NLD, our

result is more close to the ground-truth.



Input DCP CL
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Figure 11. Dehazing results of the heavy haze image Raindeer.

Compared with other methods, our result is more close to the

ground-truth.

Table 4. L1 error of synthetic images under different scattering

levels. The pixel value is normalized into [0, 1]. Low: low scatter-

ing level; Middle: Middle scattering level; High: high scattering

level. The error is computed between dehazed images and clean

ground-truth images.

Image Level DCP CL NLD Our

low 0.0386 0.0218 0.0506 0.0218

Road1 middle 0.0432 0.0283 0.0313 0.0350

high 0.0539 0.0338 0.1551 0.0428

low 0.0581 0.0151 0.0315 0.0160

Lawn1 middle 0.0560 0.0301 0.0444 0.0298

high 0.0620 0.0354 0.1529 0.0311

low 0.0429 0.0152 0.0750 0.0212

Mansion middle 0.0416 0.0221 0.0400 0.0296

high 0.0453 0.0310 0.1666 0.0401

low 0.0398 0.0125 0.0441 0.0255

Church middle 0.0315 0.0160 0.0369 0.0286

high 0.0304 0.0256 0.1320 0.0321

low 0.0674 0.0237 0.0622 0.0101

Raindeer middle 0.0682 0.0350 0.0589 0.0244

high 0.0701 0.0434 0.1890 0.0342

Average - 0.0499 0.0259 0.0847 0.0282

4.1.2 Varying Scattering/Noise Levels

Following the online experiment results [6], we evalu-

ate the proposed dehazing method using haze images with

varying scattering/noise levels. From Table. 4, our dehaz-

ing method outperforms DCP and NLD and is competitive

to CL. Dehazing results of the heavy haze image Raindeer

are shown in Fig. 11. From the first row of Fig. 11, the

dehazing result of DCP is oversaturated and the image re-

gion in the red box has the yellow hue. From the second

row, the rehazing result of NLD is still hazy due to degraded

color information. The whole color information of the input

heavy haze image is limited and clustering results of NLD

are unreliable.

Table 5 shows L1 errors of DCP, NLD, CL, and our

Table 5. L1 error of dehazed images under different noise levels.

The pixel value is normalized into [0, 1]. The error is computed

between dehazed images and clean ground-truth images.

Image σ DCP CL NLD Our

0.01 0.0489 0.0319 0.0344 0.0360

Road1 0.025 0.0621 0.0542 0.0483 0.0452

0.05 0.0900 0.0960 0.0795 0.0738

0.01 0.0589 0.0332 0.0430 0.0320

Lawn1 0.025 0.0681 0.0575 0.0506 0.0427

0.05 0.0897 0.1064 0.0895 0.0687

0.01 0.0389 0.0290 0.0434 0.0310

Mansion 0.025 0.0433 0.0493 0.0575 0.0385

0.05 0.0729 0.0777 0.0833 0.0621

0.01 0.0324 0.0284 0.0378 0.0299

Church 0.025 0.0384 0.0530 0.0444 0.0334

0.05 0.0640 0.0891 0.0628 0.0530

0.01 0.0656 0.0419 0.0589 0.0264

Raindeer 0.025 0.0671 0.0536 0.0638 0.0375

0.05 0.0853 0.0834 0.0879 0.0671

Average - 0.0617 0.0590 0.0590 0.0452

Table 6. PSNR/SSIM table of different dehazing methods on

SOTS Dataset.

Model Method
SOTS

PSNR SSIM

Prior-
based

DCP 16.62 0.818

BCCR 16.88 0.791

NLD 17.29 0.749

Our 20.83 0.883

Learning-

based

MSCNN 17.57 0.810

AOD-Net 19.06 0.850

GFN 22.30 0.880

Input DCP NLDCL Our

Tiananmen

Cityscape

Train

Figure 12. Dehazing results of real-world haze images Train,

Cityscape, and Tiananmen.

methods under three different noise levels. It is obvious that

our dehazing results outperform other methods by a large

margin, demonstrating the performance of the proposed lo-

cal prior to noisy haze images. Dehazing results of the haze

image Mansion (σ = 0.05) are shown in Fig. 13.



Input DCP

CL NLD

Our Ground-Truth

Figure 13. Dehazing results of the haze image Mansion with high

noise level (σ = 0.05).

4.1.3 Results On SOTS Dataset

SOTS Dataset is used for further comparison with other

state-of-the-art dehazing methods. From table 6, our

method achieves the highest average SSIM value and the

second-highest average PSNR value on SOTS dataset,

which outperforms DCP, BCCR, and NLD by a large mar-

gin.

For SOTS datasets, our prior based dehazing method is

not as well as GFN, which is well designed and trained us-

ing many synthetic haze images. Despite the weaker per-

formance, our methods can generate reasonable haze-free

clean images on a wide variety of real-world haze images.

The dehazing performance of deep learning based dehazing

methods is limited to unseen scenes.

4.2. Qualitative Results

Visual quality and dehazing performance of dehazed re-

sults on real-world haze images are important for evaluat-

ing dehazing methods. In this part, we show the dehazing

results of many real-world haze images.

Dehazing results of haze image Train, Tiananmen, and

Cityscape are shown in Fig. 12. From the left column to

the right column are input haze image, dehazing results of

DCP, CL, NLD, and our method. The dehazing results of

DCP still seem to be dim, such as the image regions in the

red boxes of Train and Cityscape. For the dehazing result of

NLD on haze image Tiananmen, the tree in red box region

looks dark and has poor contrast. From the third row, the

image regions in red boxes of dehazing results of DCP, CL,

and NLD are not as clear as our result, demonstrating the

Input DCP CL NLD Our

Cones

Cliff

Road

Forest

Figure 14. Dehazing results of real-world haze images Road,

Flags, Cones, and Cliff. For dehazing result of the haze image

Cliff, we clip the 0.5% of the pixel values both in the shadows and

in the highlights.

Input DCP CL Input Our

Herzeliya

Figure 15. Dehazing results of high-resolution real-world haze im-

age Herzelya.

dehazing performance of the propsoed method.

Fig. 14 shows dehazing results of haze image Road,

Cones, Cliff, and Forest. Compared with DCP, CL, NLD,

our dehazing results of haze image Cones and Forest are

more clear, especially on regions with farther depth infor-

mation. From the third row of Fig. 14, the proposed local

prior yields excellent dehazing performance on haze image

Cliff. The image areas in the red ellipses of dehazing result

of NLD on the haze image Cliff are still hazy. Additionally,

we show a high-resolution dehazing case in Fig. 15, and

the proposed local dehazing prior recovering the color and

details of objects well.

5. Conclusion

In this paper, we propose a novel local prior for the single

image dehazing task. We find that the haze level of the local

haze patch can be evaluated using a carefully designed met-

ric function, called channel difference prior. Besides, ad-

ditional bounding is used to avoid over-dehazing. To save

computation time, we design a fast block based algorithm

for transmission map estimation. Experiments on synthetic

and real-world haze images demonstrate the state-of-the-art

performance of the proposed dehazing method.
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