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Abstract

Perceptual quality enhancement of heavily compressed

videos is a difficult, unsolved problem because there still

not exists a suitable perceptual similarity loss function be-

tween two video pairs. Motivated by the fact that it is hard

to design unified training objectives which are perceptual-

friendly for enhancing regions with smooth content and re-

gions with rich textures simultaneously, in this paper, we

propose a simple yet effective novel solution dubbed ”Adap-

tive Spatial-Temporal Fusion of Two-Stage Multi-Objective

Networks” (ASTF) to adaptive fuse the enhancement re-

sults from networks trained with two different optimization

objectives. Specifically, the proposed ASTF takes an en-

hancement frame along with its neighboring frames as in-

put to jointly predict a mask to indicate regions with high-

frequency textual details. Then we use the mask to fuse

two enhancement results which can retain both smooth con-

tent and rich textures. Extensive experiments show that our

method achieves a promising performance of compressed

video perceptual quality enhancement.

1. Introduction

In recent years, we have witnessed the explosive growth

of video data over the Internet. In order to transmit

video with limited bandwidth, video compression is essen-

tial to significantly reduce the bit rate. However, exist-

ing compression algorithms often introduce artifacts, which

severely degrade the Quality of Experience (QoE) [33, 9,

5, 1, 20]. Thus, it’s crucial to study on compressed video

quality enhancement (VQE).

Recently, there is only limited study on quality enhance-

ment for compressed video [33, 9, 5, 25]. Multi-Frame

Quality Enhancement (MFQE 1.0) [33] first leverage tem-

poral information for VQE. MFQE 2.0 [9] was proposed

to further to improve the performance which also adopts a

temporal fusion scheme that incorporates dense optical flow

for motion compensation. Spatio-Temporal Deformable

Fusion (STDF) [5] aggregates temporal information while

avoiding explicit optical flow estimation. However, all

these methods use pixel-wise metrics, such as MSE, PSNR

and SSIM, to compute the similarity between two images

which fail to account for many nuances of human percep-

tion. MW-GAN [25] proposed a generative adversarial net-

work (GAN) based on multi-level wavelet packet transform

to recover the high-frequency details for enhancing the per-

ceptual quality of compressed video.

While it is nearly effortless for humans to quickly assess

the perceptual similarity between two images, the underly-

ing processes are thought to be quite complex. lpips [35]

has been proposed to assess the perceptual similarity be-

tween two images. However, there still not exists a suitable

metric for VQE. Compared to single-image perceptual qual-

ity enhancement which focuses on the intrinsic properties

of a single image in spatial space, video perceptual quality

enhancement poses an extra challenge as it involves tempo-

ral flickering though each enhancement frame in video se-

quences seems to be enhanced well considering image per-

ceptual quality individually. Specifically, VQE trained with

PSNR and SSIM will generate smooth videos while VQE

trained with lpips will generate temporal flickering videos

with more textual details.

To address the aforementioned issues, we adopt multi-

objective networks with adaptive spatial-temporal fusion

module to enhance regions with smooth content and re-

gions with rich textures simultaneously. Specifically, we

conduct the enhancement using a two-stage strategy. The

first stage aims at obtaining relatively good intermediate

results with high fidelity. At the second stage, we train

two BasicVSR [3] models for different refinement purposes.

One for textual details and the other for temporal smooth
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regions. To eliminate temporal flickering and retain tex-

tual details, we devise a novel adaptive spatial-temporal fu-

sion scheme. Specifically, spatial-temporal mask genera-

tion module is proposed to produce spatial-temporal masks

and it is used to fuse the two network outputs. Then we use

image sharpen to further enhance the videos.

The main contributions are as follows:

(1) We observe that regions with smooth contents and

rich textures are degraded non-identically due to compres-

sion loss, different optimization objectives are designed for

better enhancement of these regions with a two-branch ar-

chitecture.

(2) An adaptive spatial-temporal fusion module is pro-

posed to combine advantages of both network branches,

meanwhile, spatial-temporal consistency is achieved to

avoid flickering.

(3) BasicVSR is leverage as VQE backbones for proof-

of-concept purpose and experimental results validate the ef-

fectiveness of our solution.

2. Related Work

2.1. Quality Enhancement

In the past few years, extensive works have been pro-

posed to enhance the objective quality of compressed im-

ages [19, 8, 14, 16, 7, 10, 28, 18, 34]. Specifically, non-

deep learning methods use Shape-Adaptive DCT or sparse

coding to reduce the blocking effects, ringing effects and

JPEG artifacts [8, 14, 16]. Deep learning methods like D3

[28] and deep dual-domain convolutional network (DDCN)

[10] utilize the prior knowledge of JPEG compression to

enhance the quality of JPEG compression image.

For the compressed videos, most methods use single-

frame quality enhancement approaches to tackle video en-

hancement [4, 26, 32]. Motivated by multi-frame super-

resolution, MFQE [33] was the first to take advantage of

neighboring frames for compressed video enhancement.

Then MFQE 2.0 [9] is proposed which is an extended ver-

sion of MFQE. Both MFQE methods adopt a temporal fu-

sion scheme that incorporates dense optical flow for mo-

tion compensation. Since compression artifacts could seri-

ously distort video contents and break pixel-wise correspon-

dances between frames, the estimated optical flow tends to

be inaccurate and unreliable, thereby resulting in ineffective

quality enhancement. Spatio-Temporal Deformable Fusion

(STDF) [5] aggregates temporal information while avoiding

explicit optical flow estimation. All the above methods try

to minimize the pixel-wise loss, such as MSE, PSNR and

SSIM, to obtain high objective quality which disagree with

human judgments. Recently, MW-GAN [25] proposed a

generative adversarial network based on multi-level wavelet

packet transform to recover the high-frequency details for

enhancing the perceptual quality of compressed video.

2.2. Video Super Resolution

The closest work to ours is the video super-resolution

(VSR). The significant difference between VSR and VQR

is VSR need the final upsample layer. Several VSR ap-

proaches [2, 23, 29] use optical flow to estimate motions

between frames and use spatial warping for alignment.

Other methods use a more sophisticated approach of im-

plicit alignment [24, 27, 15, 12, 13, 3]. Specifically, TDAN

[24] and EDVR [27] adopt deformable convolutions to

align different frames. BasicVSR [3] proposes to untangle

some most essential components for VSR such as Propa-

gation, Alignment, Aggregation, and Upsampling and find

that bidirectional propagation coupled with a simple optical

flow-based feature alignment suffice to outperform many

state-of-the-art methods. In this work, we adopt BasicVSR

as our base model which we will remove the final upsample

layer.

3. Proposed Method

Given a heavily compressed video, the goal of our

method is to produce high quality results with the best per-

ceptual quality to the reference ground truth. To be specific,

we conduct the enhancement using a two-stage strategy. As

shown in Figure 1, The first stage aims at obtaining rela-

tively good intermediate results with high fidelity. In this

stage, a BasicVSR [3] model is trained with Charbonnier

loss [17]. At the second stage, we train two BasicVSR

models for different refinement purposes. One refine Ba-

sicVSR model (we term it as EnhanceNet2) is trained with

a trade-off loss function Charbonnier loss + lpips loss.

The other refine BasicVSR model (termed as EnhanceNet1)

is trained with merely lpips loss. Here lpips loss [35] is

a learned objective video quality measurement, which is

more consistent with human perception. In this way, En-

hanceNet1 is more good at recovering textures to satisfying

human perception requirement but it can result in tempo-

ral flickering for smooth regions of videos, meanwhile En-

hanceNet2 will produce much more smooth results, espe-

cially, temporal flickering is well eliminated. To overcome

this issue, we devise a novel adaptive spatial-temporal fu-

sion scheme. Specifically, spatial-temporal mask genera-

tion module is proposed to produce spatial-temporal masks

and it is used to fuse the two network outputs. Then we use

image sharpen to further enhance the videos with a Gaus-

sian kernel size of 3.

3.1. EnhanceNet

We use BasicVSR [3] without the pixel-shuffle [22] layer

as our base model of EnhanceNet in both stage-1 and stage-

2.

For Coarse EnhanceNet in stage-1, we use Charbon-

nier loss [17] to produce a coarse result with high fidelity
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Figure 1. Workflow of our multi-objective networks with adaptive spatial-temporal fusion module. The whole framework consists of a

coarse EnhanceNet as the first stage and two refine EnhanceNets with different training objectives. The outputs of two refine networks can

make smooth regions or texture-rich regions perceptual-friendly to human eyes, respectively. At last, spatial-temporal masks are adaptively

generated for combining their results such that advantages of the two refine networks are both leveraged.

such as PSNR and SSIM. However, the traditional metrics

(L2/PSNR, SSIM) disagree with human judgments accord-

ing to previous research [35]. Charbonnier loss is a differ-

entiable variant of l1 norm:

ρ(x) =
√

x2 + ǫ2 (1)

We set ǫ to 1e− 6.

Based on our observation, it is hard to design uni-

fied training objectives which are perceptual-friendly for

enhancing regions with smooth content and regions with

rich textures simultaneously. Therefore, the trade-off be-

tween objective and perceptual quality is important to tackle

this problem, which is similar to the Perception-distortion

Trade-off [6].

In stage-2, we train two BasicVSR models focus on per-

ceptual quality and the trade-off between the objective and

perceptual quality, respectively. Specifically, we train Re-

fine EnhanceNet1 with merely lpips loss [35] to produce

a result focus on recovering texture details which is agree

with human perception judgments. But it can also result

in a drawback of temporal flickering at smooth regions of

videos. To overcome this problem, we train Refine En-

hanceNet2 with a trade-off loss function

Ltrade−off = α× Charbonnier loss+ β × lpips loss
(2)

to produce a result focus on recovering smooth results,

which is a trade-off between objective and perceptual qual-

ity. Note that we set α = 0.15 and β = 10000 to make

Charbonnier loss almost three times larger than lpips loss.

We use VGG network in lpips loss for training and Alex

network in lpips loss for validation.

3.2. ASTF

We devise a novel adaptive spatial-temporal fusion

scheme (ASTF) motivated by the fact that Refine En-

hanceNet1 is good at recovering texture details and Refine

EnhanceNet2 is good at recovering smooth regions, which

are two trade-off models we both need. Specifically, spatial-

temporal mask generation module is proposed to produce

spatial-temporal masks to indicate non smooth regions of

videos with the results of Refine EnhanceNet2 as input. We

adopt a spatial-temporal block with 3× 3× 3 pixels.

It is used to fuse the outputs of Refine EnhanceNet1 and

Refine EnhanceNet2:

Itout = maskt × Itout,1 + (1−maskt)× Itout,2, (3)

where maskt is the generated mask for the t-th frame,

Itout,1 and Itout,2 are the t-th output frame of En-

hanceNet1 and EnhanceNet2, respectively. The mask

maskt = f(It−1
out,2, I

t
out,2, I

t+1
out,2) is adaptively generated

from It−1
out,2, I

t
out,2, I

t+1
out,2 as follows:

1) convert the frame Itout,2 from BGR space to YUV

space and choose the Y-channel (luminance component):

Y t
out,2 = BGR2Y UV (Itout,2)[0] (4)

2) variance map V t is calculated from Y t
out,2 by:

V t
i,j = V ar(Nk(Y

t
out,2[i, j])) (5)

where V ar(x) means the variance of x. Nk denotes a

neighbor pixel set of location (i, j) . Here ∀V(p,q) ∈

Nk(i, j), we have p = i+ k, q = j + k, kR ∈ [−11, 11].
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Avg. 001 021 041 061 081 101 121 141 161 181

lq input 30.58/.85 26.65/.72 30.51/.89 33.30/.92 28.93/.89 37.58/.96 26.18/.79 31.65/.91 30.27/.86 30.40/.82 30.35/.79

stage-1 31.95/.88 27.27/.75 32.11/.92 34.24/.94 30.82/.92 40.00/.98 27.03/.81 33.76/.94 32.31/.91 30.90/.83 31.09/.81

cb+lpips 31.87/.88 27.20/.75 32.03/.91 34.15/.94 30.78/.92 39.82/.97 26.97/.81 33.68/.93 32.37/.90 30.78/.83 31.04/.81

lpips 30.80/.85 24.98/.68 31.14/.89 33.05/.92 29.98/.90 39.02/.97 25.38/.77 33.07/.92 31.66/.89 29.52/.79 30.21/.79

fuse 31.81/.88 27.13/.75 31.97/.91 34.04/.94 30.72/.92 39.77/.97 26.93/.81 33.62/.93 32.22/.90 30.74/.83 31.00/.81

fuse+sharp 26.83/.81 23.31/.67 25.78/.83 25.85/.86 23.25/.84 36.69/.95 21.94/.73 27.82/.88 26.90/.84 27.92/.77 28.80/.78

Table 1. Quantitative results of PSNR ↑ and SSIM ↑ on 10 validation videos. For both PSNR and SSIM, the higher value is better.

Avg. 001 021 041 061 081 101 121 141 161 181

lq input 0.21/77 0.29/44 0.12/66 0.16/94 0.18/54 0.14/103 0.21/97 0.13/26 0.20/76 0.24/99 0.37/108

stage-1 0.20/94 0.29/62 0.10/61 0.16/91 0.18/81 0.14/126 0.19/83 0.10/28 0.17/86 0.27/147 0.43/181

cb+lpips 0.17/74 0.24/43 0.09/50 0.14/71 0.15/68 0.12/106 0.15/68 0.09/23 0.15/76 0.22/96 0.37/144

lpips 0.14/58 0.18/27 0.08/47 0.12/65 0.13/55 0.10/92 0.11/56 0.08/18 0.14/61 0.17/46 0.32/116

fuse 0.17/72 0.24/41 0.08/50 0.14/71 0.14/67 0.12/105 0.15/68 0.09/23 0.15/74 0.21/95 0.36/137

fuse+sharp 0.21/82 0.27/42 0.15/56 0.18/133 0.21/69 0.14/106 0.22/87 0.14/25 0.18/73 0.23/90 0.34/139

Table 2. Quantitative results of lpips ↓ and FID ↓ on 10 validation videos. For both lpips and FID, the lower value is better.

3) normalize the variance map in a temporal sliding win-

dow to generate the mask maskt:

maskt = (V t
− q)/(p− q)

p = max([V t−1, V t, V t+1])

q = min([V t−1, V t, V t+1]).

(6)

Intuitively, when a region is smooth, its local variance is

small, otherwise, its local variance is large. Therefore,

smooth region will more rely on the output of EnhanceNet2

while the rich-texture region will get more recovered details

from EnhanceNet1. With temporal sliding window, the tem-

poral flickering effect will also be well eliminated.

4. Experiments

4.1. Datasets

We use the training videos and testing videos of Qual-

ity Enhancement of Heavily Compressed Videos Challenge

(Track 2 Fixed QP, Perceptual) [30] for our experiments.

The training data has a total of 200 paired compressed and

uncompressed videos. The testing data has 10 compressed

videos. Specifically, we split the training videos into train-

ing data (190 videos) and validation data (10 videos, ’001’,

’021’, ’041’, ’061’, ’081’, ’101’, ’121’, ’141’, ’161’, 181).

Note that, we convert raw, compressed (and enhanced)

videos to RGB domain by using the official code.

4.2. Implementation Details

We use BasicVSR without pixel-shuffle layer as our base

model. For both stages of training, we randomly crop 64 ×

64 clips from raw and the corresponding compressed videos

as training samples. Data augmentation (i.e., rotation or

flip) is further used to better exploit those training samples.

Learning rate is initially set to 2×10−4 and learning scheme

is set to CosineAnnealingLR Restart throughout training.

Adam optimizer with β1 = 0.9, β2 = 0.99 and ǫ = 10−8.

In stage-1, we train EnhanceNet from scratch with Char-

bonnier loss [17]. In stage-2, we use the results of stage-1 as

input of stage-2. We train EnhanceNet1 and EnhanceNet2

with lpips loss [35] and a trade-off loss function, respec-

tively. We adopt PSNR, SSIM, lpips [35] and FID [11, 21]

to evaluate quality enhancement performance on our 10 val-

idation videos.

4.3. Quantitative Results

In Table 1, we provide PSNR and SSIM for each video

of validation. It can be seen that results of stage-1 have

the highest values of PSNR and SSIM. ∆PSNR of En-

hanceNet2 (cb + lpips) results is −0.08 dB compared with

EnhanceNet (stage-1) results. ∆PSNR of EnhanceNet1

(lpips) results is −1.15 dB compared with EnhanceNet

(stage-1) results. After our spatial-temporal fusion module,

∆PSNR of spatial-temporal fusion (fuse) results is −0.14
dB compared with EnhanceNet (stage-1) results. The adap-

tive spatial-temporal fusion (fuse) results are just trade-off

of EnhanceNet1 and EnhanceNet2. We also provide PSNR

and SSIM of results after image sharpen, which is the low-

est values. Though it is the lowest PSNR of our all stages, it

has a better human perceptual which we will discuss later.

In Table 2, we provide lpips [35] and FID [11, 21]

for each video of validation. It can be seen that En-

hanceNet1 (lpips) results have the lowest value which are

the best results using image perceptual metric. However,

EnhanceNet1 (lpips) results have temporal flickering prob-

lem which is very import for video human perceptual judg-

ment. We use EnhanceNet2 (cb + lpips) to reduce tem-

poral flickering and generate results with larger values of

lpips and FID than EnhanceNet1 (lpips) results. To utilize

spatial-temporal information, we use our proposed ASTF

to fuse EnhanceNet1 (lpips) results and EnhanceNet2 (cb

+ lpips) results, which can generate results with values of
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Figure 2. Qualitative results. The �rst column are compressed frames. The second column are our enhanced frames. The �rst two rows are
validation frames. The last two rows are test frames.

lpips and FID between values of EnhanceNet1 and En-
hanceNet2 (cb + lpips). We also provide lpips and FID of
results after image sharpen. Similar to PSNR and SSIM, re-

sults after image sharpen are not better than results before
image sharpen, but if has a better human perceptual which
we will discuss later.
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