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Abstract

Super-resolution (SR) is an ill-posed problem, which

means that infinitely many high-resolution (HR) images can

be degraded to the same low-resolution (LR) image. To

study the one-to-many stochastic SR mapping, we implic-

itly represent the non-local self-similarity of natural images

and develop a Variational Sparse framework for Super-

Resolution (VSpSR) via neural networks. Since every small

patch of a HR image can be well approximated by the sparse

representation of atoms in an over-complete dictionary, we

design a two-branch module, i.e., VSpM, to explore the SR

space. Concretely, one branch of VSpM extracts patch-level

basis from the LR input, and the other branch infers pixel-

wise variational distributions with respect to the sparse co-

efficients. By repeatedly sampling coefficients, we could

obtain infinite sparse representations, and thus generate

diverse HR images. According to the preliminary results

of NTIRE 2021 challenge on learning SR space, our team

ranks 7-th in terms of released scores.

1. Introduction

Single image super-resolution (SR) aims at estimating

the mapping from low-resolution (LR) to high-resolution

(HR) spaces [6, 3, 7]. Taking into account that HR images

will lose many details in the high-to-low degradation pro-

cess, the SR problem is naturally underdetermined, which

brings the fact that there exists multiple HR images corre-

spond to one input LR image. Although these HR images

may have the same low-frequency information in LR space,

their high-frequency information, including textures and de-

tails, can be significantly different. This ill-posed nature

makes SR task a challenging problem to solve.

Recently, the learning-based approaches have made

great progress due to its robust ability of recovering details

[23, 9, 17, 5, 8, 16]. When early deep learning methods

focus on promoting computational metrics like PSNR and

SSIM [29, 15, 20], methods proposed later pay more atten-

tion to the progress of SR application in real-world. CARN

[1] proposed a lightweight network to speed up training and

inference, and Meta-SR [13] develops a up-sampling mod-

ule capable of dealing with arbitrary scale factor. In 2017,

SRGAN [18] introduces adversarial training strategy into

super-resolution, since then, many GAN based SR meth-

ods are aiming to obtain SR images with better perceptual

quality [27]. However, these SR methods only use LR-HR

image pairs to approximate a deterministic mapping, thus

ignoring the ill-pose nature of SR problems.

The development of SR methods from deterministic

mapping to stochastic mapping lies on the transformation

from fitting single HR output to fitting the conditional dis-

tribution of HR images given the LR input. In order to ex-

plore the relationship between low-resolution images and

the corresponding diverse high-resolution images, recently

published stochastic super-resolution methods [22, 4, 2, 14]

reformulated a challenging goal of learning the conditional

distribution. Taking into account that HR images share

the same low-frequency information, current stochastic SR

methods introduce additional latent variable to affect the

high-frequency information of HR image [22, 4, 2, 14],

therefore, by sampling different latent variable, these meth-

ods can generate diverse HR images with interpretability.

The NTIRE 2021 1 raised one challenge of learning the

super-resolution space. The difficulty in this challenge is

from three aspect. First, each individual SR prediction

should reach high perceptual quality. Second, the proposed

method should be able to sample an arbitrary number of

SR images and fully explore the uncertainty induced by the

ill-posed nature. Moreover, each individual SR prediction

should be consistent with in the LR space, which restricts

the performance of many GAN based SR methods.

In this work, we develop a Variational Sparse frame-

work for Super-Resolution (VSpSR) via neural networks to

solve the problems in NTIRE 2021 challenge on learning

the super-resolution space. Overall, we assume that the HR

image contains the deterministic part and the stochastic part.

As for the deterministic part, we can use any deterministic

SR method to obtain from the LR input. For the explorable

1https://data.vision.ee.ethz.ch/cvl/ntire21/



part, as it has been widely utilized in traditional SR meth-

ods, we apply the sparse representation into deep-learning,

using the diversity of image representation coefficients to

control the diversity of HR image.

Specifically, we design a two-branch module named

VSpM to capture the stochastic mapping of details in HR

images. Using the LR image as the input, the basis branch

of VSpM outputs patch-level basis in SR space, and the

coefficients branch infers pixel-wise variational distribu-

tions with respect to the sparse coefficients. Therefore,

by repeatedly sampling coefficients, we could obtain infi-

nite sparse representations, and thus generate diverse HR

images. Our experiments show that the variational sparse

framework leads to larger SR space, and the VSpM module

has the potential to cooperate with other deterministic SR

methods to enhance their exploration ability. Our methods

ranked 7-th in the NTIRE 2021 challenge on learning the

super-resolution space according to the preliminary results

[21].

The rest of this work is organized as follows. Sec-

tion 2 shows the related works about the deterministic and

stochastic SR. We develop a variational sparse framework

for explorable super-resolution (VSpSR) via neural net-

works and gives the details of training strategies in Section

3. The description of our experiments is presented in Sec-

tion 4. We discuss the proposed method in Section 5 and

conclude this work in Section 6.

2. Related works

Single image SR: SR problem is naturally underdeter-

mined due to the information loss in the high-to-low degra-

dation process. Many traditional SR methods have noticed

this fundamental fact, but they tend to further regularize the

problem and finally output one SR prediction [28, 26]. Re-

cently, DNN has been widely applied in image SR due to its

ability of simulating complex mappings. Dong et al. [8] first

proposed to approximate the mapping from LR to HR im-

age pairs using a three layers convolutional neural network.

Since then, other architectures, such as RNN [24, 10, 19],

ResNet [12, 1], and GAN [11, 27], have been applied in im-

age SR. However, previous deep-learning super-resolution

methods often use the deterministic mapping x = fθ(y) to

model the process of recovering the high-resolution image

x from a given low-resolution image y [20, 31], neglecting

the ill-posed nature of this problem.

Stochastic SR: In order to explore the relationship be-

tween low-resolution images and the corresponding diverse

high-resolution images, recently published stochastic super-

resolution methods [22, 4, 2, 14] reformulated a challenging

goal of learning the conditional distribution px|y(x|y, θ).
Considering that the low-frequency information of the gen-

erated HR image is consistent with that of LR image, cur-

rent stochastic SR methods tend to introduce additional la-
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Figure 1. Framework of VSpSR. We assume that x follows a

Gaussian distribution, x ∼ N (m+ e, σ2Idx). (1) We use a deter-

ministic mapping h to get the deterministic part m. (2) Through

spare representation, the exploration of coefficients ω controls the

diversity of e, which can reduce the difficulty in training.

tent variable z to affect the high-frequency information of

HR image to achieve diversity, x = fθ(y, z) [22, 4, 2, 14].

In this formulation, the exploration of latent variable z con-

trols the diversity of HR image x, even the mapping fθ itself

can be deterministic. These stochastic SR methods adopt

different strategy to enlarge the SR space. SRFlow [22]

adopts the framework of the conditional normalizing flows,

using invertible network to restrict the distribution of the la-

tent variable. Yuval Bahat et al. [2] propose structure loss

and map loss to enhance the affect of control signal, and

DeepSEE [4] generates the latent variable from the seman-

tic information of other high-resolution face images, and

thus provides guidance for the generated HR image.

Motivated by the idea of Conditional Variational Au-

toEncoder (CVAE) [25] and sparse representation [28], we

propose a variational sparse representation framework, and

its details is presented in Section 3.

3. Methodology

Exploring SR space is significant since multiple HR im-

ages could be degraded to the same LR images. How-

ever, much attention has been paid to estimate the deter-

ministic mapping from LR to HR images, while few works

have been done to explore SR space. To rectify the weak-

ness, we proposed a variational sparse representation frame-

work, i.e., VSpSR, as Figure 1 shows to estimate stochas-

tic mappings from single LR image to multiple SR images.

Concretely, we first assume that a HR patch could decom-

posed into the sum of a low-frequency part m and a high-

frequency component e, where, m could be deterministic

given a LR patch y, but e is often stochastic. Then, we

sparsely represent e via a set of deterministic basis z and

a group of stochastic coefficients ω. Moreover, we give a

sparse prior to ω, and infer the distribution of ω from y via



variational Bayesian inference. Finally, we repeatedly sam-

ple the sparse coefficients from the variational distribution,

and thus could generate diverse SR patches. The statistical

model of VSpSR is described in Section 3.1, and the de-

tailed network architecture of VSpSR is presented in Sec-

tion 3.2.

3.1. Variational sparse representation

Inspired by CVAE [25] , our method aims to extract

latent variables representing the parameters of the corre-

sponding HR image distribution from the LR image y it-

self first, and then sample super-resolutions from this con-

ditional distribution. However, due to the information loss

during the degradation process, it is difficult to directly in-

fer the pixel-level HR distribution just from a single LR im-

age, especially when the scale factor is large (×8). While

VarSR [14] extracts latent variables in LR space to ease this

problem, our method works from another perspective. In

order to enhance the expression ability of network, we ex-

ploit the non-local self-similarity nature of natural images,

which indicates that every patch in a HR image can be well

approximated by the sparse representation of atoms in an

over-complete dictionary and has been widely utilized in

traditional SR methods [28, 26]. In other words, when the

atoms (basis) are fixed, by sampling different coefficients,

we can fully explore the diversity of HR patches, thus gen-

erate different HR images.

Suppose HR x ∈ R
dx , LR y ∈ R

dy , dx = s2 × dy ,

where s denotes the scale factor. We assume that x follows

a Gaussian distribution, x ∼ N (m + e, σ2Idx
). As the

Figure 1 shows, the deterministic part m = h(y) can be

obtained through a deterministic mapping h, for example,

bicubic up-sampling or any other deterministic SR method

like EDSR [20], RCAN [31]. As for the stochastic part e ∈

R
s2×dy , we formulate it as the aggregation of small patches

ei ∈ R
s2×1 with i ∈ {1, 2, . . . dy}, and each small patch

ei can be represented by coefficients ωi ∈ R
C×1 under the

basis z ∈ R
s2×C , where ei = z · ωi, i ∈ {1, 2, . . . dy}. In

order to hold the sparsity of ω = (ω1, ω2, . . . , ωdy
), we set

the gamma prior ρ = (ρ1, ρ2, . . . , ρdy
) for ω, let ωi|ρi ∼

N (0, ρ−1
i ), ρi ∼ G(α, β):

p(ω) =

∫
p(ω, ρ) dρ ∝

∏
i

∫
N (0, ρ−1

i )G(α, β) dρi,

(1)

where, α and β denote the parameters of gamma distribu-

tion.

3.2. Network architecture

We designed a variational sparse representation guided

explorable module VSpM with two branches, i.e., the basis

branch and the coefficients branch, as shown in Figure 2.

LR y

C
o

n
v

In
sta

n
c
e
N

o
rm

R
e
L
U

M
a
xP

o
o

lin
g

G
lo

b
a
lP

o
o

lin
g

U
p

-

sa
m

p
le

Basis Branch

z

Coefficients Branch

C
o

n
v

L
a
y
e
rN

o
rm

R
e
L
U 𝜔 e

𝜇𝜎 Sample

Figure 2. Explorable Module VSpM. It takes LR y as input, gen-

erating (1) basis z ∈ R
s
2
×C from the basis branch, (2) distribution

parameters µ, σ ∈ R
dx×C of coefficients ω from the coefficients

branch. Finally, we sample coefficients ω from N (µ, diag(σ2))
and obtain stochastic e as output. ⊗ denotes matrix multiplication.

The basis branch outputs basis z ∈ R
s2×C , where C de-

notes the number of basis. The coefficients branch outputs

parameters µ ∈ R
dx×C and σ ∈ R

dx×C , inferring pixel-

wise variational distributions with respect to the sparse co-

efficients.

The basis branch is mainly consist of three parts. Firstly,

the LR input y goes through L blocks to generate feature

Fb(y):
Fb(y) = FL

b (FL−1
b . . . F 1

b (y)). (2)

And the F i
b in (2) represents the operation of the i-th block.

Then we use a global pooling to obtain global information

z0 = Fgp(Fb(y)) ∈ R
12×C of the image. After that, from

the operation of deconvolution, we can upsample z0 to the

size of s2 × C:

z = Fup(z0) = Fup(Fgp(Fb(y))). (3)

The coefficients branch is simple, which only has a few

convolutional layer with layer normalization and ReLU ac-

tivation. We first infer the parameters µ and σ to estimate

the pixel-wise variational distributions with respect to the

sparse coefficients. Then we can sample coefficients ω from

the Gaussian distribution N (µ, diag(σ2)) at both training

and inference stages. Finally, the stochastic part e is re-

stored as the results of matrix multiplication between basis

z and coefficients ω. Note that We perform the VSpM in

parallel for RGB channels. Also, we adopted the consis-

tency enforcing module (CEM) [2] to further enhance the

lr-consistency.

3.3. Training strategies

We train the network by minimizing the negative log-

likelihood of x:

Lx =
1

2σ2
0

‖x− (m+ e)‖22. (4)



In order to restrict the distance between the distribution of

sampled ω and the prior distribution as (1) shows, we mini-

mize the following KL divergence:

Lω =
1

2

∑
i

[µρi(µ
2
i + σ2

i )− log(σ2
i ) + const], (5)

Where, µρi = α+0.5
β+0.5×(µ2

i
+σ2

i
)

represents the i-th elements

of the variational parameter µρ with respect to ρ. Finally,

we introduce adversarial loss and perceptual loss to enhance

the visual quality of SR outputs. Therefore, our total loss

function is:

Ltotal = Lx + λωLω + λadvLadv + λperLper. (6)

Note that σ2
0 in Lx can be absorbed into λω , λadv and λper.

4. Experiments

In this section, we first showed the datasets and metrics

used for training and evaluating VSpSR. Then, we studied

the effect of different settings to VSpSR. Finally, we tested

the performance of VSpSR on the tasks of SISR ×4 and ×8,

and discussed the advantages and limitations of VSpSR.

4.1. Dataset and metrics

The DIV2K dataset is composed of 800 training images,

100 validation images, and 100 testing images. We will

test the performance of our method on the validation dataset

since the ground truth of testing dataset is not public. In or-

der to better measure the comprehensive performance of the

SR methods, NTIRE 2021 challenge on learning the super-

resolution space proposed three metrics to test from three

aspects. Before the evaluation, we first generate 10 SR pre-

dictions for each LR input in DIV2K validation dataset.

LPIPS. It is very difficult to automatically assess the im-

age perceptual quality. To assess the photo-realism, The

challenge will perform a human study on the test set for the

final submission. As the SR challenge suggests, in the ex-

periment, we use the Learned Perceptual Image Patch Sim-

ilarity (LPIPS) [30] distance instead to roughly measure the

perceptual quality.

Diversity score. As mentioned in NTIRE 2021 chal-

lenge on learning the super-resolution space 2, we can use

the diversity score to measure the spanning of the SR Space:

Div.Score =
LPIPSglobal best − LPIPSlocal best

LPIPSglobal best

,

(7)

where, the local best is obtained by first select pixel-wise

best LPIPS score of 10 SR predictions, then compute the

average; and the global best is obtained by averaging the

whole pixel scores and selecting the best.

2https://github.com/andreas128/NTIRE21 Learning SR Space

LR PSNR. This metric measures the similarity between

the SR prediction and the LR image in low-resolution space,

which reflects how much the information is preserved dur-

ing super-resolution. To compute LR PSNR, we should first

down-sample the SR predictions and then calculate PSNR.

In NTIRE 2021 challenge on learning the super-resolution

space, the goal of this metric is to reach 45dB.
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Figure 3. Visualization of the coefficients inferred from a typical

LR image, i.e., 0801.png, from the validation dataset of DIV2K.

4.2. Implementation details

There is a data pre-processing before training. To be

specific, for ×4 SR tasks, we crop 48 × 48 small patches

from LR images, and extract corresponding 196 × 196
patches from HR images in DIV2K training dataset. For

×8 tasks, we set the LR patch size to 32× 32 and HR patch

size to 256 × 256. To demonstrate the advantages of the

VSpM module, we only use interpolation (bicubic/bilinear)

method to generate the deterministic part m of SR predic-

tions. As for the stochastic part e, we set the number of

basis to 256, making all the patch-level basis compose a

dictionary as over-complete as possible. Besides, the distri-

bution parameters of gamma prior ρ are α = 3.0, β = 0.5.

Figure 3 shows that this setting can well restrict the sparsity

of coefficients ω.

In training process, all methods are trained by the

ADAM optimizer, and settings of parameters are β1 = 0.9,

β2 = 0.999, and ǫ = 1× 10−8. The training of the baseline

model is up to 300 epochs, with the initial learning rate of

1 × 10−4, λadv = 0.01 and λper = 0.01. We let learn-

ing rate decreases to 10 percent every 100 epochs. After

that, we fine-tune our baseline with settings of β = 1.0
and λadv = 0.1 for extra 100 epochs to improve the per-

formance of models. Finally, we implement our networks

with Pytorch and train our models on a device with 40 In-

tel Xeon 2.20 Ghz CPUs and 4 GTX 1080 Ti GPUs. The

whole training process of VSpSR cost about 30 hours on a

single GPU. During testing, to evaluate the performance of

our method, the metrics mentioned in Section 4.1 are used.



Table 1. Ablation studies on the task of SISR ×4. Here, we evaluated all models on the first 20 images selected from the validation dataset

of DIV2K. The underline font indicates the optimal settings in each of the sub-studies, while the bold font denotes the best settings across

the sub-studies.
Model #Basis Upsampling λadv Stochastic z Stochastic ω β LPIPS↓ LR PSNR↑ Div. Score↑

#1

256 Bilinear 0.01

No No

0.5

0.223 47.87 0

#2 No Yes 0.239 47.68 9.161

#3 Yes Yes 0.309 48.25 9.136

#4 256 None
0.01 No Yes 0.5

0.320 47.60 1.847

#5 64 Bilinear 0.308 47.92 11.612

#6

256 Bilinear

0.01

No Yes 1

0.237 47.92 13.251

#7 0.1 0.280 47.47 17.895

#8 1 0.254 47.05 13.325

#9 256 Bilinear 0.1 No Yes 0.1 0.220 47.75 11.350

  

HR Bicubic EDSR RCAN SRGAN ESRGAN VSpSR

Figure 4. Visualization on the task of SISR ×4: three typical examples from DIV2K.

4.3. Ablation study

In this section, we studied the effect of different set-

tings to the performance of VSpSR, including the number

of basis (#Basis), the upsampling manner, the choice of

λadv , whether to set the basis z and the coefficients ω to

be stochastic, and the selection of β. Note that since the

evaluation on the whole validation data is computationally

expensive, we computed the metrics on the first 20 images

of the validation dataset.

Baseline comparison. We trained 5 models for compar-

isons (#1 to #5), and the first three of which is to study the

effect of setting z and ω to be stochastic. The Div. score of

model #1 is zero since the basis and coefficients of VSpSR

are deterministic. The comparison between model #2 and

model #3 shows that setting z to be stochastic does enlarge

the spanning of SR space, but setting z to be determinis-

tic and ω to be stochastic could achieve lower LPIPS value,

which results in better Div. score. Thus we adopted such

setting in the following studies.



Table 2. Evaluation on the task of SISR ×4. Here, the bold value denotes the best performance. Note that EDSR, RCAN, SRGAN, and

ESRGAN were developed to estimate deterministic mappings, and thus their diversity scores are zeros.

Method Bicubic EDSR [20] RCAN [31] SRGAN [18] ESRGAN [27] VSpSR

LPIPS↓ 0.409 0.257 0.254 0.158 0.115 0.277

LR PSNR↑ 38.70 54.11 54.24 35.49 42.61 47.15

Div. Score↑ 0 0 0 0 0 16.120
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Figure 5. Visualization on the task of SISR ×8: three typical examples from DIV2K. Note that VSpSR introduces “patch-effect”, since we

do not explicitly consider the dependency among patches, and that is further discussed in Section 5.

Besides, we trained models #4 and #5 to respectively

study the effect of estimating the deterministic m and that

of the #basis. The comparison between #2 and #4 shows

that estimating m could greatly improve the Div. score, this

is because that the VSpM module should pay more attention

to capture the coarse information from the LR input without

the low-frequency information m serves. However, model

#4 tells that the VSpM module alone is still capable of learn-

ing SR mapping. Moreover, the comparison between mod-

els #2 and #5 shows that the larger number of basis could



Table 3. Evaluation on the task of SISR ×8. Here, the bold value

denotes the best performance. Note that RCAN was developed

to estimate deterministic mappings, and thus its diversity score is

zero.

Method Bicubic RCAN [31] VSpSR

LPIPS↓ 0.584 0.404 0.508

LR PSNR↑ 37.16 48.65 46.64

Div. Score↑ 0 0 13.708

lead to the promotion of the LPIPS, at the cost of increasing

the number of total parameters in VSpSR, from 0.27M to

4.4M.

Fine-tuning comparison. Using the #2 model as the

baseline, we fine-tuned 4 models(#6 to #9) for extra 100

epochs to study the effect of λadv w.r.t. adversarial loss

and β w.r.t. Gamma distribution. The comparisons between

models #6, #7, #8, and #9 shows that λadv = 0.1 and β = 1
are appropriate choices in terms of Div. score.

4.4. Learning SR space ×4

In this section, we evaluated the performance of VSpSR

on the task of SISR ×4. Firstly, we adopted the same

settings as model #7 in Table 1 for VSpSR, and cropped

paired patches of size 48 × 48 from training images for

training. Then, we augmented training patches via flip-

ping and rotation, and minimized the loss function as (6)

shows to train VSpSR. Finally, we evaluated the perfor-

mance of VSpSR on the validation dataset of DIV2K via

computing LPIPS, LR PSNR, and Div. score, and com-

pare VSpSR with four state-of-the-art SR methods, in-

cluding two PSNR-oriented, i.e., EDSR and RCAN, and

two perceptual-quality-oriented, namely, SRGAN and ES-

RGAN.

Table 2 shows the quantitative results of compared meth-

ods. Since RCAN is PSNR-oriented while ESRGAN is

perceptual-quality-oriented, they achieve the best LR PSNR

and LPIPS among all methods, respectively. However,

EDSR [20], RCAN [31], SRGAN [18], and ESRGAN [27]

are deterministic models, and their diversity score are zeros.

Being different from these methods, our VSpSR could gen-

erate diverse SR image from a single LR image, since we

made the coefficients ω to be stochastic by the variational

sparse representation. To qualitatively evaluate the perfor-

mance of VSpSR, we visualized three typical examples in

Figure 4. This figure shows that the perceptual-quality-

oriented methods, i.e., SRGAN and ESRGAN could gen-

erate more details, which is consistent with the quantitative

results.

4.5. Learning SR space ×8

In this section, we evaluated the performance of VSpSR

on the task of SISR ×8. Firstly, we adopted the same set-

tings as model #7 in Table 1 for VSpSR, and cropped paired

patches of size 32 × 32 from training images. Then, we

augmented training patches via flipping and rotation, and

minimized the loss function as (6) shows to train VSpSR.

Finally, we evaluated the performance of VSpSR on the val-

idation dataset of DIV2K via computing LPIPS, LR PSNR,

and Div. score. Since RCAN [31] released the model for

SISR ×8, we compared it with our VSpSR.

Table 3 shows the quantitative results of compared meth-

ods, including bicubic, RCAN, and our VSpSR. Although

RCAN could achieve the best LPIPS and LR PSNR, its di-

versity score is zero since RCAN is a deterministic model.

Being different from RCAN, our VSpSR could reconstruct

diverse SR images, since the coefficients of proposed varia-

tional sparse representation are stochastic. To qualitatively

evaluate the performance of VSpSR, we visualized three

typical examples from the validation dataset in Figure 5.

This figure shows that RCAN could generate higher qual-

ity images than VSpSR. Besides, VSpSR could introduce

“patch-effect”, since we do not explicitly consider the de-

pendency among patches, and that will be further discussed

in Section 5. Although VSpSR cannot perform robustly as

RCAN in reconstructing details, it has the advantage of gen-

erating diverse SR images which are consistent with a single

LR image, and that is one of the keys of learning SR space.

5. Discussion

The advantage of VSpSR is that it could greatly ex-

pand SR space compared with the deterministic models, but

“patch-effect” is introduced due to the patch-level sparse

representation. Concretely, the conventional sparse repre-

sentation is aimed at building an dictionary, such that each

small patch could be sparsely represented by the dictio-

nary. The expanded space with respect to sparse repre-

sentation is determined by the dictionary, and therefore an

over-complete dictionary is required. However, such rep-

resentation is deterministic and computationally expensive,

and thus cannot be applied to learn SR space. To tackle the

difficulty, we proposed the variational sparse representation

framework, i.e., VSpSR, whose coefficients follow a sparse

prior and could be repeatedly sampled from a variational

distribution. To further understand VSpSR, we shows the

distribution of coefficients and visualizes the basis inferred

from a typical LR image in Figure 6. For VSpSR, the ba-

sis determines the expanded SR space, while a sample of

sparse coefficients is corresponding to a SR image in the

space. That means increasing the number of basis could

rise the diversity of SR space, but that would also increase

the computational complexity. Therefore, exploring more

efficiency methods of increasing the diversity of SR space

is required. Besides, we only study the patch-wise sparse

representation, and do not explicitly model the dependency

among patches. That would introduce “patch-effect” as Fig-

ure 5 shows for big scaling factors, e.g., ×8. In reality,
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Figure 6. Visualization of a typical example and corresponding sparse representation. Here, the left figure shows a LR image, the middle

figure visualizes the distribution of coefficients inferred from the LR image, and the right figure presents the 256 patch-level basis (of size

4× 4) estimated from the LR image.

different patches may be highly similar, and thus explicitly

modeling such dependency is appealing.

Table 4. Preliminary results ×4. The bold font denotes our results.

LPIPS LR PSNR Div. Score

Team

svnit ntnu 0.355 27.52 1.871

SYSU-FVL 0.244 49.33 8.735

nanbeihuishi 0.161 50.46 12.447

SSS 0.110 44.70 13.285

Ours 0.273 47.20 16.450

FutureReference 0.165 37.51 19.636

SR DL 0.234 39.80 20.508

CIPLAB 0.121 50.70 23.091

BeWater 0.137 49.59 23.948

Deepest 0.117 50.54 26.041

njtech&seu 0.149 46.74 26.924

Table 5. Preliminary results ×8. The bold font denotes our results.

LPIPS LR PSNR Div. Score

Team

svnit ntnu 0.481 25.55 4.516

SYSU-FVL 0.415 47.27 8.778

SSS 0.237 37.43 13.548

Ours 0.496 46.78 14.287

SR DL 0.311 42.28 14.817

FutureReference 0.291 36.51 17.985

CIPLAB 0.266 50.86 23.320

BeWater 0.297 49.63 23.700

Deepest 0.259 48.64 26.941

njtech&seu 0.366 29.65 28.193

6. Conclusion

The NTIRE 2021 challenge on learning the super-

resolution space is difficult since inference of SR space in-

stead of single SR prediction increases the amount of de-

tails to restore from a single LR input. Besides this, it is

more difficult to hold the balance between the spanning of

SR space and the consistency in LR space, when promot-

ing visual quality as much as possible. To tackle these

difficulties, we have proposed a variational sparse frame-

work implemented via neural network to solve the SR chal-

lenge raised in NTIRE 2021. Specifically, we design a two-

branch module, i.e., VSpM, to explore the SR space. The

basis branch of VSpM extracts patch-level basis from the

LR input, and the coefficients branch infers pixel-wise vari-

ational distributions with respect to the sparse coefficients.

Therefore, we could obtain different sparse representations

by repeatedly sampling coefficients, and thus generate di-

verse HR images. Finally, we have tested the performance

of VSpSR in Section 4 to show its effectiveness in conduct-

ing explorable super-resolution, and discussed the advan-

tages and limitations of VSpSR in Section 5. According to

the preliminary results as Tables 4 and 5 show, our team

ranks 7-th in terms of released Div. scores [21].
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