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Abstract

Relighting is an interesting yet challenging low-level vi-

sion problem, which aims to re-render the scene with new

light sources. In this paper, we introduce LTNet, a novel

framework for image relighting. Unlike previous methods,

we propose to solve this challenging problem by decoupling

the enhancement process. Specifically, we propose to train

a network that focuses on learning light variations. Our

key insight is that light variations are the critical informa-

tion to be learned because the scene stays unchanged dur-

ing the light transfer process. To this end, we employ a

global residual connection and corresponding residual loss

for capturing light variations. Experimental results show

that the proposed method achieves better visual quality on

the VIDIT dataset in the NTIRE2021 relighting challenge.

1. Introduction

Light is an integral part of photography, which can di-

rectly affect the aesthetics of an image. Therefore, pro-

ficiency in the use of dimming tools is a must for be-

coming a professional photographer. In recent years, the

post-adjustability of digital tools has significantly simpli-

fied the dimming process, making the tools become an in-

dispensable asset for photographers. However, the post-

modification is limited to modifying small-scale changes in

light intensity or hue. Due to these limitations, photogra-
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Figure 1. An illustration of the relighting process. For the input

image x, the function f modifies its illumination conditions and

outputs relit image y. It is worth noting that lighting variations are

the critical information that f needs to master because the scene

stays unchanged during the lighting transfer process.

phers still have to spend a lot of time in preparation to ad-

just the appropriate direction of light. Fortunately, benefit

from the rapid development of computational photography,

we already have the possibility of modifying the scene light

with one click, that is, image relighting.

Image relighting aims at automatically enhancing im-

ages with specific light modifications. Specifically, it re-

renders the scene by simulating custom light intensities and

light angles in the post-editing of the image, as shown in

Figure 1. Attracted by its interesting and practical appli-

cation, researchers have conducted multiple studies, espe-

cially in portrait relighting [22], human relighting [11, 3,

19, 22]. However, their datasets are collected from com-

plex photographic equipment, which means that their fu-

ture research potential is greatly limited. Recently, in the

AIM2020 [1] and NTIRE2021 [2] competitions, Helou et
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Figure 2. The whole pipeline of our proposed LTNet. The input data consists of four parts, which are the original RGB image, depth

map, normal map and inverse normal map. And we take PyNET [9] as our base encoder-decoder model. A global residual connection

is employed on it for making the LTNet focus on capturing the illumination variations. During training, we optimize LTNet with the

reconstruction loss and the proposed residual loss.

al. proposed to simulate the realistic training data, Virtual

Image Dataset for Illumination Transfer (VIDIT) [7]. They

take the images by Unreal Engine 4 and provide depth infor-

mation in the latest competition, which greatly diminishes

the difficulty of data collection.

Currently, several studies based on VIDIT have been pre-

sented. DeepRelight [20] tries to utilize five images of a

scene to reconstruct its appearance under the new illumina-

tion conditions. MSRNet [18] takes a two-stage network to

accomplish the relighting task step by step. Besides, among

the AIM2020 competition [1], previous works mainly adopt

an encoder-decoder framework to rebuild the scene and re-

render it with new light settings jointly. However, scene

reconstruction is not a priority for the relighting task. Rela-

tively, the light transformation is the critical information to

capture. It is natural to derive this perception that the change

in the scene is not considerable before and after relighting.

In this paper, we present LTNet, focusing on learning the

light variation for the image lighting task. To achieve this

goal, we consider two aspects. Firstly, we reduce the recon-

struction difficulty. It is worth noting that, unlike the natural

light conditions, some of the image shadow regions in the

simulated VIDIT are absolutely dark, i.e., the pixel values

equal zero, which greatly increases the reconstruction dif-

ficulty. To solve this problem, we take the original RGB

images and depth maps to generate normal maps and the

corresponding inverse depth maps as additional scene in-

formation. Specifically, they co-operate the original image

and the depth image as inputs to assist the network in re-

constructing the scene. The enhanced input data provides a

wealth of information for the following network. The depth

map provides a weak 3D structure of the input image scene

in order to render new shadows under varied lighting con-

ditions. And the normal map depicts the shape of the dark

regions well. Secondly, we use the global residual structure

to make the network capture illumination changes. Corre-

spondingly, we present a novel residual loss to further en-

hance the sensitivity of the network to light variations. As

shown in Figure 2, we utilize an encoder-decoder network

architecture to make full use of multi-scale information that

assists the reconstruction process and perceive illumination

changes. Besides, due to the fog artifact caused by the com-

plexity of the reconstruction process itself, we also employ

a defogging algorithm as post-processing to further improve

the visual effect.

In summary, our main contributions are as follows:

1) We point out that the light variance on an unchanged

scene is the key to the relighting task.

2) We present LTNet, focusing on light variations learn-

ing. Benefiting from our complementary reconstruc-

tion information and residual network structure design,

it can effectively learn the light variation.

3) Extensive results demonstrate that our method

achieves state-of-the-art performance in terms of ob-

jective metrics and also has a significant improvement

in visual quality.



2. Related Work

In this section, we review the relevant works including

image relighting and residual learning methods.

Image relighting aims at re-rendering the captured im-

age, specifically modifying its original light source settings

(light source position, direction and color temperature). It

enables us to relight images in customized lighting condi-

tions with better artistic aesthetics on demand.

Recently, there are several works on the image relight-

ing task. DPR [19] focuses on portrait relighting by em-

bedding the target illumination setting into the encoder-

decoder bottleneck for encoding. DeepRelighting [20] en-

codes new illumination information through a Multilayer

Perceptron (MLP) and provides the code to the interme-

diate representation for light transfer. The base model in

DeepRelighting [20] is the UNet [16]. The SA-AE net-

work [1] adopts an implicit scene representation learned by

the encoder to render the relit images using the decoder.

NRUNet [1] decomposes the relighting process by using

two sub-networks, normalization subnetwork and relighting

network. DRNIR [1] presents a residual network based on

the hourglass network for the image relighting task. Wang

et al. [4] proposed the Deep Relighting Network (DRN) for

the image relighting task. It consists of three subnetworks,

which are respectively responsible for scene reconversion,

shadow prior estimation and re-rendering. The three subnet-

works are employed with the same UNet network. Densen

et al. [15] proposed a wavelet decomposed-based model,

named WDRN. MSRNet [18] takes a two-stage network to

accomplish the relighting task step by step. We can sum-

marize that these methods are all based on the multi-scale

structure and try to reconstruct the scene as well as the light

transformation. In this paper, we follow the multi-scale

scheme. Different from previous methods, we decouple the

relighting process as scene reconstruction and light trans-

fer. And we present LTNet that focuses on learning the light

variation.

Residual learning plays an important role in deep

learning-based methods. It is first proposed in ResNet [6]

for the classification task, which aims to address the prob-

lems in deep networks, such as gradient disappearance gra-

dient explosion. Recently, residual learning has also proven

to be very effective in low-level vision tasks. For the de-

noising task, DnCNN [23] demonstrated the effectiveness

of residual learning. The later FFDNet [24] also follows

this schema to learn the noise by utilizing the global residual

connection. Besides, residual learning also is employed in

the super-resolution task. Zhang et al. [26] propose a dense

network with multiple residual connection and achieves im-

pressive performance. The following ESRGAN [21] further

improves the performance by residual learning. Besides,

residual learning also shows great reconstruction capability

in the image restoration task. Mao et al. [14] propose an

(a) original image (b) depth map (c) normal map

Figure 3. An example of a normal map. Compared to the original

image and its depth map, the normal map can provide rich detail

information, such as texture.

autoencoder with residual connection. Jiao et al. [10] pro-

pose Formresnet to tackle the image restoration problem by

learning the structured residual.

For the relighting task, residual learning is also practi-

cal. As described in AIM2020 challenge report [1], net-

works such as CFRN, DRNIR, and NRUNet all use resid-

ual connection to learn efficiently and effectively. In this

paper, we follow the residual learning and use the global

residual structure to enforce the network capture illumina-

tion changes. And we present a novel residual loss to further

enhance the sensitivity of the network to light variations.

3. Proposed Method

In this section, we presented the whole pipeline of LT-

Net, as shown in Figure 2. To make the LTNet focus on

capturing the light variation, we firstly reduce the recon-

struction difficulty by offering more input information and

then use the global residual structure with the correspond-

ing residual loss. In the following, we elaborate on them in

order.

3.1. Complementary Scene Information

To reduce the difficulty in the scene reconstruction pro-

cess, we first provide the network additional information,

especially the normal map and inverse depth map.

In 3D computer graphics, normal mapping is a tex-

ture mapping technique used for faking the lighting of

bumps and dents, which is an implementation of bump map-

ping [17]. In practical applications, such as console games,

this technique is often used to enhance the appearance and

detail of low polygon models by generating normal maps

from high polygon models or height maps. And normal

maps are usually stored as common RGB images, where

the R, G, and B components correspond to the X, Y, and Z

coordinates of the normal maps, respectively. According to

the above accessibility and usefulness, the normal map can

still complement detailed information in the relighting task,

as shown in Figure 3.

In real scenes, the normal map is obtained directly from

the RGB image and has a moderate effect. However, it is



worth noting that, unlike the natural light conditions, some

of the image shadow regions in the simulated VIDIT are ab-

solutely dark, i.e., the pixel values equal zero, which greatly

increases the reconstruction difficulty. To solve this prob-

lem, we take the original RGB image and depth map to gen-

erate the corresponding normal map. As shown in Figure 4,

we first convert the RGB image to grayscale. Then, we uti-

lize the sobel operator to extract the edge features, assigning

the gradient values in the horizontal and vertical directions

to the spatial coordinates x, y respectively. And z is fixed at

0.1. For the depth map, we only operate the second step as

above. At last, we fuse the two normal maps in a mean way

as the final output.

RGB image

Depth map

Gray image Sobel operator

Sobel operator Normal map

Figure 4. Generation pipeline of normal map.

In particular, the spatial relationship of objects in the

scene is critical during the reconstruction process. And the

depth map D has 3D information about the input image in

one direction, which helps the model to encode the relative

positions of objects. Therefore, Moreover, we also use D

as complementary input information. Moreover, due to the

instability of the depth information, i.e., D may have large

or small values, we uniformly normalize it to [0, 1]. With

the equipment of the RGB image, depth map and normal

map, we mine more information to provide to the network.

Intuitively, we invert the normalized depth map, i.e., 1−D.

Because there is the fact that depth information is both use-

ful and difficult to learn for the network [13].

After obtaining the normal and inverse depth maps, we

simple concatenate them as the LTNet’s input, as shown in

Figure 2. Specifically, the enhanced input has 8 channels,

which are respectively the original RGB image (3 chan-

nels), depth map (1 channel), inverse depth map (1 chan-

nel), and the normal image (3channels).

Here, we have obtained all the network inputs, and next,

we will elaborate on the structure of LTNet.

3.2. LTNet and Residual Loss

After decreasing the difficulty of scene reconstruction,

we enforce the network to focus on learning the light vari-

ation. To ensure this, we propose to utilize a global resid-

ual structure to make the network capture subtle illumina-

tion changes. Correspondingly, we present a novel residual

loss to further enhance the sensitivity of the network to light

Figure 5. An example of dehazing. The left image is the output of

LTNet. The right image is the result of dehazing operation [5].

variations. We expand them in detail below, from the inter-

nal network structure to the loss function.

Firstly, to make full use of multi-scale information that

assists the reconstruction process and perceives illumination

changes, we take the PyNET [9] as our base model, a typical

encoder-decoder framework. PyNET [9] is proposed in the

RAW2RGB task, which plays a role as the camera ISP. As

shown in Figure 2, it has an inverted pyramidal shape and

processes the image at different scales. Moreover, PyNET

adopts a slightly dense connection and a number of convo-

lution blocks in parallel with convolution filters of different

sizes. In our reimplementation, we reduce the model size of

the PyNET for obtaining larger input sizes due to the GPU

memory constraints.

Benefit from the strong ability to represent multi-scale

information, PyNET can easily reconstruct sophisticated

scenes. However, scene reconstruction is not a priority for

the relighting task because the scene stays unchanged dur-

ing the light transfer process. Relatively, the light trans-

formation is the critical information to capture. In order to

keep the key idea in the model’s mind, we propose LTNet,

which is PyNET equipped with a global residual connec-

tion.

To further enhance LTNet’s sensitivity to illumination

variations, we propose a residual loss Lr, as following:

Lr =
1

n

n∑

i=1

(|Igti − I
pred
i |+ (Igti − I

pred
i )2) (1)

where Igt and Ipred are respectively the ground truth image

and the prediction of our LTNet. While training, Lr works

together with the final composite loss to optimize LTNet.

3.3. Training Loss

To obtain better visual quality of the LTNet’s output, we

supplement the residual loss with additional perceptual loss

Lp, as following:

Lp = 1× LC + 0.1× LLPIPS (2)

where LC is the Charbonnier color loss [12] implemented

by MAE, which assists the optimization of the deep learn-

ing model to be fast and steady. And LLPIPS is the LPIPS



loss [25]. It aims at helping the deep generative model ac-

quire better visual quality of the output images. And we

simply combine Lr and Lp as the full training loss.

Ltrain = Lp + Lr + Lrc (3)

where Lrc is the reconstruction loss, which is identical to

the sum of Lr and Lp.

3.4. Postprocess

According to the above elaborate design, the LTNet has

greatly improved the effect of relighting. However, the out-

put image may have a foggy artifact due to the challeng-

ing reconstruction process. To eliminate this phenomenon,

we use a public dehazing tool [5] as a post-process to fur-

ther improve the visual quality of the output. It should be

noticed that the post-process operation is important for re-

ducing the uniform distributed lighting. As shown in Fig-

ure 5, the post-process greatly improves the sharpness and

the contrast of the original output.

During the competition, we apply the snap-shot ensem-

ble [8] technique in order to obtain better experimental re-

sults. And we choose five models, especially trained with

90 epochs, 123 epochs, 124 epochs, 128 epochs, and 134

epochs respectively, in our final test phase. We collect the

corresponding five different predicted image sets and calcu-

late the average of them as our submitted results.

4. Experimental Results

In this section, we evaluate our LTNet on the relight-

ing benchmark dataset VIDIT [7] and compare it with other

competition methods. We first describe the implementation

details and report the experimental results on NTIRE2021

VIDIT dataset. Extensive results show that our method

achieves state-of-the-art performance. Finally, we conduct

ablation studies on complementary scene information, light

variation learning, the encoder-decoder network architec-

ture, and the model size of the LTNet.

4.1. Implement Details

In the NTIRE2021 competition, the latest VIDIT [7]

dataset is presented with depth information. As described

in Section 3.1, we take the original RGB image and depth

map, combined with our supplementary inverse depth map

and normal map, as inputs. The input size is the same as the

primitive image size, that is, 1024× 1024.

In the training stage, we randomly initialize the weights

of the whole network. We use Adam optimizer with mo-

mentum terms (0.9,0.999). The initial learning rate is

0.0001, which is decayed exponentially as the number of

iterations increases. We train the LTNet on VIDIT’s train-

ing dataset for 300 epochs with 2 instances stacking a mini-

batch. Random rotation and flipping to the images are em-

(a) input (b) WDRN [15] (c) DeepRelight [20]

(d) MSRNet [18] (e) LTNet∗ (f) GT

Figure 6. Qualitative comparison with the state-of-the-art methods.

ployed for data augmentation. We implement the exper-

iments separately on Tesla K80s and NVIDIA RTXs de-

pending on the model size. For benchmark evaluation, we

compare the results on validation datasets of previous state-

of-the-art methods. For competition, we report the results

on the test dataset.

4.2. Comparisons with StateoftheArts

In this section, we use the VIDIT benchmark to ver-

ify the performance of our LTNet. We compare our

method with the previous state-of-the-art relighting meth-

ods, WDRN [15], DeepRelight [20] and MSRNet [18]. Ta-

ble 1 illustrates a quantitative comparison between previ-

ous methods and ours. Compared to MSRNet, we provide

0.7242 MPS compared to MSRNet’s 0.5905. For other met-

rics, our LTNet outperforms MSRNet considerably. This

growth explains that our model concentrates further on light

variations and perceptual quality. For visual comparison,

we provide visualization results from different models, as

shown in Figure 6. It is worth noting that WDRN and Deep-

relight perform worse in light transferring. The MSRNet

does better than the above two methods but still suffers from

blurry artifacts. Our proposed LTNet shows superior perfor-

mance on visual quality, especially the relit area. Both the

evaluation metrics and the visualization results demonstrate

that our LTNet outperforms the state-of-the-art methods.

In the middle part of the Table 1, we present the met-

rics of LTNet with and without dehazing operation. Despite

the fact that we could have achieved better results in terms

of MPS and PSNR without post-processing. In our expe-

rience, although the objective metrics of the images with

post-processing are relatively inferior, they have better vi-

sual results. Figure 7 shows more comparisons.

At the bottom of the Table 1, we report our competi-

tion results in the NTIRE2021 challenge [2] compared with



Table 1. Comparison of our LTNet against the state-of-the-art methods on the VIDIT validation dataset and the results of the test dataset

on NTIRE2021 Challenge (the bottom chart). We directly cite the best results reported in [15, 20, 18, 2]. The best quantitative results (

MPS, LPIPS, PSNR and SSIM) are in bold. LTNet∗ is the submitted version in NTIRE2021 Challenge with small model size, while the

LTNet† is a larger version of LTNet with more channels in the PyNET-like encoder-decoder module.

Model MPS ↑ SSIM ↑ LPIPS ↓ PSNR ↑ Run-time

WDRN [15] 0.6453 0.6310 0.3405 17.0717 0.0300 (P100)

DeepRelight [20] 0.5892 0.5928 0.4144 17.4252 0.5000 (2080TI)

MSRNet [18] 0.5905 0.5899 0.4088 17.8900 0.0116 (1080 Ti)

LTNet∗ 0.6754 0.6369 0.2861 16.8836 0.0422 (Tesla K80)

LTNet† (with dehaze) 0.7063 0.6730 0.2604 17.7711 0.0611 (Tesla K80)

LTNet† (without dehaze) 0.7242 0.6955 0.2470 19.1853 0.0546 (Tesla K80)

AICSNTU-MBNet 0.7663 0.6931 0.1605 19.1469 2.88s (Tesla V100)

iPAL-RelightNet 0.7620 0.6874 0.1634 18.8358 0.53s (Titan XP)

VUE 0.7671 0.6874 0.1532 19.8901 0.23s (Tesla V100)

LTNet∗ 0.7101 0.6084 0.1882 15.8591 0.0422s (Tesla K80)

Figure 7. Results with or without dehazing compared to the ground

truth. The images are sampled from the validation dataset of the

VIDIT [7].

other teams. We list the results of top three solutions and

our submitted LTNet∗. Compared with their sophisticated

models, our LTNet achieves good results in a short infer-

ence time.

4.3. Ablation Study

In this section, we separately conduct ablation studies on

complementary scene information, light variation learning,

the base encoder-decoder network, the model size of the

LTNet, and training loss. In particular, as described in Sec-

tion 3, we enforce the LTNet to focus on the acquisition of

illumination variations from two aspects, i.e., the comple-

mentary scene information and the light variation learning.

In the following, we demonstrate the effectiveness of the

proposed method in detail.

4.3.1 Supplementary Scene Information

To reduce the difficulty of scene reconstruction, we propose

supplementary scene information as network input. As de-

scribed in Section 3, the input data consists of four parts,

which are the original RGB image, depth map, normal map

and inverse normal map. In this experiment, we compare

the results by considering four kinds of inputs: (i) I,D: the

(a) RGB image (b) depth (c) 1-depth (d) normal

(e) I.D. (f) I.D.V. (g) I.D.N (h) I.D.V.N

Figure 8. Visual quality of the outputs of models trained with dif-

ferent augmented input data.

concatenation of the RGB image and the depth image, (ii)

I,D, V : the concatenation of the RGB image, the depth

image, and the inverse depth image 1 − D, (iii) I,D,N :

the concatenation of the RGB image, the depth image, and

the normal image, (iv) I,D, V,N : the concatenation of the

RGB image, the depth image, the inverse depth image, and

the normal image.

Table 2. Ablation study for different augmented inputs.

Input MPS ↑ SSIM ↑ LPIPS ↓ PSNR ↑ Run-time

I,D 0.6756 0.6308 0.2795 16.8453 0.0448

I,D, V 0.6666 0.6177 0.2846 16.4589 0.0464

I,D,N 0.6855 0.6490 0.2780 16.7863 0.0470

I,D, V,N 0.6828 0.6473 0.2817 16.6719 0.0467

As shown in Table 2, The model trained with I,D,N

achieves the best performance. This confirms that our pro-



posed normal map is the most important factor to improve

quantitative metrics. Figure 8 demonstrates that the output

of LTNet trained with normal maps has better visual quality

than other models. Besides, the inverse depth map V can

also improve the visual quality. Therefore, we finally pro-

posed to take I.D.V.N as network input in the following

experiments.

4.3.2 Light Variation Learning

In this subsection, we conduct the ablation study on the light

variation learning, which is proposed to make the LTNet be

more sensitive to the illumination variation. In addition to

the augmented inputs, three other factors play a key role in

the overall pipeline, which are respectively the global skip

connection s, the residual loss Lr and the original recon-

struction loss Lrc.

Table 3. Ablation study on the model settings for light variation

learning.

s Lr Lo MPS ↑ SSIM ↑ LPIPS ↓ PSNR ↑ Run-time

× × X 0.6525 0.6248 0.3197 16.5672 0.0426

X × X 0.6701 0.6255 0.2852 16.9150 0.0469

X X × 0.6809 0.6425 0.2807 16.7779 0.0488

X X X 0.6828 0.6473 0.2817 16.6719 0.0467

As shown in Table 3, the first model is trained without

global skip connection s and residual loss Lr. And it is in-

ferior to all the models trained with global skip connection

s. This demonstrates the validity of the global skip connec-

tion in the proposed LTNet. Besides, considering the sec-

ond and third rows of the Table 3, the residual loss Lr can

effectively improve the outputs’ visual quality according to

the visual quantitative metrics, MPS and SSIM. As shown

in Figure 9, we visualize the outputs of models trained with

different model settings. The model trained with Lrc and

Lr achieves relatively better visual results than others.

4.3.3 Base Encoder-decoder Network

As shown in Figure 2, we adopt a PyNET-like encoder-

decoder network as our base model. In this subsection,

we make an ablation study on the base model to verify that

PyNET [9] has powerful reconstruction ability. As a com-

parison, we evaluate LTNet with two different base models:

(i) WDRN, (ii) PyNET. WDRN [15] is a UNet-like encoder-

decoder network used for image relighting in AIM2020 [1],

which is the winner of the image relighting competition. It

adopts the wavelet decomposition module to replace the up-

sample and the downsample operation in the original UNet,

which has better results in several low-level vision tasks.

(a) input (b) Lrc (c) s+ Lrc

(d) s+ Lr (e) s+ Lrc + Lr (f) GT

Figure 9. Visual results of models trained with different settings.

The global skip connection, the original reconstruction loss Lrc,

or the residual loss Lr are considered in this experiment.

Table 4. Ablation study on base encoder-decoder networks. E&D

represents the base encoder-decoder networks. All the models are

evaluated on the validation dataset of VIDIT [7].

E&D MPS ↑ SSIM ↑ LPIPS ↓ PSNR ↑ Run-time

WDRN 0.6490 0.5996 0.3016 15.7180 0.0704

PyNET 0.6828 0.6473 0.2817 16.6719 0.0467

As reported in Table 4, the LTNet with PyNET signif-

icantly outperforms the one with WDRN in the relighting

task with less inference time. Besides, as shown in Fig-

ure 10, given the same input image, the result of the LTNet

with PyNET is much more natural than the other one. LT-

Net with PyNET-like encoder-decoder network handles bet-

ter in both scene reconstruction and generating new images

with new light conditions.

(a) input (b) +WDRN (c) +PyNET (d) GT

Figure 10. Visual samples of the LTNet with different encoder-

decoder networks. +WDRN means LTNet is based on WDRN,

which is same to +PyNET.

4.3.4 Model Size

To further explore the potential of LTNet, we implemented

ablation experiments on the model size. For ease of illus-

tration, we use nc and nf to respectively indicate the base

channel number in the first level of the PyNET-like network



and the other levels’ channel number. In the following, we

modify the model size by replacing these two hyperparam-

eters, nc and nf .

Table 5. Ablation study on the model size of the LTNet.

nc, nf MPS ↑ SSIM ↑ LPIPS ↓ PSNR ↑ Run-time

8,32 0.7063 0.6730 0.2604 17.7711 0.0611

4,32 0.7030 0.6668 0.2608 16.9733 0.0556

4,16 0.6920 0.6573 0.2733 16.9539 0.0550

4,16 0.6828 0.6473 0.2817 16.6719 0.0467

4,4 0.6462 0.5910 0.2987 16.1319 0.0604

As represented in Table 5, the quantitative performance

gets better as long as the model size increases, which is in

line with our basic perception. However, the visual quality

may not be consistent with the objective metrics. As shown

in Figure 11, the output image even has redundant shad-

ing. After weighing the computational cost and the visual

quality, we follow the setting, nf = 16, nf1 = 2, in all

experiments, including in the NTIRE2021 challenge.

(a) input (b) 32&8 (c) 32&4

(d) 16&4 (e) 16&2 (f) 4&2

Figure 11. Visual samples of the LTNet with the different model

sizes.

4.3.5 Training Loss Configurations

At last, we perform ablation study on training losses. In

our experiments, four losses are involved, which are the

Charbonnier color loss [12] LC implemented by MAE, the

LPIPS loss [25] LLPIPS , and residual loss Lr. We con-

sider the following four losses for training: (i) A = LC ;

(ii) B = LC + 0.5 × LLPIPS ; (iii) C = LC + Lr; (iv)

D = L1C + 0.1× LLPIPS + Lr.

As reported in Table 6, the LTNet trained with LC has

the best quantitative results. However, as shown in Fig-

ure 12, it is inferior for the visual quality of the outputs

Table 6. Ablation study on different training losses.

Loss MPS ↑ SSIM ↑ LPIPS ↓ PSNR ↑ Run-time

A 0.6861 0.6486 0.2763 16.9595 0.0552

B 0.6791 0.6365 0.2784 16.6524 0.0570

C 0.6788 0.6342 0.2765 16.4459 0.0608

D 0.6828 0.6473 0.2817 16.6719 0.0467

of the LTNet trained with LC . Compared with the four set-

tings, the performance of the LTNet trained with setting D

is relatively considerable.

(a) input (b) A (c) B

(d) C (e) D (f) GT

Figure 12. Visual samples of the outputs of the LTNet trained dif-

ferent losses.

5. Conclusion

In this paper, we point out that the light variance on an

unchanged scene is the key to the relighting task. And we

present LTNet, focusing on light variations learning. Bene-

fiting from our complementary reconstruction information

and residual network structure design, it can effectively

learn the light variation. Extensive results demonstrate that

our method achieves state-of-the-art performance in terms

of objective metrics and also has a significant improvement

in visual quality. We believe the light variation learning is

a promising direction for the relighting task, which worth

further explorations.
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