
Supplementary Material of Dual Contrastive Learning for Unsupervised
Image-to-Image Translation

1. Implementation Details
1.1. Architecture of Generator and layers used for

PatchNCE loss

Our generator architecture is based on CycleGAN [9]
and CUT [8]. We only use ResNet-based [3] generator
with 9 residual blocks for training. It contains 2 down-
sampling blocks, 9 residual blocks, and 2 upsampling
blocks. Each downsampling and upsampling block fol-
lows two-stride convolution/deconvolution, normalization,
ReLU. Each residual block contains convolution, normal-
ization, ReLU, convolution, normalization, and residual
connection.

We define the first half of generatorsG and F as encoder
which is represented as Genc and Fenc. The patch-based
multi-layer PatchNCE loss is computed using features from
four layers of the encoder (the first and second downsam-
pling convolution, and the first and the fifth residual block).
The patch sizes extracted from these four layers are 9×9,
15×15, 35×35, and 99×99 resolution respectively. Follow-
ing CUT [8], for each layer’s features, we sample 256 ran-
dom locations and apply the 2-layer MLP (projection head
HX , HY ) to infer 256-dim final features.

1.2. Architecture of Discriminator

We use the same PatchGAN discriminator architecture as
CycleGAN [9] and Pix2Pix [5] which uses local patches of
sizes 70x70 and assigns every patch a result. This is equiv-
alent to manually crop one image into 70x70 overlapping
patches, run a regular discriminator over each patch, and
average the results. For instance, the discriminator takes
an image from either domain X or domain Y , passes it
through five downsampling Convolutional-Normalization-
LeakeyReLU layers, and outputs a result matrix of 30x30.
Each element corresponds to the classification result of one
patch. Following CycleGAN [9] and Pix2Pix [5], in order to
improve the stability of adversarial training, we use a buffer
to store 50 previously generated images.

1.3. Architecture of four light networks

For SimDCL, we use four light networks
(Hxr, Hxf , Hyr, Hyf ). These networks project the

256-dim features to 64-dim vectors. Each network contains
one convolutional layer followed by ReLU, average pool-
ing, linear transformation (64-dim to 64-dim), ReLU, and
linear transformation (64-dim to 64-dim).

1.4. Additional training details

We presented most training details in the main pa-
per, here, we depict some additional training details.
For SimDCL, we use the Adam optimiser [6] with β1
= 0.5 and β2 = 0.999. We update the weights of
HX , HY , Hxr, Hxf , Hyr, Hyf together with learning rate
0.0002.

For both DCLGAN and SimDCL, we initialize weights
using xavier initialization [2]. We load all images in
286x286 resolution and randomly crop them into 256x256
patches during training and we load test images in 256x256
resolution. All images from the test set are used for evalua-
tion. For all tasks, we train our method and other baselines
with a Tesla P100-PCIE-16GB GPU. The GPU driver ver-
sion is 440.64.00 and the CUDA version is 10.2.

1.5. Additional evaluation details

We list the evaluation details of Fréchet Inception
Distance (FID) [4] and Fully convolutional Network
(FCN) [7] score. For FID [4] score, we use the offi-
cial PyTorch implementation with the default setting to
match the evaluation protocol of CUT [8]. The link is
https://github.com/mseitzer/pytorch-fid.

For FCN [7] score, we use the official PyTorch im-
plementation of CycleGAN [9] and Pix2Pix [5]. The
link is https://github.com/junyanz/pytorch-CycleGAN-and-
pix2pix. The FCN [7] score is a well-known semantic seg-
mentation metric on the CityScapes dataset. It measures
how the algorithm finds correspondences between labels
and images. The FCN [7] score is computed using a pre-
trained FCN-8 [7] network that predicts a label map for a
photo. We input the generated photos to the pre-trained net-
work and measure the predicted labels with ground truth
using three semantic segmentation metrics including mean
class Intersection over Union (IoU), pixel-wise accuracy
(pixAcc), and average class accuracy (classAcc).

https://github.com/mseitzer/pytorch-fid
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


2. Qualitative results of ablations
For different ablations including (I) Adding the first

RGB pixels back, (II) Drawing external negatives, (III) Us-
ing the same encoder and MLP for one mapping instead of
two, (IV) Adding cycle-consistency loss, and (V) Remov-
ing the dual setting. We show the randomly picked qualita-
tive results in Figure 1 and Figure 2. The qualitative results
suggest that DCLGAN generates more realistic images than
other variants, while each of our contribution has shown its
efficiency.

3. Additional Results
We evaluated our proposed method and baselines among

nine tasks. We choose the best four methods and show
more qualitative results among all tasks except for Facade
→ Label. This is an extension of Figure 2 and Figure 3 in
the main paper. Figure 3 shows some qualitative results of
Horse ↔ Zebra, Figure 4 shows the results of Cat ↔ Dog.
The results of CityScapes and Label → Facade are shown in
Figure 5, Figure 6 shows the results of Van Gogh → Photo
and Orange → Apple. From Figure 3, we can observe that
DCLGAN does not show perfect inference results in Horse
↔ Zebra tasks. This is mainly due to the limitation of the
dataset, where horse images are collected from ImageNet
using the keyword wild horse. Although DCLGAN per-
forms better than all other state-of-the-art methods among
multiple challenging tasks, similar to most recent methods,
it sometimes fails to distinguish the foreground and back-
ground.

Cat ↔ Dog task requires geometry changes to match the
distribution. As shown in Figure 4, DCLGAN performs the
best in geometry changes and generates realistic cats/dogs
with reasonable structure while CycleGAN [9] fails to per-
form any geometry change. For texture changes, DCLGAN
consistently outperforms all other methods on the whole.
This is shown on the third row of Figure 6 when CUT [8]
fails to modify the color of whole oranges.

4. Discussions
4.1. Similarity loss and mode collapse

The degenerated solution for similarity loss is avoided
by the constraints from other losses. The features sent to
Hxr, Hxf or Hyr, Hyf are also different at each iteration,
where the features do not represent patches with the same
location.

Similarity loss prevents mode collapse, this is due to the
mode collapse outputs not only lack diversities but also tend
to be unrealistic. However, the diverse real images are al-
ways of good quality. Thus, when there is a potential mode
collapse issue, the similarity loss increases, and behaves
like a regularization term, to avoid mode collapse.

4.2. External negatives

We present the effect of drawing external negatives in
abalation section, ablation (II). We show that drawing exter-
nal negatives in the same manner as SimCLR [1] may have
a positive influence on certain tasks quantitatively, but ex-
ternal negatives usually negatively affect qualitative results.
This is shown in figure 1, where the generated pedestrians &
cars tend to be merged together. We agree with [8] that in-
ternal negatives are more powerful than external negatives,
however, we hypothesize that drawing external negatives in
different ways may lead to different conclusions which can
be investigated in the future.

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning
of visual representations. In International Conference on Ma-
chine Learning (ICML), 2020. 2

[2] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256, 2010. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Con-
ference on Computer vision and pattern recognitio (CVPR),
pages 770–778, 2016. 1

[4] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
In Advances in neural information processing systems (NIPS),
pages 6626–6637, 2017. 1

[5] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 1

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations (ICLR), 2014. 1

[7] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
IEEE conference on computer vision and pattern recognition
(CVPR), pages 3431–3440, 2015. 1

[8] Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-Yan
Zhu. Contrastive learning for unpaired image-to-image trans-
lation. In European Conference on Computer Vision (ECCV),
2020. 1, 2

[9] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In IEEE International Conference on
Computer Vision (ICCV), 2017. 1, 2



Input I II III IV V DCLGAN

Figure 1. Qualitative results of ablations on CityScapes task.



Input I II III IV V DCLGAN

Figure 2. Qualitative results of ablations on Horse → Zebra and Zebra → Horse tasks.



Input DCLGAN SimDCL CUT CycleGAN Input DCLGAN SimDCL CUT CycleGAN

Figure 3. Additional results of Horse ↔ Zebra.

Input DCLGAN SimDCL CUT CycleGAN Input DCLGAN SimDCL CUT CycleGAN

Figure 4. Additional results of Cat ↔ Dog.

Input DCLGAN SimDCL CUT CycleGAN Input DCLGAN SimDCL CUT CycleGAN

Figure 5. Additional results of CityScapes and Label → Facade.



Input DCLGAN SimDCL CUT CycleGAN Input DCLGAN SimDCL CUT CycleGAN

Figure 6. Additional results of Van Gogh → Photo and Orange → Apple.


